
Design Patterns for Context-Aware Adaptation

Gustavo Rossi
1,4

, Silvia Gordillo
1,3

, Fernando Lyardet
2

1 Lifia. Facultad de Informatica. Universidad Nacional de La Plata, Argentina

Fernando D. Lyardet. Telecooperation, Technische Universität Darmstadt, Germany
3
Also at CICPBA,

4
Also at Conicet

{gordillo,gustavo}@lifia.info.unlp.edu.ar, fernando@tk.informatik.tu-darmstadt.de

Abstract

In this paper we show how the judicious use of

design patterns can improve the design of context-

awareness in software systems. We first review well-

known problems in the development of context-aware

applications. Next, we present our view on the design

process of context-aware software; we introduce

design patterns and explain why they can be useful to

improve the quality of this kind of applications. We

finally present some design patterns we mined by

researching on successful context-aware approaches.

Some concluding remarks are finally presented

together with further work we are pursuing.

1. Introduction

An interesting research area related with context-

aware software involves finding the most appropriate

design structures to represent context and to provide

context-awareness. In this paper, we focus particularly

on those design issues that developers should consider

when dealing with context-aware adaptation. We have

identified a set of design micro-architectures that allow

customizing services (application behaviors perceived

by the user) according to the user’s current context.

However, we will not focus solely on our work, but we

will reflect on the work of others: those successful

builders of context-aware software. We will use

patterns as tools to record and convey good design

decisions in the field of context-aware software. The

contributions of this paper are twofold:

-We show the importance of recording recurrent

problems related with context-awareness and their

solutions in the form of patterns.

-We present a set of patterns to illustrate our point of

view.

The rest of the paper is organized as follows. We

first present our (critical) view on how design issues

are dealt with in the field of context-aware software.

Next, we introduce the concept of patterns and analyze

why they are helpful in our domain. Then, we present

some concrete patterns, explaining how they have been

used by successful designers. Finally, we present some

further research we are pursuing.

2. Design Issues in Context-Awareness

As cleverly pointed out in [7], most of the recent

research on context-awareness has adopted an

infrastructure-centered, rather than a conceptual view,

presenting specific frameworks for gathering,

managing and disseminating context information.

We can go further in this analysis and state that,

even while context representation and acquisition is

clearly understood by the community, context-aware

adaptation is still designed using ad-hoc practices; we

are far from having an engineering view of this aspect

of context-awareness.

It is somewhat clear which abstraction constructs

are necessary to implement context information

acquisition. Context widgets as presented in [12]

represent a good approach for decoupling sensors from

more abstract context data. Aggregating and

transforming contexts according to the needs of

applications has also been discussed in [12] and

elsewhere. These ideas follow well-known practices

for decoupling of concerns, in particular extensions to

the popular MVC architectural style as explained in

[9]. In the same way, the process of notifying the

application about changes in the current context has

been also studied in the literature, and it is reasonably

clear when push or pull approaches are to be used [2].

However, the task of context-aware adaptation is

seldom addressed in the literature, or just left as an

application concern. One could argue that, once

acquired and transformed, context information is not

different to other kind of application’s data, and thus

the process of adaptation should follow existing

approaches in more general software systems.

Proceedings of the The 2005 Symposium on Applications and the Internet Workshops (SAINT-W’05)

0-7695-2263-7/05 $20.00 © 2005 IEEE

Surprisingly however, most existing applications use

rules for adaptation, i.e. applications implement some

kind of “if-then” structure that, according to the actual

values of contextual variables, decides which action

must be performed. These program structures may

appear as production rules as in [3], or rule objects as

in [14]. While easy to program (even by final users),

rule sets can become monolithic and make evolution a

nightmare. We show in the rest of the paper, that there

are other design structures that can (and should) be

used to implement context-aware adaptation.

If context-awareness becomes mainstream,

hundreds of developers will create their own

applications. They will not use existing frameworks or

infrastructures, unless they finally become standard or

widespread used (as Jakarta Struts for the “old” field

of Web applications). So, how can we help them in the

process of building those applications?

We need to show them which problems they will

surely face and how to solve those problems. We must

do that, by taking into account that their applications

will be novel, i.e. new kinds of contexts and context-

aware adaptation will arise. In the following section

we introduce design patterns, and show how to apply

them to record and convey good solutions to context-

aware adaptation problems.

3. Patterns for Context Aware Adaptation

Design patterns [4] describe problems that occur

recurrently, and specify the core of the solution to

those problems in such a way that we can (re)use this

solution many times in different contexts and

applications. Design patterns complement design

methods as they show solutions that go beyond the

naive use of primitive constructs. Patterns act as high-

quality micro-architectures in a system; they usually

help to improve system modularity and ease of

extension. Knowing about patterns in a domain helps

us know what experience designers do when facing a

non-trivial problem.

Some authors have already used patterns to record

design experience in different aspects of ubiquitous

and mobile computing. For example, in [8] different

strategies for using ubiquitous computing are recorded

as patterns; [11] presents some patterns for organizing

components in a mobile setting. In the field of context-

aware computing there are different design concerns

and certainly we could mine patterns related with each

of them. For example, if we address the problem of

context acquisition and abstraction we will find that

Widgets as in [12] certainly express a pattern: the idea

of decoupling sensors from the rest of the software by

using intermediate objects is independent of a

particular implementation framework. In other words,

we can re-write the idea in such a way that (if

necessary) a novice programmer can implement his

own widgets library just by grasping the abstract idea

behind the concept. Similarly, we can focus on how an

application becomes aware of changes in the actual

context and discover some relevant patterns.

Patterns can be described in different levels of

abstraction: for example we can express the solution in

terms of communicating objects, or architectural

modules. We can instead use a notation such as the one

in [7] to describe patterns related with conceptual

modeling of context-aware software.

In this paper we will focus on design patterns for

context-aware adaptation. We chose this field because,

as previously explained, we feel that it is quite fertile

for showing good and somewhat ignored design

solutions which in some cases, result from the

judicious application of well-known design structures.

As usual with patterns, some problems must be faced

using combination of them, i.e. patterns are not

supposed to be applied in isolation. See for example

4.3 and 4.4 for an idea of possible combinations.

For the sake of conciseness we will use a reduced

template as the basis for representing patterns. The

template contains a Problem section that briefly shows

the (recurrent) abstract problem with an example. The

Solution section shows how expert designers face the

problem. Diagrams are presented in UML and,

similarly to [4], we indicate the role of classes in the

pattern solution; when possible we enclose in

parenthesis the example class. The Applicability

section indicates when we must use this solution;

finally we include a Known Uses section as examples

of use of the pattern. We purposely present Rule-Based

Adaptation as a pattern to clearly indicate when rules

should be used.

3.1. Typified Context Element

Problem: You want to adapt your application

according to the actual user’s device (Palm, Cell

Phone, etc). For example, you want to present different

information or use different interface styles according

to the device.

Solution: Describe devices in a class hierarchy and

define polymorphic methods in each class for

providing the expected result. Instead of representing

the context variable as a string (e.g. “Palm”), define it

as an instance of the corresponding class in the

hierarchy. Delegate the corresponding adaptation into

that context object. In this way, you avoid having a

rule for each possible type of device. In Figure 1 we

Proceedings of the The 2005 Symposium on Applications and the Internet Workshops (SAINT-W’05)

0-7695-2263-7/05 $20.00 © 2005 IEEE

present the generic structure of this pattern in which

Context elements are modeled as a class hierarchy with

a polymorphic behavior invoked by the application

when adapting to context.

ConcreteElement

(PDA)

adaptBeh()

ConcreteElem

(CellPhone)

adaptBeh()

adaptBeh (aContext)

aContext.elem adaptBeh (self)

ContextElem (Device)Context

AppClass

adaptBeh()

Figure 1. Treating context variables as types

Applicability: Use this pattern when i) a context value

can be represented as an instance of a set of

polymorphic types, e.g. user roles, types of activities,

moods, devices, etc. and ii) the user is not supposed to

add new type of values during run-time.

Known Uses: This pattern is being largely used in [13]

3.2. Active Context Element

Problem: Suppose that your software must provide

different services according to the place you are; for

example in an augmented reality Museum, you can see

additional information when you are in front of an

artwork; different artworks allow you different kinds

of interactive experiences

Solution: Model each place as a full-fledged object

and assign a set of command objects [4] with

corresponding services to that object. As in 3.1 define

the corresponding context attribute as a reference to

this object, instead of solely a string with its name.

Delegate the selection of services to the context object,

which in turn will use its commands. Context elements

in Figure 2 can exhibit different sets of behaviors,

configured as commands.

ContextElem

(aPlace)

services()

Service1 Service2

ServicemyServices

servicesIn (contElem)

return (contElem services)

Context

Application

servicesIn() services

return (myServices)

Figure 2. Context as Active Objects

Applicability: Use this pattern when the context itself

(or a relevant context element) can be viewed as an

object; the most usual case occurs with outstanding

physical places in the application. Notice that 3.1 is a

particular case of this pattern in which each context

can be modeled as a class. For example when a tourist

has a set of services when entering any Church we use

3.1; when each Church (e.g. Notre Dame, Sacre-Coeur,

etc.) provides a specific context-aware behavior, we

use Active Context. Notice that in 3.1 the commands

are replaced by class´ methods.

Known Uses: A nice example can be found in [5].

Physical Hypermedia applications [6] also use

extensively this pattern.

3.3. Rule-based Adaptation

Problem: You are building a system that must adapt

its behavior according to different time intervals. For

example the response should vary between 2 and 3 pm

and between 4 and 5 pm. A completely different

behavior is expected at night.

Solution: Use condition/action rules to implement the

behavioral adaptations. This solution has several

variants. If the user is expected to add his own rules

(e.g. “I don’t want to be bothered between 4 and 5”),

use Rule Objects in which conditions and actions are

full-fledged objects [14]. If the set of rules might

include contradictory rules, use either meta-rules to

define the adaptation strategy or production-rules

algorithms to choose which rule is to be executed.

Applicability: Rules should be used when the

adaptation is performed on values that cannot be

typified (e.g. times, dates, weights, temperatures, etc.).

We also use rules when they involve complex logical

conditions between context elements: e.g. “when not at

home”, “when busy or when using the cell phone”.

Rules should be also used when they are defined at

run-time by the user. Notice that many AND

conditions involving types or objects can be solved by

using a combination of delegation to context as in 3.1

and 3.2 and Rule-Based Adaptation.

Known Uses: This pattern is predominant in the

literature. For example, it is used in the UWA project

[14] and in [3].

3.4. Context Wrapper

Problem: You are extending existing software to add

context-aware behaviors; for example your legacy

academic information system must adapt its services to

the role and context of use. You have identified one

particular behavior that must be adapted and you have

Proceedings of the The 2005 Symposium on Applications and the Internet Workshops (SAINT-W’05)

0-7695-2263-7/05 $20.00 © 2005 IEEE

decided to use 3.1, 3.2 or 3.3. How do you introduce

this “new” code?

Solution: Wrap the corresponding class with an object

that delegates the request to the component

implementing the adaptation (e.g. a rule object or rule

manager). This solution uses the Decorator pattern [4]

to add new code unobtrusively. In Figure 3, if we need

that operation (in ApplicationClass) behaves in a

context-aware way, we use a context wrapper object

that intercepts messages sent by any client, forwarding

them to the corresponding adaptor object. We thus

avoid rewriting operation. Notice that, if

ApplicationClass may be seen as a context (e.g. an

Artwork, a building, etc), the context wrapper might

implement itself the adaptation, for example using 3.2.

ApplicationClass

operation()

appObject

operation()

adaptor operation (appObject)

Adaptor (RuleManager)

operation()

ContextWrapper

operation()

Figure 3. Wrapping Legacy Classes

Applicability: Use this pattern when you want to

extend a legacy system (or class) and you do not want

to modify existing code

Known Uses: The use of this pattern for adaptation to

the individual user (i.e. personalization) has been

discussed in [1]

4. Concluding Remarks and Further Work

We have discussed the use of design patterns to

record and convey different strategies for context-

aware adaptation. We have shown that in spite of the

extensive use of rules to implement context-awareness

there are other simple and effective strategies to adapt

object behaviors to changing contexts.

We believe that, in order to improve the process of

building context-aware software, we need a design

“culture” that is independent of particular frameworks

or infrastructures. However, we must learn from those

successful projects, and extract the underlying

software structures that can be used once and again in

new endeavors; patterns are an elegant and effective

tool for this. We are currently working in the definition

of a complete pattern language that covers not only

context-aware adaptation but also application’s

notification and context representation. The language

not only contains individual patterns but also the

design decisions and rationale for choosing one instead

of others.

5. References

[1] J. Cappi, G. Rossi, A. Fortier, “Personalization policies

need more than Rule Objects”, In Proceedings of OOIS

2002, Springer Verlag LNCS, 2425, pp 117-123.

[2] K. Cheverest, K. Mitchell, N. Davies, “Exploring

context-aware information push”, Personal and Ubiquitous

Computing, Springer, Vol 6, 2002, pp 276-281

[3]A. Fitzpatrick, G. Biegel, S. Clarke, V. Cahill, “Towards

a Sentient Object Model”, Proceedings of the Workshop on

Engineering Context-Aware Object Oriented Systems and

Environments, 2002.

[4] R. Gamma, R. Helm, R. Johnson, and J. Vlissides

“Design Patterns: Elements of Reusable Object-Oriented

Software”, Addison Wesley, 1995.

[5] T. Kanter, “Attaching Context-Aware Services to Moving

Locations”, IEEE Internet Computing V.7, N.2, pp 43-51,

2003.

[6] F. Hansen, N. Bouvin, B. Christensen, K. Gronbaek, T.

Pedersen, “Integrating the web and the world: contextual

trails on the move” In Proceedings of ACM Hypertext 2004,

[7] K. Henricksen, J. Indulska: “A Software Engineering

Framework for Context-Aware Pervasive Computing”.

Proceedings of IEEE PerCom 2004, Orlando, USA. pp 77-

86.

[8]J. Landay, G. Borriello, “Patterns for ubiquitous

computing”. IEEE Computer 36(8): 93-95 (2003).

[9] J. Pascoe, “Context-Aware Software”, PHD Thesis,

University of Canterbury, August 2001.

[10]D. Petrelli, E. Not, M. Zancanaro, C. Strapparava, O.

Stock, “Modeling and Adapting to Context”, Personal and

Ubiquitous Computing Sringer, Vol 5, 2001, pp 20–24.

[11]J. Roth, “Patterns of Mobile Interaction”, Personal and

Ubiquitous Computing 6(4) 282-289 (2002)

[12] D. Salber, A. Dey, G. Abowd, “The Context Toolkit:

Aiding the Development of Context-Enabled Applications”

Proceedings of ACM CHI 1999, pp 434-441.

[13] SmartKom Project, http://www.smartkom.org/

[14] UWA Project. www.uwaproject.org

Proceedings of the The 2005 Symposium on Applications and the Internet Workshops (SAINT-W’05)

0-7695-2263-7/05 $20.00 © 2005 IEEE

