A Modular Architecture for Context Sensing

Julian Grigera *, Andrés Fortier * §_ Gustavo Rossi * ¥, Silvia Gordillo *
*LIFIA, Facultad de Informadtica, Universidad Nacional de La Plata, La Plata, Argentina.
email: {juliang, andres, gustavo, gordillo} @lifia.info.unlp.edu.ar
§DSIC, Universidad Politécnica de Valencia, Valencia, Espaia.

{CONICET
fCICPBA

Abstract—Due to the technological evolution, context-aware
computing is slowly moving from dream to reality. These ap-
plications heavily rely in sensing the user’s environment and
abstracting this information to perform high-level adaptation.
While technological issues have been mostly addressed, sensing
software is usually built in a handcrafted way, which turns into
building ad-hoc solutions for every new application. To solve this
problem, we consider that context sensing should be regarded as
a software engineering problem and not a simple implementation
issue. In this paper we present a software architecture for
dealing with context-sensing aspects in a high-level modular
way. We show that by using this approach, evolution issues
typical of mobile wireless software can be managed easily by
replacing or composing software modules without compromising
performance.

I. INTRODUCTION

Developing context-aware application involves a set of
software engineering problems, many of which have been
often reported in the literature [1] and some of them solved
(2], [3].

While high level issues, such as context modelling and
context-aware adaptation have deserved much attention in the
literature, context sensing remains as a low-level handcrafted
task. The main consequence of this, is that the impact of
software evolution tends to be harder to manage. For example,
the introduction of new sensing devices might imply changing
the acquisition policies (push vs. pull), adding new information
formats (latitude/longitude vs. code bars or symbols) or chang-
ing existing low-level algorithms. If the application logic is
coupled with the sensing mechanisms, as these modifications
occur, the application is overwhelmed by changes. In lower
levels of implementation, such changes usually impact in
other application modules; for example we may need to build
different mapping algorithms for abstracting the data gathered
by a sensor into a higher-level format used by the context
model. In other words, while sensed data is represented as
strings, numbers or pairs, applications are built in terms of
objects. Therefore, changes in the specific format provided by
a sensing device pose a new challenge on data translation.

In this paper we show that, in order to simplify wireless
software evolution in mobile context-aware applications, con-
text sensing should be considered also a software engineering
problem. To tackle this issue, we present a high-level approach

This paper has been partially supported by the Argentine Secretary of
Science and Technology (SeCyT) under the project PICT 13623

realized by an application framework that allows flexible
evolution of sensing features.

II. SENSORS AND SYSTEM EVOLUTION

If we think in terms of Weiser’s vision [4], in a ubig-
uitous environment both the services provided to the user
and the devices used to gather context information will be
constantly changing. We should also notice that information
about a specific context feature is usually gathered by different
sensors. Consider location as an example of user’s context.
If the user is moving outdoors, location can be determined
by a GPS receiver connected to his PDA. In the moment
he enters a building, the system must switch from GPS to
an indoor sensing technology, such as Bluetooth beacons [5].
This scenario shows that, depending on the user’s situation, the
information about his location can be obtained using different
kinds of hardware sensors.

As a second example consider a user moving inside a
building. To detect where the user is standing, we can use
Bluetooth beacons. Now suppose there are billboards hanging
on the walls inside the building, which we would like to
enhance with digital services (for example, showing the web-
version of the billboard, or having the chance to leave a
digital graffiti). In order to do this we can use an infrared
beacon [6] to capture the user’s location, this time with a finer
granularity than the one provided by the Bluetooth beacon. As
a result, location is sensed by two different devices at the same
time, one giving more detailed information than the other.
Additionally, the following requirements arise in systems that
use sensing devices:

¢ As sensing mechanisms change, the policy needed to

gather values may change as well.

o Sometimes filters must be placed in order to avoid some

information to reach the application.

o Sensed values are generally low-level data, which must

be abstracted in order to make sense to the application.

In this paper we present a flexible architecture that can
be easily extended to accompany changes in the sensing
mechanisms.

III. ARCHITECTURE AND CONTEXT MODEL: AN
OVERVIEW.

In order to provide a scalable architecture we need to
establish a clear separation of concerns. To do so, we devised

21st International Conference on

Advanced Information Networking and Applications Workshops (AINAW'07)

0-7695-2847-3/07 $20.00 © 2007 IEEE

IEE I-'

COMPUTER

SOCIETY

Application Model IR Sensor

I | |
1 | |
| | |
h L L

Context Aspect 1 Context Aspect 2 Context Aspect N
Location Weather Activity

T Sensor
data

Lt

T T
T 1 |
1 1 |
1 1 |
1 I |
L L L

RF

: el
»

Services

——> Knowledge

Fig. 1. The Architecture of a Context-Aware Application

a three layered architecture, making an important use of the
dependency mechanism as presented in the Observer pattern
[7]. A diagram of our architecture is presented in Figure 1.

The Application Model package contains the basic appli-
cation behaviour, which shouldn’t be cluttered with context
dependent details; in this way the layer defines a set of classes
specifying only application objects and their relationships.
Thanks to this separation, the context model can change
dynamically without impacting on the application.

In previous papers [8], [9] we argued that, due to its
constant-changing nature, context shouldn’t be formalized and
modelled as a static object. Instead, we decided to model
context as a collection of Context Aspects, each one mod-
elling a specific feature of the current user context. The first
implication of this model is that each context feature can be
modelled and implemented in an independent fashion, making
it easy to change the context model for a particular application.
As a side effect, we also obtain two valuable features:

« Context aspects can be reused. For example, if we devise

a context aspect that models the network bandwidth, we
can reuse it in another application, since it is modelled
as a feature independent of a concrete application.

o Context can change at run time. Our context model is
based on the composition of different context aspects,
allowing the system to redefine what is contextually
relevant at any time by dynamically adding or removing
such context aspects.

Finally, the Services layer reacts to a context change by
adding or removing specific services. When the environment
is set up, the available services are associated with specific
providers, which will be available only when the user’s context
fulfills a set of requirements.

IV. SENSING ARCHITECTURE

A common approach to model context-aware applications
is to devise a layered architecture in which sensors rep-
resent the lowest level of abstraction. Although this kind
of layered approach works well enough for prototypes and
simple applications, we consider that it is not well suited for
applications that evolve and increase their complexity over
time. In the architecture we propose, the sensing mechanisms

are decoupled from the context model, since both aspects will
evolve independently from each other. This issue is seen in
two important aspects of location-aware applications:

e On the context model side there are many ways of
modelling the location aspect depending on the appli-
cation’s needs: we can use pure models (like geometric
or symbolic)[10] or hybrid and enriched ones (like an
extended symbolic model, which adds distances between
nodes).

¢ On the sensor side, there are many ways to gather location
data, independently from the location system used by the
context model. Bats, Access Points and Bluetooth can
be used to triangulate and calculate the position for a
geometric indoor model, or they can be used as input for
a symbolic model. In the same way, a GPS signal can
be used for external geometric models, or mapped to a
simple symbolic system.

For this reasons we claim that context must be modelled
without considering the sensing mechanisms; the context
model should only represent the user’s context and not the
way it is sensed. On the other hand, since sensors can be used
in many different ways, they should only be concerned about
their specific implementation details. In the rest of this section
we will explain how we address these problems by showing
how to connect these two layers.

A. A High-level View

To decouple context modelling and acquisition, our archi-
tecture adds a layer between the hardware that gets context
information and the context model. The basic entities of this
layer are the sensing aspects. A sensing aspect is an object
that constantly watches over a set of sensors, and reacts when
they produce new values, notifying the context model.

In Figure 2 we show a simplified class diagram of the
sensing aspects layer, and how it relates to the other layers.

Object Hardware Abstractions

sensor r

i
i
i
i
i
i
i
L
i
i

policy !
i
i
i
i
i
i
i
i
i
i
i
i
i
i

Location

receiver

Sensor

LocationAspect

Sensing Aspects é

SensingAspect SensingPolicy

+ sensorValue(aValue)

+ policy

+ receiver

- dispatchValue(aSensorValue)

+ sensor
- sensor(aSensor)

PullSensingPolicy PushSensingPolicy

+ start

+ stop

+ finalize

- dispatchValue(aSensorValue)

+ newValue(aValue)
- sensor(aSensor)

Fig. 2. Simplified Class Diagram of the Sensing Aspects Package

IEE |-:

COMPUTER
SOCIETY

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007 IEEE

receiver S

)
t Transformation

Object ing

_ | * policy
+ receiver

+ sensorValue(aValue)

- dispatchValue(aSensorValue)

+ apptyTo(aValue)

[= !

NullTransformation LookupTransformation

LocationAspect

SensingPolicy

- table : Dictionary

+ apptyTo(aValue) + apptyTo(aValue)

+ sensor
- sensor(aSensor)

sensor.

ko>——————sensory

Sensor Di

p: er

paN

dispatcher

+ dispatch(aValue)

[
PullSensingPolicy PushSensingPolicy

+ newValue(aValue)
- sensor(aSensor)

+ start

+ stop

+ finalize

- dispatchValue(aSensorValue)

Fig. 3.

The SensingAspect class implements the functionality
recently described. Each SensingAspect instance knows a
set of sensors and a policy to acquire data from them. Addi-
tionally, when the sensing aspect is created, the programmer
determines what message will be sent to the context model for
it to update its information. Depending on the programming
environment used, this behaviour can be configured by sub-
classing SensingAspect or using reflection. In our example
the location (newLocation) message is sent to the location
aspect of the user.

As shown in Figure 2, a sensing aspect uses a sensing
policy in order to isolate the way the sensor works. By using
the dependency mechanism, the sensing aspect only “knows”
that, when the sensor gathers a new value, it will receive the
sensorValue (aValue) message.

With only these simple mechanisms we have solved some
of the problems mentioned in Section II:

o The sensing mechanism is decoupled from the context
aspect. In the previous example, the location aspect has
no knowledge of how the values are sensed. It only knows
that when the user changes his location, it will receive
the Iocation (aCoord) message.

o Multiple sensors can be used to gather information about
the same context aspect. Since the context aspect has
no knowledge of the sensing mechanism, our approach
scales to add sensing devices to the same aspect, all of
them running concurrently. Consequently, sensing devices
can be added and removed in runtime.

e Data can be gathered by remote sensors. Since our
architecture is fully distributed, we can use proxies to
allow sensing aspects for acquiring context data from
remote sensors (i.e. not directly linked to the mobile
device) seamlessly.

B. Dispatchers and Transformations

In some cases, we need to filter sensed data to lessen the
burden of processing incoming signals we don’t need. As an
example, suppose an office environment with context-aware
services, in which people tend to be sitting in front of their
desks for long periods of time. To detect this, we choose to

AN

[[1
ForwardDispatcher InFrontDispatcher ErrorFilterDispatcher

+ dispatch(aValue) + dispatch(aValue) + dispatch(aValue)

Class Diagram of the Sensing Aspects Package

install infrared beacons in front of every desk. These beacons
signal an ID representing the specific desk every 2 seconds,
and the user’s PDA is in charge of translating this ID into
an object that represents that desk in the location model.
Since users will leave their desks rather sporadically, and
and we expect to receive the same ID for long periods of
time, even tough the user is still in his desk, we can consider
that the position hasn’t changed at all. Still, the PDA will
process every incoming signal every 2 seconds, dispatching
the value to the context aspect. This burden may be eased
if we only let the first signal come through the message
dispatching mechanism and prevent the following ones from
reaching the location aspect. Only when a different signal
arrives, or a certain tolerance timeout ends, will the new
signal be forwarded. To solve this issue we use a dispatcher,
which is in charge of deciding, for a given signal, whether
the dispatching process should continue or not. This concept
is represented by the abstract class Dispatcher, which can
be extended in order to provide sensor-dependent behaviour.
Some example dispatchers, illustrated in Figure 3 are:

e ForwardDispatcher: Forwards every signal.

e UniqueDispatcher: As explained in the example, only
sends a signal when it is first received.

e ErrorFilterDispatch: It is used to filter those signals
whose noise level is higher than a given threshold.

Once we solved the dispatching issue, we need to address
the data transformation procedure. In Section IV-A we pre-
sented a simple example to illustrate the basic sensing mech-
anism. Even though this example captures the fundamental
idea, it assumes that data gathered by the sensors can be
delivered to the context aspect without any transformations.
In real applications this assumption doesn’t hold and we need
to map atomic values delivered by sensors to full fledged
objects which will feed the context aspect. This transformation
can take many shapes, ranging from simple table lookups
to complex machine reasoning processes. The most common
transformations we have found so far are:

o Table mapping. A typical example of table lookup is
the mapping between sensor IDs and symbolic locations.
This is widely used for indoor positioning.

21st International Conference on

Advanced Information Networking and Applications Workshops (AINAW'07)

0-7695-2847-3/07 $20.00 © 2007 IEEE

IEE |-:

COMPUTER

SOCIETY

LocationAspect || LookupTransformation SensingAspect

ForwardDispatcher

PushSensingPolicy

receive(aSignal)

sensorValue(aValue)

i
|
|
L < newValue(avalue) changed(‘valueReceived’, aSignal)

=

changed(‘'sensorValue’, aValue)

dispatch(aValue) i

applyTo(aValue) | | dispatchValue(aValue)

A

location(area)
[l

LT
| LT

Fig. 4. Complete Dispatching Process

e Coordinate system transformation. This kind of trans-
formation is used when data arrives in some coordinate
system, and the location system used by the application
works with a different one. As an example, we can get
data from a GPS in a (latitude, longitude) pair, which
needs to be mapped onto a specific geometric model used
for positioning containers in a dock.

o Situation abstraction. In many cases data gathered by
sensors is used to infer higher level information. For ex-
ample, by examining information like location, schedules,
the people in the surroundings, noise level and other
ambient information, we can expect to make predictions
about the user’s current situation. Some related studies in
this field can be found in [11] and [12].

To isolate these concerns, we modelled the transformation
mechanisms in a separate class hierarchy, which is used to
configure the sensing aspect. In Figure 3 we show the complete
class diagram of the sensing layer.

To clarify the dispatching of a sensed value, we present a
complete interaction diagram (see Figure 4). In this example
the sensed value is an ID coming from an infrared beacon,
which must be translated into a symbolic location by means
of a simple lookup transformation.

C. Using Software Sensors

Through the paper we assumed that context data was
gathered using hardware sensors, but, in many cases, this
information can also be obtained through software modules.
For instance, in order to infer the user’s situation, we may
need to inspect his schedule or see what kind of application he
is running. Other examples of external sources of information
are web services, which can be used to complement (and even
replace) the information gathered by hardware sensors.

Our sensing architecture can be easily adapted to use
software information. From the sensing point of view, these
information producers can be seen as ‘“‘software sensors”,
which provide data in the same way that hardware sensors do.
Even the policies used in hardware sensors can be applied:
services like e-mail or simple http requests use a pull policy,

while there is a new trend to provide services through the
internet using a push policy [13].

V. ADAPTING THE ARCHITECTURE THROUGH SENSORS
EVOLUTION

In this section we will detail how to extend our sensing
layer in order to add a new sensing technology. As an example
scenario, consider a digital enhanced office, where users may
be at their desks, attending to meetings or just walking around.
Since we are going to provide location-based services we
assume that we have a digital map of the office.

A. Adding Infrared Beacons

Suppose we want to use a set of IR beacons to identify
different areas (meeting room, front door, etc). To integrate
these sensors into the application we must follow 3 steps:

o Create a new sensing aspect.

o Select a policy to fetch sensor data.

o Create a transformation object to map atomic values into
location objects.

The sensing aspect will coordinate the new functionality:
it will receive the values coming from external sensors and
take an action, which will be typically notifying the context
change to its related context aspect. To configure this action
we can create a subclass of SensingAspect and override the
dispatchValue (aValue) method, which is invoked every
time a new signal comes from the dispatcher. In our example,
we created the LocationSensingAspect class and overrode
dispatchValue (aValue) to convert the arriving value into a
location object and then setting the new location to the location
aspect by sending the message location (aLocation) to it.

class LocationSensingAspect
dispatchValue (value){
newLocation = this.transformation.valueFor (value);

this.locationAspect () .location (newLocation);

}

Notice that the conversion is actually performed by a
transformation object (as explained in IV-B).

IEE |-:

COMPUTER
SOCIETY

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007 IEEE

Once the new sensing aspect has been created, we must
select a fetching policy and a dispatching technique. These
choices are closely related to both application needs and
hardware features. Since the PDA’s IR port will be constantly
expecting for new beacon signals, a push policy will be
adequate for this case. The following code shows the steps
to set up the hardware abstraction and policy:

//locationAspect is the related context aspect
ir = IRPort.new();

policy = PushSensingPolicy.new (ir);

sa = LocationSensingAspect.new(policy,
locationAspect) ;

sa.setDispatcher (UniqueDispatcher.new(sa));

The IRPort class, included in the Hardware Abstractions
package, implements the low-level functionality needed to
manage the PDA’s IR port. It is a subclass of the abstract
class Sensor, which defines the abstract method value ()
(intended to return the last sensed value) and the behavior
to notify changes to eventual observers. Notice that in the
last line of code we set a dispatcher to the sensing aspect.
This object, as we explained in Section IV-B, acts as a filter,
deciding what signals will ultimately reach the context aspect.
An UniqueDispatcher will only let in a signal that differs
from the previous one, avoiding repeated data.

As we saw earlier on this example, the sensing aspect uses
a transformation object to convert beacon signals to location
objects. In this case, we can use a simple lookup table (already
defined in the LookupTransformation class), and load the
mappings from an XML file. Following with the previous
example, we show how the table is created:

t = LookupTransformation.new (' ‘mappings.xml’’);

sa.setTransformation (t);

class LookupTransformation
//constructor
new (filename) {
mappings = (XMLParser.new()) .parseFile (filename);
for each m in mappings;
signal = m.signal();
location = digitalMap.locationFromId (m.value);

this.addMapping(signal, location);

B. Adding a GPS Device

So far we have only represented symbolic location, but
sometimes it results useful to manage geometric location (i.e.
coordinates systems). In order to add this capability to the
application we will need a proper sensing technology to obtain
geometric positioning. A GPS receiver attached to the PDA
will serve for this purpose, although it will only be useful
for outdoor positioning. The data this device supplies is a
(latitude, longitude) tuple with the user’s global coordinates.

However, in our application we won’t be using geometric
positioning in terms of latitude and longitude, but simple (x,y)
coordinates with respect to a local origin. This can be solved
later with a simple transformation object.

The new sensing technique requires a low-level class (analo-
gous to IRPort) to communicate with the GPS device; we will
assume this is already implemented in the class GPSDevice.
Just like we did before, we will create a new sensing aspect,
this time using a pull policy to ask the device for values with a
certain timeout. We can also use a dispatcher to skip repeated
coordinate tuples (e.g. while sensing a user who is standing
still). The following code shows the set up for the gps device
with geometric position:

policy = PullSensingPolicy.new (GPSDevice.new());
sa = LocationSensingAspect.new(policy,
locationAspect) ;

sa.setDispatcher (UniqueDispatcher.new(sa));

The only issue left is the data transformation. We can
create a new Transformation subclass and override the
valueFor (sensedValue) message to convert the coordi-
nates with a linear function. If we wanted to use the same
symbolic location model keeping this technology, we only
need a new transformation object that maps coordinates sets
into location objects.

C. Adapting Web Services

Some useful context information is not easy to sense, either
because it becomes too expensive or simply because it is not
possible. Sometimes we can still get this information from
others who actually perform such sensing and share the results
publishing them into web services.

In our framework, there is a way to create web services
query objects, and they can be easily incorporated into the
application as software sensors (like we mentioned in IV-C).
Consider as an example a weather report web service. We
follow the same procedure from the previous examples, but
now we will create a sensor class (analogous to IRPort
or GPSDevice) to wrap the web service accessor. In this
wrapper [7] class we will set up the parameters for the web
service query; a weather report usually needs the global
coordinates, which we can set fixed for static applications
(like an office environment) or we can obtain from a
geometric location sensing aspect when available. We can
complete the setup with a pull policy with a suitable timeout,
and an UniqueDispatcher.

As we have shown through these examples, setting up the
sensing view of our architecture involves compounding objects
and extending few classes. Having implemented the necessary
low-level functionality for the new sensors, setting up the rest
of the sensing layer involves little codification.

VI. RELATED WORK

Problems regarding tight coupling between sensors and
applications is not a new issue. In his PHD thesis [2], Dey

IEE l-:

COMPUTER
SOCIETY

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007 IEEE

already refers to it as the source of major application redesign
in regard to their experience in the Cyberguide project [6].
The Context Toolkit [14] has been developed to face these
problems. In this framework, context information is obtained
through external sensors that need to be integrated into the
application with a higher level of abstraction. For this purpose,
the Context Toolkit uses three different components, namely,
context widget, context aggregator and context interpreter. The
context widget component is used to get context information
from sensors and retrieving it to the application, separating the
context information from the acquisition process.

Another approach, based on layered architectures, has been
used to provide flexible support for the acquisition of sensor-
based context information. Following this style, Schmidt and
Van Laerhoven [15] proposed a middleware architecture which
is separated in four different layers: sensors, cues, context and
application. Data obtained from sensors is processed by cues
on the next layer. A cue represents a higher-level abstraction
of sensed data and it is used to facilitate context recognition
in the higher layer. Values generated by cues are buffered in
a tuple space, which provides for inter-layer communication
between the cues layer and the context layer. The context layer
can read these values and infer the current context.

As we have seen in this approach, the use of middleware
architectures helps decoupling the sensing hardware from
context abstractions. In the architecture depicted above, it
is feasible to switch sensors on the lowest layer without
having a mayor impact on the cues processing layer. The tuple
space between the cues and context layers helps to separate
sensed data and context information, providing also a means
to distribute information in networked environments.

VII. CONCLUDING REMARKS AND FURTHER WORK

In this paper we have presented a software architecture
for dealing with context sensing. We showed that by using
simple state of the art software composition mechanisms it
is possible to face usual problems that developers have to
cope with when sensing technology changes or evolves. We
have explained how to modularize those properties which
are idiosyncratic of sensing devices and decouple them from
application concerns. Format transformations, acquisition poli-
cies and signal processing have been objectified and thus
made easily interchangeable according to application needs or
technological requirements, even at runtime. Also, by clearly
decoupling the sensor notion from the sensing aspects we
are able to replace hardware sensors with any information
provider, like rss or web services.

We are currently researching in three different areas in
order to improve the sensing layer. At the lowest level, we
are developing an approach for building abstract specifications
for sensors. This would allow us to program against a sensor
specification without caring about specific low-level details. As
an example, we can have a port specification that states that
the sensor receives a five digit number, making the system
independent of whether we will use the infrared or Bluetooth
port of our PDA.

We also are developing a distributed publish-subscribe sys-
tem to connect sensors residing in different hosts. This sub-
system will handle data gathered by sensors and meta-data
related to the sensors themselves.

The third (and most challenging) area of research is the
transformation step, which now must be done in an ad-hoc
manner for every sensor. We are trying to tackle this problem
by modelling typical kinds of transformations, in order to reuse
them in different applications and by providing a higher level
syntax to express transformations, so that non-programmers
can express them in a natural way. Our final goal is to be able
to design a graphical editor that allows us to build this kind
of systems by connecting different modules based on sensor
specification, predefined filters and required policies.

REFERENCES

[11 G. D. Abowd, “Software engineering issues for ubiquitous computing,”
in ICSE ’99: Proceedings of the 2l1st international conference on
Software engineering. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1999, pp. 75-84.

[2] A. K. Dey, “Providing architectural support for building context-aware
applications,” Ph.D. dissertation, Georgia Institute of Technology, 2000.

[3] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang, “A middleware for
context-aware mobile services,” IEEE Vehicular Technology Conference,
2004.

[4] M. Weiser and J. S. Brown, “The coming age of calm technolgy,” Beyond
calculation: the next fifty years, pp. 75-85, 1997.

[5S] A. Huang and L. Rudolph, “A privacy conscious
bluetooth infrastructure ~ for location aware computing,’
http://people.csail.mit.edu/albert/pubs/2004-albert-infrastructure-for-
location-aware-computing.pdf.

[6] G. Abowd, C. Atkenson, J. Hong, S. Long, R. Kooper, and M. Pinkerton,
“Cyberguide: a mobile context-aware tour guide.” Wirel. Netw., vol. 3,
no. 5, pp. 421433, 1997.

[7] E. Gamma, R. Helm, and R. Johnson, Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[8] A. Fortier, G. Rossi, and S. Gordillo, “Decoupling design concerns in
location-aware services,” in Mobile Information Systems II, 2005, pp.
187-202.

[91 G. Rossi, S. E. Gordillo, and A. Fortier, “Seamless engineering of
location-aware services.” in OTM Workshops, 2005, pp. 176-185.

[10] U. Leonhardt, “Supporting location-awareness in open dis-
tributed systems,” Ph.D. dissertation, Dept. of Comput-
ing, Imperial College, 1998. [Online]. Available: cite-

seer.ist.psu.edu/article/leonhardt98supporting.html

[11] E. Mynatt and J. Tullio, “Inferring calendar event attendance,” in IUI
’01: Proceedings of the 6th international conference on Intelligent user
interfaces. New York, NY, USA: ACM Press, 2001, pp. 121-128.

[12] D. J. Patterson, L. Liao, D. Fox, and H. A. Kautz, “Inferring high-level
behavior from low-level sensors.” in Ubicomp, 2003, pp. 73-89.

[13] M. Hauswirth, “A reference architecture for push systems.” technical
Report.

[14] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit: Aiding
the development of context-enabled applications.” in CHI, 1999, pp.
434-441.

[15] A. Schmidt and K. V. Laerhoven, “How to build smart appliances,” IEEE
Personal Communications, pp. 66 — 71, 2001.

IEE l-:

COMPUTER
SOCIETY

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007 IEEE

