
A Model-Driven Approach to Constructing Robotic

Systems

Claudia Pons
1,2,3

 , Gabriela Pérez
1
,

Roxana Giandini

1
, Gabriel Baum

1,2

1
 LIFIA, Facultad de Informática, Universidad Nacional de La Plata

2
 CIC, Comisión de Investigaciones Científicas PBA

3
UAI, Universidad Abierta Interamericana

Buenos Aires, Argentina

{gperez, cpons, giandini, gbaum}@lifia.info.unlp.edu.ar

ABSTRACT
Most robotic systems tend to be complex to maintain and

reuse because existing frameworks are based mainly on

code-driven approaches. This means the software

development process is reduced to the implementation of

systems using specific programming languages. During

the constant evolution, the systems grow in size and in

complexity. Even when these approaches address the

needs of robotic focused markets, currently used

methodologies and toolsets fail to cope with the needs of

such complex software development process. The general

objective of our work is the definition of a methodological

framework supported by a set of tools to deal with the

requirements of the robotic software development process.

A major challenge is to make the step from code-driven to

model-driven in the development of robotic software

systems. Separating robotics knowledge from short-cycled

implementation technologies is essential to foster reuse

and maintenance.

Keywords: robotic software system, software

development process, software engineering, model driven

development

1. INTRODUCTION

Robotics systems are essentially real-time, distributed

embedded systems. They have special needs often related

with their real time nature and environmental properties.

Additionally, this special kind of systems needs more

quality than a general purpose system and it has to be able

to cope with the uncertain and dynamic physical

environment where they are immerse. Attributes like

reliability and safety are a strong requirement in this

domain.

Furthermore, robotic systems consist of different

hardware components and different sensors which results

in very complex and highly variable system architecture.

Often, control and communication paths within the system

are tightly coupled to the actual physical configuration of

the robot. As a consequence, these robots can only be

assembled, configured, and programmed by experts.

Traditional approaches, based on mainly coding the

applications without using modeling techniques, are used

in the development process of these software systems.

Even when the applications are running and being used in

the different robotic systems, we identify several

problems. Among them, it is worth mentioning that there

is no clear documentation of design decisions taken during

the coding phase, making the evolution and the

maintenance of the systems difficult. When using specific

programming languages, such Smalltalk in EToys (Gira,

2013), or C in Microsoft RDS (Microsoft, 2009), we lose

the possibility of generalizing concepts that could be

extracted, reused and applied in different systems,

avoiding to code them from scratch when they are needed.

Thus, we observe that traditional development

approaches are reaching their limits; currently used

methodologies and toolsets fall short to address the needs

of such complex systems. In this context, it is widely

accepted that new approaches should be established to

meet the needs of the development process of today’s

complex Robotic systems. Component-based development

(CBD) (Szyperski, 2002), Service Oriented Architecture

(SOA) (Bell 2008 and 2010), as well as Model Driven

software Engineering (MDE) (Stahl, 2006), (Pons et al.,

2010) and Domain-Specific Modeling (DSM) (Steven and

Juha-Pekka, 2008) are among the key promising

technologies in the Robotic systems domain.

In our project, we investigate on the current use of

those modern software engineering techniques to improve

the development of robotic software systems and their

actual automation level. Considering that existing systems

are already coded, a major challenge is to make the step

from code-driven to model-driven in the development of

robotic software systems to extract the general and

specific concepts of existing applications based on the

different specific programming languages. Our objective

is the definition of a methodological framework

(composed of models and code) supported by a set of tools

able to deal with the requirements of the robotic software

development process and considering the existing

implemented approaches. Robotic platforms must possess

a highly dynamic adaptive capacity, accompanying the

rate of development of such technologies and the specific

features of each hardware platform.

2. WORKING METHODOLOGY

In this context, it is mandatory to work towards applying

engineering principles to cope with the complexity of

robotic software systems because we cannot expect

significant growth with hand-crafted single-unit systems.

On the other hand, interfaces and behavior of the robotic

systems should be defined at a higher level of abstraction

JCS&T Vol. 14 No. 1 April 2014

1

so that they could be re-used with different technological

platforms. Separating robotics knowledge from short-

cycled implementation technologies is essential to foster

reuse and maintenance. Thus, applying existing software

engineering technology, such as MDE, SOA and CBD, to

building robotic software systems would save a great

amount of time and effort while favor reusability of such

systems. Within this background, the specific outcomes of

this project are:

− Summarizing the existing evidence concerning the
application of software engineering technologies such

as SOA, MDE and CBD on the robotic systems

development field;

− Identifying gaps in current research in order to suggest
areas for further investigation;

− Providing a background in order to appropriately
position new research activities;

− Building on the application of modern techniques
providing an advance in the field;

− Defining an open methodology for the robotic
development process.

− Building tool support to the robotic software

development process. Examples of these tools are: a

domain specific modeling language equipped with

graphical editors, code generation facilities, integration

with web services, component definition editors, etc.

− Providing technological and methodological tools with
highly dynamic adaptive capacity to cope with the rate

of development of robotics and the local differences of

each hardware platform.

− Performing a series of experiments to assess the
effectiveness and feasibility of the proposal in the

construction of complex robotic systems.

3. EXISTING APPROACHES

Although the complexity of robotic software is high, in

most cases reuse is still restricted to the level of libraries.

At the lowest level, a multitude of libraries have been

created for robot systems to perform tasks like

mathematical computations for kinematics, dynamics and

machine vision, such as (Bruyninckx, 2001). Instead of

composing systems out of building blocks with assured

services, the overall software integration process for

another robotic system often is still reimplementation of

the glue logic to bring together the various libraries. Often,

the kind of overall integration is completely driven by a

certain middleware system and its capabilities. Obviously,

this is not only expensive and wastes tremendous

resources of highly skilled roboticists, but this also does

not take advantage from a maturing process to enhance

overall robustness. We have faced this problem in our

own practice. We have been programming educational

robots for more than 10 years (GIRA, 2013) (CAETI,

2013) and we have observed in the last years the

emergence of robotic kits oriented to non-expert users that

gave rise to the development of a significant number of

educational projects using robots. Those projects apply

robots at different education levels, from kindergarten

through higher education, especially in areas of physics

and technology. In this context, one of the problems we

encountered is that the hardware of the robotic kits is

constantly changing; in addition its use is not uniform

across different regions and even education levels.

Therefore, the technical interfaces of these robots should

hide these differences so that teachers are not required to

change their educational material over and over again. An

example of these interfaces is “Physical EToys” (GIRA,

2013) that proposes a standard teaching platform for

programming robots, regardless of whether they are based

on Arduino, Lego, or other technologies.

From this perspective, it is widely accepted that new

approaches should be established to meet the needs of the

development process of today’s complex Robotic systems.

Component-based development (CBD) (Szyperski, 2002),

Service Oriented Architecture (SOA) (Bell 2008 and

2010), as well as Model Driven software Engineering

(MDE) (Stahl, 2006), (Pons et al., 2010) and Domain-

Specific Modeling (DSM) (Steven and Juha-Pekka, 2008)

are among the key promising technologies in the Robotic

systems domain.

In first place, the CBD paradigm states that application

development should be achieved by linking independent

parts, the components. Strict component interfaces based

on predefined interaction patterns decouple the sphere of

influence and thus partition the overall complexity. This

results in loosely coupled components that interact via

services with contracts. Components such as architectural

units allow specifying very precisely, using the concept of

port, both the services provided and the services required

by a given component and defining a composition theory

based on the notion of a connector. Component

technology offer high rates of reusability and ease of use,

but little flexibility with regard to the implementation

platform: most existing component are linked to C/ C++

and Linux (e.g. Microsoft robotics developer studio

(Microsoft, 2009), EasyLab (Barner et al., 2008),

Player/Stage project (Gerkey et al., 2001)), although some

achieve more independence, thanks to the use of some

middleware (e.g. Smart Software Component model

(smartSoft, 2013), Orocos (Bruyninckx, 2001) Orca

(Brooks et al., 2005), CLARAty (Nesnas et al., 2003)).

In second place, we need a way to define interfaces and

behavior at a higher level of abstraction so that they could

be used in systems with different platforms. This is what

prompted the idea of abstract components, which would

be independent of the implementation platform but could

be translated into an executable software or hardware

component. Thus, the migration from code-driven designs

to a model-driven development is mandatory in robotic

components to overcome the current problems. A model-

based description is a suitable mean to express contracts at

component interfaces and to apply tools to verify the

overall behavior of composed systems and to

automatically derive the executable software. Instead of

building tool support for each framework from scratch,

one should now try to either express the needed models in

standardized modeling languages like UML or any DSL,

separating components from the underlying computer

hardware. In the context of software engineering, the

MDE and DSM approaches have emerged as a paradigm

shift from code-centric software development to model-

based development. Such approaches promote the

systematization and automation of the construction of

software artifacts. Models are considered as first-class

constructs in software development, and developers’

knowledge is encapsulated by means of model

JCS&T Vol. 14 No. 1 April 2014

2

transformations. The essential characteristic of MDE and

DSM is that software development’s primary focus and

work products are models. Its major advantage is that

models can be expressed at different levels of abstraction

and hence they are less bound to any underlying

supporting technology. This is especially relevant for

software systems within the ubiquitous computing

domain, which consist of dynamic, distributed applications

and heterogeneous hardware platforms, such as robotic

systems.

Finally, SOA is a flexible set of design principles used

during the phases of systems development and integration

in computing. A system based on a SOA will package

functionality as a suite of interoperable services that can

be used within multiple, separate systems from several

business domains. SOA also generally provides a way for

consumers of services, such as web-based applications, to

be aware of available SOA-based services. SOA defines

how to integrate widely disparate applications for a Web-

based environment and uses multiple implementation

platforms. Rather than defining an API, SOA defines the

interface in terms of protocols and functionality. Service-

orientation requires loose coupling of services with

operating systems, and other technologies that underlie

applications. SOA separates functions into distinct units,

or services (Bell, 2008) which developers make accessible

over a network in order to allow users to combine and

reuse them in the production of applications. These

services and their corresponding consumers communicate

with each other by passing data in a well-defined, shared

format (Bell, 2010).

Summarizing, a growing tendency was identified

regarding applying component-based development as well

as service-based architecture and model-driven software

development, although such techniques have mostly been

applied in isolation. Some work (Basu et al., 2011; Biggs,

2010; Brooks et al., 2005; Jawawi et al., 2008; Min Yang

Jung et al., 2010) has taken advantage of CBD for

developing robotic systems whilst other proposals

(Amoretti et al., 2007; Cesetti et al., 2010; Ebenhofer et al,

2013; Yang et al, 2013) have applied SOA to building

robotic systems. Only preliminary proposals were found

for applying model-driven development to robotics (Arney

et al., 2010; Baer et al., 2007; Baumgartl et al, 2013;

Brugali and Scandurra,2009; Brugali and

Shakhimardanov, 2010; Dhouib et al., 2012; Hyun Seung

Son et al., 2008; Iborra et al., 2009; Jorges et al., 2007;

Jung et al., 2005; Poppa et al, 2012; Sanchez et al., 2010;

Schlegel, 2012; Thomas et al, 2013; Wei et al., 2009)

while only one work combined all three technologies (Tsai

et al., 2008).

4. MODELING AND AUTOMATIC

CODE DERIVATION

The MDD approach represents a paradigm where models

of the system, at different levels of abstraction, are used to

guide the entire development process. Models are

implementation-independent and they are automatically

transformed to executable code. The MDD process can be

divided into three phases: the first phase builds a platform

independent model (PIM), which is a high-level

technology-independent model; then, the previous model

is transformed into one or more platform specific models

(PSM); these models are lower level and describe the

system in accordance with a given deployment

technology; finally, the source code is generated from

each PSM. As said in section 1, most systems are coded

without documentation or designed models. In this section

we show how we could have MDD process for

automatically deriving code from models expressed in a

standard modeling language.

For using the MDD approach we take advantage of

standards defined by the Robotics Domain Task Force

(RTF) (OMG, 2013) which promotes the integration of

modular robotic systems components through the adoption

of OMG standards. Currently, the OMG has released four

specifications: Robotic Interaction Service (ROIs),

Robotic Localization Service (RLS), Robotic Technology

Component (RTC) and Dynamic Deployment and

Configuration for Robotic Technology Component

(DDC4RTC). Other specifications like Unified

Component Model for Distributed, Real-time and

Embedded Systems (UCM), Finite State Machine

Component for RTC (FSM4RTC), Hardware Abstraction

Layer for Robots, among others, are in progress.

The RTC defines a component model and certain

important infrastructure services applicable to the domain

of robotics software development. It includes a Platform-

Independent Model (PIM) expressed in UML and

Platform-Specific Models (PSMs) expressed in OMG

IDL. A RTC is a logical representation of a hardware

and/or software entity that provides well-known

functionality and services. By extending the general-

purpose component functionality of UML with direct

support for domain-specific structural and behavioral

design patterns, RTCs can serve as powerful building

blocks in an RT system. Developers can combine RTCs

from multiple vendors into a single application, allowing

them to create more flexible designs more quickly than

before. Its goal is a greater compatibility and reusability

amongst vendors of robot software, not just the software

itself but also the tools. It provides rich component

lifecycle to enforce state coherency among components

and defines data structures for describing components and

other elements. It supports fundamental design patterns,

such as Collaboration of fine-grained components tightly

coupled in time, Stimulus- response with finite state

machines, and Dynamic composition of components

collaborating synchronously or asynchronously, among

others.

The Robotic Interaction Service (RoIS) Framework

abstracts the hardware in the service robot (sensors and

actuators) and the Human-Robot Interaction (HRI)

functions provided by the robot. It provides a uniform

interface between the service robot and the application.

Using the RoIS Framework as a go-between, a service

application selects and uses only necessary functions and

leaves hardware-related matters, such as which sensor to

use, to the HRI engine.

Finally the DDC4RTC specification defines data

models and service interfaces of deployment and

configuration for RTC based dynamic applications as an

extension to DEPL (OMG Deployment and Configuration

of Component-based Distributed Applications

Specification) specification. Generally speaking, since

system structure and configuration are frequently affected

by robot movement and application or scenario state, it is

important to be able to represent and realize dynamic

JCS&T Vol. 14 No. 1 April 2014

3

component deployment and run-time re-configuration

requirements.

To illustrate our approach, we use a small example of a

3-wheel robot to fight fires. This robot must move and

navigate itself around an enclosed platform with random

obstacles and must find fires (ie. lit candles). Once a flame

is detected on one of the robots photo sensors, the robot

begins navigating towards the flame to extinguish it. The

robot is composed of two motors A and B, 3 ultrasonic

ranging HC-SR04 modules (to enable the robot to

determine its distance from any obstacle), 3

phototransistors (phototransistors are most sensitive to

infrared light, making them an appropriate choice for

detecting a flame) and a fan (to extinguish the flame).

To improve the efficiency of the robot in the fire

extinction, the robot will interact with pre-existing

systems. These systems are not part of the robot, but

cooperate with it to fulfill its purpose. On one side we

have fire detectors placed physically in the environment at

strategic locations. These devices are available as external

services and are accessed over the network. All of these

services will be pooled to determine if there is a fire in

progress. If so, the robot should navigate towards the

flame and turn it off. Each of these devices covers a

monitoring zone. When the device indicates fire, the robot

should ask the service map how to get to that area. For

this, the robot must provide the service map its own

position, which it knows through the GPS. The map

service will then return a path that the robot must follow to

reach the destination.

Thus, in our example we identify the following inner

components: Robot, DistanceSensor, MotionController,

FireSensor, FunController and GPS; and the outer

components: FireDetector and MapService. So it is worth

distinguishing two models: the Component Model

showing the internal components, and the Service Model

describing the external components. Figure 1 shows the

Component and the Service Models together. In our

specific case, our service model is reduced to two

components. In more complex platforms, we can have

several services that can be modeled with their respective

glue code to be connected to the implemented robots.

Figure 2 presents a UML state machine describing the

behavior of the robot.

There are different ways we implement this Robot

firefighter. Figure 3 shows the design of the system

complying with the RT-Component specification. The

interface LightweightRTObject defines a lifecycle

standart. It defines the states and transitions through which

all RTCs will pass from the time they are created until the

time they are destroyed. The ComponentAction interface

provides callbacks corresponding to the execution of the

lifecycle operations of LightweightRTObject. An RTC

developer may implement these callback operations in

order to execute application-specific logic pointing

response to those transitions. Figure 4 shows the behavior

implementation of the robot.

 If we need to represent our example in another

platform, we must provide some code transformation from

one platform to another one, or even build the application

from scratch. But this process is expensive. Our proposal

consists in building a PIM that allows abstracting the

domain concepts and their functionalities using MDD and

CBD. With the models we can then derive the code in any

specific robotic language.

 cmp components

MotionController
FunController

DistanceSensor
FireSensor

Robot

GPS

FireDetector Map

Figure 1. PIM of the robot firefighter: Component Model.

JCS&T Vol. 14 No. 1 April 2014

4

 stm state

Start

walk around &
searching for fire

reaching fire
position

nav igating towards
the flame

fire extinguish

object av oidance

[fire detector alarm]

[fire detected]

[fire detected]

[fire detected]
[object detected]

[no object detected]

Figure 2. PIM of the robot firefighter: Behavioral Model.

 class componentRTC

«lightweightRTComponent»
DistanceSensor

«lightweightRTComponent»
GPS

«lightweightRTComponent»
FireSensor

«lightweightRTComponent»
MotionController

«lightweightRTComponent»
FunController

«lightweightRTComponent»
Robot

«interface»
Lightweight RTC::ComponentAct ion

+ on_initialize() : ReturnCode_t
+ on_finalize() : ReturnCode_t
+ on_startup(ExecutionContextHandle_t) : ReturnCode_t
+ on_shutdown(ExecutionContextHandle_t) : ReturnCode_t
+ on_activate(ExecutionContextHandle_t) : ReturnCode_t
+ on_deactivate(ExecutionContextHandle_t) : ReturnCode_t
+ on_aborting(ExecutionContextHandle_t) : ReturnCode_t
+ on_error(ExecutionContextHandle_t) : ReturnCode_t
+ on_reset(ExecutionContextHandle_t) : ReturnCode_t

«interface»
Lightweight RTC::LightweightRTObject

+ initialize() : ReturnCode_t
+ finalize() : ReturnCode_t
+ is_alive(ExecutionContext) : boolean
+ exit() : ReturnCode_t
+ attach_context(ExecutionContext) : ExecutionContextHandle_t
+ detach_context(ExecutionContextHandle_t) : ReturnCode_t
+ get_context(ExecutionContextHandle_t) : ExecutionContext
+ get_context_handle(ExecutionContextHandle_t) : ExecutionContext

Figure 3. PSM of the Robot firefighter: Component´s implementation.

JCS&T Vol. 14 No. 1 April 2014

5

 class classDiagram

WalkAround

+ execute() : void

ReachingFirePosition

+ execute() : void

Nav igatingTowardsTheFlame

+ execute() : void

ObjectAvoidance

+ execute() : void

FireExtinguish

+ execute() : void

State

+ execute() : void

«lightweightRTComponent»
Robot

+ fireDetected() : boolean
+ fireDetectorAlarm() : boolean
+ objectDetected() : boolean
+ noObjectDetected() : boolean

Figure 4. PSM of the Robot firefighter: Behavior´s implementation.

5. CONCLUSIONS

Programming robots is a complicated and time-consuming

task. Often, control and communication paths within the

system are tightly coupled to the actual physical

configuration of the robot. Traditional approaches, based

on mainly coding the applications without using modeling

techniques, are used in the development process of these

software systems. Even when the applications are running

and being used in the different robotic systems, we

identify several problems.

 Model-driven approaches further simplify the reuse of

already implemented and tested modules by enabling

developers to model their applications on a higher

abstraction level incorporating existing modules,

managing the complexity and facilitating the reusability of

robot code. The contribution of our work consists in the

development of the basis for a methodological framework

supported with different tools for the construction of

robotic software systems using mainly MDD. We

observed that the CBD and SOA paradigms provide a

starting point for a MDE approach in robotics where the

differences between various software platforms and

middleware systems can be completely hidden from the

user due to the definition of intermediate abstraction level.

We capture the fundamental concepts of the robotic

software development process, its relationships and

properties. This modeling approach includes concepts to

represent services and components as primary elements in

the robotic system in a higher level abstraction than the

code itself.

The proposed methodology has been prototyped and

evaluated, and the results show that it can be used to build

robotic systems successfully. At the moment, there is no

proposal taking advantage of the combined application of

CBD, SOA and MDE to robotic software system

development as reviewed in (Pons et al., 2012).

6. REFERENCES
Amoretti, M.; Zanichelli, F.; Conte, G.; A Service-

Oriented Approach for Building Autonomic Peer-to-

Peer Robot Systems Enabling Technologies:

Infrastructure for Collaborative Enterprises, 2007.

WETICE 2007. 16th IEEE International Workshops on,

Page(s): 137 - 142 (2007)

Arney, D.; Fischmeister, S.; Lee, I.; Takashima, Y.; Yim,

M.;Model-Based Programming of Modular Robots. 13th

IEEE International Symposium on

Object/Component/Service-Oriented Real-Time

Distributed Computing (ISORC), Page(s): 66 – 74

(2010)

Baer, P. A.; Reichle, R.; Zapf, M.; Weise,T.; Geihs, K.; A

Generative Approach to the Development of

Autonomous Robot Software.EASe ‘07. Fourth IEEE

International Workshop on Engineering of Autonomic

and Autonomous Systems. (2007)

Barner, S., Geisinger, M., Buckl, C., Knoll, A.: EasyLab:

Model-based development of software for mechatronic

systems. In: IEEE/ASME International Conference on

Mechatronic and Embedded Systems and Applications.

Beijing, China (2008)

JCS&T Vol. 14 No. 1 April 2014

6

Basu, A.; Bensalem, B.; Bozga, M.; Combaz, J.; Jaber,

M.; Nguyen, T.; Sifakis, J.; Rigorous Component-

Based System Design Using the BIP Framework

Software, IEEE Volume: 28 , Issue: 3 Page(s): 41 – 48.

(2011)

Baumgartl, J., Buchmann,T., Henrich,D., Westfechtel,B.:

Towards easy robot programming: Using DSLs, code

generators and software product lines ICSOFT 2013 -

Proceedings of the 8th International Joint Conference

on Software Technologies 2013, Reykjavik; Iceland;

Pages 548-554.. ISBN: 978-989856568-6; (July 2013)

Bell, M., “Introduction to Service-Oriented Modeling”.

Service-Oriented Modeling: Service Analysis, Design,

and Architecture. Wiley & Sons. pp. 3. ISBN 978-0-

470-14111-3. (2008).

Bell, M., SOA Modeling Patterns for Service-Oriented

Discovery and Analysis. Wiley & Sons. pp. 390.

ISBN 978-0470481974. (2010)

Biggs, G.; Flexible, adaptable utility components for

component-based robot software. Robotics and

Automation (ICRA), 2010 IEEE International

Conference on, Page(s): 4615 – 4620. (2010)

Brooks, A., Kaupp, T., Makarenko, A., Oreback, A.,

Williams, S.: Towards component-based robotics. In:

Proc. of 2005 IEEE/RSJ Int. Conf. on Intellegent

Robots and Systems (IROS’05), pp. 163–168. (2005)

Brugali, D.; Scandurra, P.; Component-based robotic

engineering (Part I) [Tutorial] Robotics & Automation

Magazine, IEEE Volume: 16 , Issue: 4, Page(s): 84 - 96

(2009)

Brugali, D.; Shakhimardanov, A.; Component-Based

Robotic Engineering (Part II) Robotics & Automation

Magazine, IEEE Volume: 17 , Issue: 1 , Page(s): 100 –

112. (2010)

Bruyninckx, H., Open robot control software: The

OROCOS project. In: Proceedings of 2001 IEEE

International Conference on Robotics and Automation

(ICRA’01), vol. 3, pp. 2523–2528. Korea (2001).

CAETI (Centro de Altos Estudios en Tecnología

Informática). Robotic projects.

http://www.caeti.uai.edu.ar. Access November 1st.

2013.

Cesetti, A.; Scotti, C. P.; Di Buo, G.; Longhi, S.; A

Service Oriented Architecture supporting an

autonomous mobile robot for industrial applications

Control & Automation (MED), 18th Mediterranean

Conference on,Page(s): 604 – 609. (2010)

Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., and

Ziane,M. RobotMLl, “A domain-specific language to

design, simulate and deploy robotic applications”. In

Noda, I., Ando, N., Brugali, D., and Kuffner, J., editors,

Simulation, Modeling, and Programming for

Autonomous Robots, vol. 7628 of Lecture Notes in

Computer Science, pages 149–160. Springer(2012).

Ebenhofer, G., Bauer, H., Plasch, M., Zambal,

S., Akkaladevi, S.C., Pichler, A.: A system integration

approach for service-oriented robotics. 2013 IEEE 18th

International Conference on Emerging Technologies

and Factory Automation, ETFA 2013; Cagliari; Italy;

ISSN: 19460740; (September 2013).

Gerkey, B.P., Vaughan, R.T., Howard, A., Most valuable

player: a robot device server for distributed control. In:

IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 1226–1231. Wailea, Hawaii

(2001)

GIRA, Grupo de Investigación en Robótica Autónoma del

CAETI: Physical Etoys http://tecnodacta.com.ar/gira/

(last access May 1st, 2013).

Hyun Seung Son, Woo Yeol Kim; Kim, R., Semi-

automatic Software Development Based on MDD for

Heterogeneous Multi-joint Robots. In Future

Generation Communication and Networking Symposia,

FGCNS ‘08. : 2008 , Page(s): 93 – 98 (2008)

Iborra, A.; Caceres, D.; Ortiz, F.; Franco, J.; Palma,

P.;Alvarez, B.; Design of Service Robots. Experiences

Using Software Engineering. IEEE Robotics &

Automation Magazine 1070-9932/09/ IEEE Page(s): 24

– 33. MARCH 2009

Jawawi, D.N.A.; Deris, S.; Mamat, R.; Early-Life Cycle

Reuse Approach for Component- Based Software of

Autonomous Mobile Robot System. Software

Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 2008. Ninth ACIS

International Conference on, Page(s): 263 – 268. (2008)

Jorges, S.; Kubczak, C.; Pageau, F.; Margaria, T.; Model

Driven Design of Reliable Robot Control Programs

Using the jABC. Engineering of Autonomic and

Autonomous Systems, 2007. EASe ‘07. Fourth IEEE

International Workshop on, Page(s): 137-148 (2007)

Jung, E.; Kapoor, C.; Batory, D.; Automatic code

generation for actuator interfacing from a declarative

specification Intelligent Robots and Systems, 2005.

(IROS 2005). IEEE/RSJ International Conference on.

Page(s): 2839 - 2844 (2005)

Microsoft, “Microsoft robotics developer studio,”

2009,http://msdn.microsoft.com/en-

us/robotics/default.aspx, visited on March 11th 2009.

Min Yang Jung; Deguet, A.; Kazanzides, P.; A

component-based architecture for flexible integration of

robotic systems Intelligent Robots and Systems (IROS),

2010 IEEE/RSJ International Conference on, Page(s):

6107 - 6112 (2010)

Nesnas, I., Wright, A., Bajracharya, M., Simmons, R.,

Estlin, T.: CLARAty and challenges of developing

interoperable robotic software. In: Procs of 2003

IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2003), vol. 3, pp. 2428–

2435 (2003)

OMG Robotics Domain Task Force (Robotics DTF)

 http://robotics.omg.org/ (access Nov 1st, 2013).

Pons, C., Giandini, R., Pérez, G., “Desarrollo de Software

Dirigido por Modelos. Teorías, Metodologías y

Herramientas”, Ed: McGraw-Hill Education. ISBN:

978-950-34-0630-4 (2010)

Pons, C., Giandini, R., Arévalo, G., A systematic review

of applying modern software engineering techniques to

developing robotic systems. Revista Ingeniería e

Investigación Vol. 32 No. 1 (2012)

Poppa, F.,Zimmer, U.: RobotUI - A software architecture

for modular robotics user interface frameworks, 25th

JCS&T Vol. 14 No. 1 April 2014

7

IEEE/RSJ International Conference on Robotics and

Intelligent Systems, IROS 2012; Vilamoura, Algarve;

Portugal; Pages 2571-2576; (October 2012).

Sanchez, P; Alonso, D; Rosique, F; Alvarez, B; Pastor, J;

Introducing Safety Requirements Traceability Support

in Model-Driven Development of Robotic

Applications. Computers, IEEE Transactions on, Issue:

99 (2010)

Schlegel, C., Steck, A., Lotz, A., Robotic Software

Systems: From Code-Driven to Model-Driven Software

Development. Chapter 23 in Robotic Systems -

Applications, Control and Programming, book edited

by Ashish Dutta, ISBN 978-953-307-941-7. (2012)

SmartSoft. [Online]. Available: http://smart-

robotics.sourceforge.net/(2013, Jul.)

Stahl, M Voelter. Model Driven Software Development.

John Wiley. (2006)

Steven, K., Juha-Pekka, T., Domain-Specific Modeling.

John Wiley &Sons, Inc. 2008. (2008)

Szyperski, C., Component Software: Beyond Object-

Oriented Programming. 2nd ed. Addison-Wesley

Professional, Boston ISBN 0-201-74572-0 (2002).

Thomas, U., Hirzinger, G., Rumpe, B., Schulze,

C., Wortmann, A: A new skill based robot

programming language using UML/P Statecharts.

Proceedings - IEEE International Conference on

Robotics and Automation, ICRA 2013; Germany;

Pages 461-466; (May 2013).

Tsai, W.T., Qian Huang, Xin Sun. A Collaborative

Service-Oriented Simulation Framework with

Microsoft Robotic Studio® Simulation Symposium,

ANSS 2008. 41st Annual, Page(s): 263 – 270 (2008)

Wei Hongxing; Duan Xinming; Li Shiyi; Tong Guofeng;

Wang T.; A component based design framework for

robot software architecture. Intelligent Robots and

Systems, IEEE/RSJ International Conference on,

Page(s): 3429 - 3434 (2009).

Yang, T.-H., Lee, W.-P.: A service-oriented framework

for the development of home robots. International

Journal of Advanced Robotic Systems; Volume 10,

Article number 122; ISSN: 17298806; (February 2013).

JCS&T Vol. 14 No. 1 April 2014

8

