
Combining meta-level and logic-based constructs
in Web personalization

Sofie Goderis ¹, Gustavo Rossi ², Andres Fortier ², Juan Cappi ², Daniel Schwabe ³

¹ Programming Technology Lab, Vrije Universiteit Brussel
sgoderis@vub.ac.be

² LIFIA-Facultad de Informatica-UNLP, Argentina
{gustavo, andres, jcappi}@lifia.info.unlp.edu.ar

³ Depto de Informatica, PUC-Rio, Brazil
schwabe@inf.puc-rio.br

Abstract. In this position paper we analyze the problem of Web
Applications personalization from a design point of view. We focus
on which design constructs are necessary to achieve modular and
evolvable personalized Web Applications. We claim that
personalization involves different concerns (e.g. rules, profiles, etc.)
that should be clearly identified and decoupled; we show how to add
personalized behaviors to existing applications in a non-intrusive
way, by using reflective mechanisms found in most object-oriented
languages.

We first introduce our approach to Web Applications modeling
that separates conceptual from navigation and user interface design;
we next introduce personalization patterns and briefly show how they
can guide the designer towards his objective. We finally present our
approach and some ongoing research directions related with the
design of an object-oriented framework for Web Applications
personalization.

1 Introduction

Designing personalized Web Applications implies dealing with different concerns
such as building different interfaces according to user preferences or Web
appliances, providing customized links; showing personalized information,
adapting application’s functionality, etc. To solve these problems we have to

model the user, implement personalization policies and rules and integrate them
into the application. Except from trivial read-only Web Applications (such as
www.my.yahoo.com), the process of personalizing existing Web software is a
good example of complex applications’ evolution. This is due mainly to the very
nature of Internet software in which the rate of change (of requirements,
marketing decisions, etc) is quite fast.

Though user modeling and profile derivation has been already discussed in the
literature [Perkowitz00], design aspects related with this problem have been
seldom taken into account. The aim of this short paper is to present our conceptual
framework for dealing with those design issues in a modular way, emphasizing
concerns separation from requirement elicitation to application’s implementation.

By clearly understanding and decoupling the design concerns involved in a
personalized e-commerce application, we can keep the software manageable; we
can also provide the basis for reusing designs and design experience. We have a
better way to understand the kind of interactions appearing in a personalized
application from an abstract point of view (independent of the specific aspects of
the application), and to simplify them by following well-knwon design patterns.
The structure of this paper is as follows: we first present our view of Web
Applications design; then we introduce personalization patterns and show that all
these patterns are finally mapped to objects’ behaviors. We then explain our
strategy for personalizing those behaviors using meta-level constructs. A
discussion on possible implementations using a logic programming framework is
finally discussed.

2 Our view of Web Applications design and
Personalization

We follow the OOHDM approach to Web Applications design [Schwabe98] The
key concept in OOHDM is that Web Application models involve a Conceptual, a
Navigational Model and an Interface Model [Schwabe98]. Those models are built
using object-oriented primitives with a syntax close to UML [UML00]. The
concern of the conceptual model is to represent domain objects, relationships and
the intended applications’ functionality. In the OOHDM approach, users do not
navigate through conceptual objects, but through navigation objects (nodes) that
are defined as views on conceptual objects. As we consider Web Applications as
hypermedia applications, we define links connecting nodes, as views on
conceptual relationships. Finally, the abstract interface model specifies the look
and feel of navigation objects together with the interaction metaphor.

Using this approach as a conceptual framework to reason on personalization we
have mined personalization patterns in existing Web Applications [Rossi01a].
Next we summarize those patterns using a simplified format describing the
problem and the corresponding solution. For the sake of simplicity we ignore
interface personalization.

2.1 Link personalization

Problem:

Web Applications involve dealing with a large number of objects and the way in
which we reach them may depend on many different factors. We want to provide
different users (individuals or roles) with different linking topologies.

Solution:

Personalize links by calculating the end-point of the link with user-related
information. When we personalize links, all users access the same information
objects and although anchors may look similar (see for example the link to
Recommendations in www.amazon.com), each individual has a different
customized topology.

2.2 Structure personalization

Problem:

Many applications involve not only dealing with thousands of objects but also
with a great variety of subjects and services. We may want to circumscribe the
navigation space to the aspects the user is interested in.

Solution:

Personalize (or let the user do it) the structure of the Web Application. Consider
the information space as a set of aggregated objects (or modules) and select only
those objects that the user may want to consume as for example in
www.my.yahoo.com.

2.3 Content Personalization

Problem:

In some Web Applications we may want to provide each individual user with a
slightly different content for a particular information item.

Solution:

Define personalized contents in nodes by letting node attributes vary according to
the user; for example e-stores providing personalized prices for their products.

2.4 Behavior personalization

Problem:

Web Applications combine hypertext navigation with other functionality (such as
bidding, adding products to a shopping cart, etc). Suppose that we want to provide
individualized responses to a particular operation.

Solution:

Personalize the application behavior by making this behavior dependent of the
user who triggers it.

In Figure 1 we summarize the previous discussion showing how the OOHDM
approach deals with personalization in an abstract way. Notice that the previously
presented patterns are independent of the method you use to build Web
Applications: they exist on their own.

Understanding previous patterns we can map the personalization requirements of
our application to one of those patterns and then analyze how to deal with the
design structures underlying those patterns. The aim of this paper is to analyze the
process of building personalized applications focusing on those design aspects. In
particular we want to show that correct design decisions impact positively on the
applications’ evolution, simplifying the process of obtaining personalized
applications. A first approach for dealing with personalization in Web
Applications can be found in [Rossi 01b].

Shared Conceptual Model
implementing domain
abstractions

Web applications built
as views on the shared
conceptual model

Interface objects built
from navigational objects

Users can select their preferred
interface lay-outs
e.g. my.yahoo

Object's behaviors and
processes may be customized
to the individual, e.g. check-out
procedures in amazon.com

Different users may see
different contents in the same
node, e.g. prices in half.com

Link targets can be personalized,
e.g. amazon.com recommendations

Fig. 1. Personalization in an OOHDM model.

3 Design Issues and Concerns related with
Personalization

It is easy to see that most (if not all) examples of personalization involve some
kind of adaptable conceptual model. Therefore, understanding how to personalize
a conceptual (application) model is essential for achieving personalized nodes,
links and behaviors. The field of adaptive software is not new (See [Oreizy 99])

though we are mainly interested in those design constructs that can simplify the
process of adding personalization features to a Web Application.

There are basically three concerns related with personalization: the user profile,
the personalization rules and the application of those rules for a particular
individual. Hard-coding personalization rules together with core application
objects yields difficult to maintain software, because the pace of evolution of
customization rules (and the associated user profiles) is faster than changes in the
basic application model. Suppose for example that in an electronic store we have a
Class Product with a method price to calculate its price. If we want to personalize
the price such that we provide discounts to some customers (for example
according to their buying history), we can modify the code of price such that it
interacts with the user profile to get the information. However, each time we
change the personalization rule we must change that method; the solution simply
does not scale-up, since we keep tweaking the model’s behavior to accommodate
to the discount policies.

The same is true if we want to have different recommendation algorithms for
different customers, or customized check-out procedure according to user
preferences.

While variations in the domain model, such as adding new products or paying
mechanisms can be solved by sub-classing and composing objects, changes
related with personalization rules are more difficult to handle.

As we describe in the next section, the solution to this problem is not to decide
which object in the domain model should be responsible for taking care of things
like holding the algorithms or the policies, but to understand that software
constructs related with personalization must be dealt in another way. We think that
by building a robust design in the meta-level we can achieve the exact degree of
decoupling between the application’s domain model and the personalization-
related constructs, obtaining a scalable architecture.

4 Our Approach

The key of our approach is the recognition that those concerns related with
personalization, namely the user profile, the rules and the application of rules,
must be decoupled from the Web Application model and further decoupled from
each other. We next summarize our approach explaining the micro-architectural
constructs we used for solving this problem:

4.1 Modifying the base application’s behavior

There are basically two approaches for solving this problem: using decorators
[Gamma95] or intercepting behaviors with a meta-level approach. The latter
solution clearly recognizes the fact that this problem should be treated as a
separated aspect of the application and dealt with in an orthogonal way. We used

an idea similar to method wrappers that “trap” the desired behavior and let us call
the personalization code. The idea is that each time an object receives a message
that should be personalized, we automatically “invoke” some functionality in the
meta-level that “reasons” about the base application level and modifies the
application’s behavior. For example we can solve the price problem by
intercepting the message price and provide a way to trigger rules that provide the
personalized behavior. Moreover, we can do this in an instance basis (i.e. only
some products have a personalized price).

When considering the price problem, we know in advance that each time the
message price is sent, the price might have to be personalized. We can thus
statically determine what personalization rule is to be used. However, in some
cases determining what personalization rule is to be used, cannot be decided until
runtime. This dynamic determination occurs for instance when personalization is
different for different types of users. Making the distinction between static and
dynamic determination of personalization will improve our approach significantly.

4.2 Implementing Rules

Rules should be treated as first class citizens in personalized applications. As they
tend to evolve quickly and may be usually combined to implement complex
business strategies, we must have a flexible approach for rules design. We are now
experiencing with the SOUL meta-programming framework [Wuyts01]. SOUL
integrates Smalltalk and Prolog by letting designers write Prolog rules (in the
meta-level) governing the behavior of the base level. Though originally conceived
for synchronizing design and implementation, we have used SOUL to express
personalization rules. Inheriting well-known Prolog features, rules are modular
and easy to express. They can invoke base application’s code and can be
maintained efficiently, i.e. it is easy to add new rules or to modify existing ones as
they are written in a natural way (action if conditions).For the price problem we
use the following personalization rule:

Rule updatePrice(?ResultString) if
 isReceiver([Product],[#price],[?aProductObject]),

currentCustomer(?ID),
changePrice(?ID,[?aProductObject],
ResultString).

These rules specify that if a certain Product object receives the message price, the
personalization of this price, specified for the current customer, has to take place.
The rule results in a piece of Smalltalk code, specifying how the price should be
adapted, that will be executed by the Smalltalk base level.

4.3 Dealing with the user profile

The user profile is an important component in every personalized application.
Facts about the user can be specified using Prolog or they may just be “traditional”
objects. In the first case, the user profile is stored at meta-level and consists of a
set of facts, such as those that we see next.

Fact name(id408, John).
Fact age(id408, 28).
Fact boughtProducts(id408, <BookID20, BookID403, CDID230>).

Accessing this data is simply done by using the right predicates. For instance,
name(id408, ?UserName) will provide us with the name of the particular user
with identity id408.

Another possibility is to consider the user as an object on base level, but this
will only influence the predicates used to access the profile (and not the
personalization rules that use these predicates). For instance, accessing the user’s
name now requires the rule that we see below.

Rule name(?User, ?Name) if equals(?Name, [?User getName]).

Such that the name is retrieved from the user object at base-level (i.e. ?User). In
our approach this is rather straightforward, because SOUL provides the necessary
mechanisms to do so.

The rule-based system behind Prolog allows us to write inference rules to classify
users according to the observed facts. In this way, we can associate algorithms to
different types of users and write the code that assigns the correct algorithm to the
current user as a set of logic predicates. These predicates may be executed each
time we want to personalize an object’s feature or with other strategies (once a
day, each time we require it, etc). Keeping the user profile as a separate module
allows us to specify different strategies to support its evolution (both in structure
and contents). For example, while for some applications, new facts about the user
are added as a consequence of an application’s operation (buying a product for
example), it may be the case that we want to record the products he visited; with
our meta-level approach we can just intercept the corresponding behavior
(displaying a product for customer c) and add a fact to our information base
(prolog predicates) in a transparent way.

5 Discussion and concluding remarks

We have briefly outlined our approach for personalizing Web Application models.
It is based in separating the main concerns behind personalization (rules, profiles,
core model) and providing a design model for supporting this decoupling. Using a
meta-level approach guarantees that we can seamlessly add personalized
behaviors in a non-intrusive way, without affecting core application’s
functionality.

We are now studying how to provide generic meta-level classes and objects and
templates for rules that can be used in different applications. The idea is to have
abstract skeletons for personalization acting as application frameworks.

In this way, we will be able to personalize Web Applications by just composing
the base functionality with objects taken from some of these classes thus
simplifying the task of adding rules, generating user profiles and applying the
rules to the chosen application’s objects.

References

[Gamma95] E. Gamma, R. Helm. R. Johnson, J. Vlissides: “Design Patterns.
Elements of reusable object-oriented software”, Addison Wesley 1995.

[Oreizy 99] P. Oreizy, M. Gorlik, R. Taylor, D. Heimbigner, G. Johnson, N.
Medvidovic, A. Quilici, d. Rosenblum, and A. Wolf: “An architecture-
based approach to self-adaptive software”. IEEE Intelligent Systems,
pages 54-62, May 1999.

[Perkowitz00] M. Perkowitz, O. Etzioni: “Adaptive Web Sites” In Comm ACM,
August 2000, p.p. 152-158.

[Rossi01a] G. Rossi, D. Schwabe, J. Danculovic, L. Miaton: “Patterns for
Personalized Web Applications”, Proceedings of EuroPLoP 01,
Germany, July 2001.

[Rossi01b] G. Rossi, D. Schwabe, R. Guimaraes: “Designing Personalized Web
Applications”, Proceedings of the 10th International Conference on the
WWW (WWW10), Hong Kong, 2001,Elsevier, p.p.

[Schwabe98] D. Schwabe, G. Rossi: “An object-oriented approach to web-based
application design”. Theory and Practice of Object Systems (TAPOS),
Special Issue on the Internet, v. 4#4, pp.207-225, October, 1998.

[Wuyts01] Roel Wuyts: “A Logic Meta-Programming Approach to Support the
Co-Evolution of Object-Oriented Design and Implementation” Phd
Thesis. Programming Technology Lab, VUB, Brussels, 2001.

