
Building Mobile Mashup Applications. Some Challenges
Encountered in Computer Science Degrees

Javier Díaz1, Claudia A. Queiruga1 , Pablo J. Iuliano1 , Jorge H. Rosso1 , Isabel Kimura1, Matías Brown
Barnetche1

1LINTI, Computer Science School, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina

Abstract - the utilization and development of innovative
technologies are suitable elements to take into account in
Computer Science degrees. Modern technologies must be
incorporated to portray the fundamental concepts and, in this
way, to familiarize students with their future workplaces. The
development of mashups for mobile devices turns out to be an
appealing topic of great interest for students that attend
technology and computer science courses. It represents a
challenge when it comes to develop software for platforms
with peculiarities such as screen and hardware restrictions,
and with new advantageous features like sensors of
movement, GPS and camera. In this article, it is described the
experience in the development of mobile mashups
applications written in JAVA in its two platforms: JME and
Android. This work is the result of an articulation between a
research project on a mobile application testbed and a
Computer Science School subject in which the students obtain
new skills in the development of software.

Keywords: mashups, Android, JME, education in computer
science

1 Introduction
 A mashup application uses and combines data,
presentations and functions from more than one source in
order to create new services. The term mashup implies easy
and fast integration, often using open APIs and data sources
to produce enriched results different from the application's
original purpose. This kind of application is predominantly
user oriented, as it focuses mainly on user-friendly features,
simplicity and usability [1]. Likewise, it is more oriented
towards integration with existing applications, than to the
software developing process [2].

In the software development process, integration plays a key
role. Aside from functional requirements, developers must
take into account requirements related to communication and
services their tool could offer. Facebook is one of the most
popular social networks, allowing users to share photos,
personal information and preferences. It offers an open and
easily accessible API which allows for the creation of
integrated applications and mashup applications that consume
the services Facebook provides. Google Maps is another
example of a system that offers the possibility of creating
enriched applications with maps through an extensive API

that is adapted to mobile devices, as well as desktop and web
applications.

Today, mobile technology makes it very easy to collect and
share information about ourselves and our environment. This,
together with uninterrupted Internet access, the advent of the
semantic web, 2.0 web and service-oriented web, has resulted
in a reformulation of the way in which we communicate,
interact and socialize.

This paper describes our experience in the development of
mobile mashup applications written in Java, to address local
issues. This work is the result of an articulation between a
research project on a mobile application testbed and a
Computer Science School subject, in which the students
acquire new skills in software development, by taking into
consideration matters such as user-oriented design, mobility
and integration.

2 Motivation
Teaching a new mobile software development paradigm

based on open APIs and third-party service integration is a
great challenge to Computer Science teachers. The topic is
motivating and state-of-the-art. It poses interesting
challenges, such as entirely different development and
execution platforms, and requires mobile device emulation
tools. It is fundamental for the developer to be familiar with
the specific characteristics of each device (operating system,
type of keyboard, camera, GPS, Internet access).
Manufacturers releases SDKs (Software Development Kits)
for developers to use.

There is a widespread assumption that developing mobile
applications is equivalent to developing traditional, but
“smaller”, applications. The real challenge posed by taking a
project to a mobile device is providing a valuable experience
in a generally small interface that allows an entirely different
kind of interaction from desktop applications.

When developing mobile applications, it is necessary to
establish whether they will be aimed at low-end, mid-range or
high-end devices, and what operating system they will
feature, since operating capacity, display size and a number
of other features play important roles in the design.

Important changes in today's society force us to think of new
ways to “reach out” to users. Web access is increasingly

aimed at obtaining information about recent events (online
news, Craigslist), expressing personal opinions (Twitter and
blogs), gaining access to media files (YouTube and Flickr)
and creating communities and social networks (MySpace,
Facebook, LinkedIn) [3]. Although all these activities require
a computer with Internet access, they are being increasingly
accessed through mobile devices, which are always on.
Worldwide, the ubiquity of these devices makes them the
main, and sometimes only, interaction with computers.

Integration is now quite common in software development,
allowing projects to generate or gather data from open
services such as Facebook, Twitter, YouTube, Vimeo, Flickr,
Google Maps, Google Search, Google Analytics and others.
Mashups allow for fast data and process integration. If we
also integrate the services in a mobile application, we can
obtain applications that “go everywhere” with the user,
accessible to everyone and as rich as those found on the web.
A combination of the information obtained from different
sources with the information obtained from the context
through sensors and other components present in current
mobile device generations provide a richer basis for the
development of mashup applications.

3 Why Teach Mashups?
The relevance acquired in the last few years by mashups

and other web 2.0 technologies, together with the fact that our
students are digital natives and users of social networks such
as Facebook, MySpace, YouTube, and Twitter make in
necessary to modify the syllabus of computer science degrees
to incorporate these innovations [4]. Likewise, the
popularization of computing solutions that collaborate with
each other, which is what makes mashups possible, allows
teachers to orient tasks towards increasing interaction with
established web technologies such as standards related to the
development of applications that are highly dependent to
others in production or legacy (maximum cohesion) and that
require applications to be independent from each other
(minimum coupling). In the framework of web technologies
used to provide integration and minimum coupling, web
services and XML are the most widespread. Thus, our
students develop mashup applications while incorporating
useful techniques for managing integration between new and
legacy applications that must be autonomous. At the same
time, using XML as a communication protocol between
services and the mashup, allows our students to acquire
problem-solving mechanisms for the establishment of a
“common language” between or among applications for their
interaction.

Teachers also consider that the development of collaborative
applications is entirely beneficial, if collaborative
development is understood as applications that interrelate and
benefit from the services they provide to each other. When
students code applications that use data gathered from other
applications, they see the resulting added value to the
information. This has a positive impact in their motivation,
one of the students participating in the mAvatar4Moodle

project proposed and implemented additional features to
share avatars through bluetooth and email.

All the preceding shows the pedagogical benefits of teaching
mashups, mainly as regards motivation, as mashups extends
learning beyond the limits of each kind of development, and
in some cases, even the limits of computer science, as some
applications have been taken to the social sciences.

4 Architectures for Mashups
There are many software architectures that can be used

in the construction of mashup applications: server-based [5],
client-based [6], and mobile [7].

Although we could divide a mashup application into several
software layers for a detailed analysis, we generally find three
main layers that allow us to understand the choice of
architecture among those presented earlier.

Content provider or data source layer: data are available by
means of an API and web protocols such as RSS, REST and
Web Service.

Mashup layer: where the new service is constructed,
nurturing from different sources to generate new information
(which it does not own) and resulting in added value for the
user.

Mashup presentation layer : mashup user interface.

Figure 1 shows the server-based architecture: the mashup
layer is in the server and the presentation layer, in the client.

Figure 1. Server-based architecture

Figure 2 shows a client-based architecture: both the mashup
and the presentation layers are in the client, which is an
application in a browser.

Figure 2. Client-based architecture

Figure 3 shows a mobile architecture: both the mashup and
the presentation layers are in the client, which is a native
mobile application.

Figure 3. Mobile architecture

Native mobile applications offer maximum experience for
mobile device users, as they allow for integration on a deeper
level than a web browser. For a native mobile application,
users have direct access to device features such as the GPS,
accelerometer, camera and storage, and offers innovative
interfaces based on gestures, directions, voice, etc. On the
other hand, the development of native mobile applications
available in a wide range of devices currently requires the
development of as many applications as there are mobile
operating systems.

5 Cases
In the Software Laboratory course, which is included in

the fourth year of the B.S. in Computer Science and the B.S.
in Systems at the Computer Science School (UNLP), students
were guided by their teachers through development of native
mashup applications for smartphones using mainly Java-
based mobile device technologies, with Java Microedition
(JME) and Android platforms. A mobile web widget was
developed using HTML5 technologies and JavaScript on the
Opera Widgets platform.

The projects presented are articulated with a School project
related to mobile application development. For application
development and testing, several mobile devices were
acquired by the School. The devices used for this purpose
were:

• HTC Touch HD™ T8282, with Windows Mobile®
6.1 Professional OS.

• Nokia N900 with Maemo 5 and Nitdroid (Nitroid is a
free software project consisting in taking Android to
Nokia Internet Tablet N900)) double booting.

• HTC Nexus One withAndroid 2.2 and 2.3.

The tested mashup applications were aimed at a mid-
range/high-end device with touchscreen features.

JME-based projects were tested on the HTC Touch HD™
device with Windows Mobile 6. Because Windows Mobile
does not natively support JME applications, it was necessary
to install several emulators to provide a controlled
environment for application execution. The HTC Touch
HD™ device has a JME emulator, JBlend; however, it was
impossible to emulate developed applications on JBlend. The
teachers thus tested a series of emulators, which included

IBM, PhoMe and JBed. All the applications were
successfully emulated using these products.

Android-based projects were tested on the Nokia N900
device with double-booting and in the HTC Nexus One
devices by Google, with Android 2.2 and 2.3. These devices
allowed for native application installation, and there were
great advantages in terms of performance and usability.

The experience in development and setup of JME
applications raised some issues in terms of lack of available
memory for the emulator to dynamically render maps that had
to roll because of user interaction. To solve this problem, it
was necessary to optimize resource allocation, which made it
necessary to lose the portions of the map that were not
rendered. This decision goes against efficiency, given that it
makes it impossible to have a memory cache. Emulators
restricted permissions as well.

Another topic relevant to mobile application development
with JME are limitations in terms of user graphic interfaces.
The user interface controls provided by the platform are
basically text-oriented (text fields, buttons, etc) and not
extensible or customizable.

With the goal of promoting collaborative work and giving the
students a taste of a professional development environment,
the teachers have created a wiki
[http://wiki.labmovil.linti.unlp.edu.ar] that registers the
experiences in the development of mobile applications. In this
shared repository, the developed applications are presented
by their authors, who share problems faced during
development, noteworthy features, and the architecture and
tools used. Screenshots and executable files are also shared,
so that visitors can use and test the applications.

5.1 Mashup based on GoogleMaps

GoogleMaps is a free web service that provides
interactive maps, where users can make annotations and mark
locations.

Mashup applications based on maps developed in the
framework of this project were aimed at the JME platform an
allow displaying, consulting and adding information on a set
of shared restaurant guides, which hold information on
related places. These guides are shown by GoogleMaps in a
map with markers in the location of the restaurants.
Information can be stored about each location.

Many mobile device emulators were evaluated (JBed,
PhoneMe and JBlend) to execute these applications, out of
which only IBM gave the expected results.

Figure 4. Architecture of a mashup based on GoogleMaps

The designed of the developed applications required a special
user interface control to display the map in the screen of the
device and be able to roll it in the four cardinal points (North,
East, South and West), and read the information on a
particular restaurant, among other features. As mentioned
before, JME has very little capacity to build user interfaces,
which made it necessary to develop our own user interface
canvas with the required features.

The developed GoogleMaps-based mashup applications
respond to a mobile architecture. As shown in Figure 4, a
service was created in the web to register the information
entered from the mobile application. The service implements
an interface that is similar to REST to access and modify the
information resources. Data are communicated through
JSON.

5.2 Mashup based on Flickr

Flickr is an image storage website that allows users to
organize their collection of images and share them. Using
their API, content can be shared across websites, creating
mashup applications.

The applications developed in this project allow managing
Flickr user photostreams, creating and modifying galleries,
uploading and deleting photos, modifying the information
related to each photo and searching the entire site. In this
project, some students chose to implement with JME and
others with Android.

Flickr does not provide an API developed exclusively for
mashups, so that data are obtained and processed manually.

The developed Flickr applications have a particular feature
that can only be used through a mobile device, which is
taking a picture with a cellphone camera and uploading it to a
Flickr account from the application itself. In these
development, it is worth noting the advantage of using native
mobile applications with respect to desktop or browser-based
applications.

Projects done on JME had some memory problems owing to
the need to execute on an emulator and not natively in the
device. The service that Flickr provides has authentication
tokens for applications and users. Out of all the emulators
evaluated, only PhoneMe allowed these tokens successfully.

Projects developed on Android had no functional problems
due to native support. Likewise, very friendly and easy to
program user interface were achieved.

The architecture of these applications is mobile, with a native
mobile application as mashup and presentation layers, from
which pictures can be taken and interaction achieved with
modifications that are communicated directly to the Flickr
service.

5.3 Mashups based on Facebook

Facebook is a currently booming social network, where
people can share interests, tastes and images, and stay
connected with friends all over the world. One way to meet a
Facebook user is through their profile picture.

AvatarFacedGet is an application for creating and sharing
avatars through Facebook, or storing them in a mobile device.
It provides thousands of combinations out of a limited set of
elements.

AvatarFacedGet is a widget developed for the Opera Widget
platform [8] with standard web technologies such as HTML5,
CSS3 and JavaScript, executed in the widget mobile
manager, with multiplatform and multidevice features (from
desktop to mobile to TV applications). This widget can be
executed in a number of operating systems in mobile devices
that include the widget mobile manager.

Facebook offers an API for developers that is very well
documented, allowing to create applications inside Facebook
or communicate with it through REST.

As is the case with Twitter and Flickr, Facebook uses
application authentication keys. They can be obtained by
filling a form in Facebook where the characteristics of the
developed application are to be specified.

The architecture of AvatarFacedGet corresponds to a mobile
mashup architecture, since the mobile client can only create
avatars and the Facebook service is in charge of publishing
albums and profile image.

5.4 Mashups based on Moodle

Moodle is an open source Course Management System
(CMS), known also as a Learning Management System,
(LMS) or as a Virtual Learning Environment (VLE). It is
very popular amongst educators around the world as a tool
for the creation of dynamic online websites aimed at students
[9].

The Computer Science School uses a Moodle-based platform
for its courses as a complement of in-class activities and for
communication with students, located at
http://catedras.info.unlp.edu.ar. The students of the School
have a user in the platform that is associated with each course
they are taking.

mAvatar4Moodle is an application aimed at mobile devices
and used to build avatars, dress them up, give them
expression and accessories, build avatar galleries and publish
them as user profiles in the platform of Computer Science
courses.

Students in the Software Laboratory subject have developed
different versions of mAvatar4Moodle for the Android
platform, and each of these experiences posed a challenge.
One of these challenges was communicating with the Moodle
service of the School, which implied managing SSL
certificates through the application. For this purpose, it was
necessary to add the certificate to the application for Moodle
to trust its authenticity. It was also necessary to cover the
need to use multipart forms to send images through the URL.
Another challenge is related to avatar editor user interface
programming, so that characters could be built on the basis of
images representing their parts. Android offers a very
comprehensive API for the development of user interfaces
that facilitated the completion of this task.

The developed mAvatar4Moodle applications communicate
directly with the Moodle system using the device's network
layer. For this, a SSL certificate was added and a direct
connection with the system was implemented. Still, the
mobile architecture remains dominant, since avatars are
published on user profiles through the Moodle server.

6 Conclusions
The use and development of innovative technologies

cosnstitute appropriate elements to be incorporated in
computer science degrees. However, the main goal in
university-level computing education is to acquire concepts
with lasting relevance. Modern technologies should be
incorporated to illustrate these fundamental concepts and
place the students in a working environment that closely
resembles the real one.

Mashup development for mobile devices is a motivating,
innovative topic that students are very interested in. It is a
challenge when developing applications for platforms with
such characteristics as display and hardware limitations and
new features such as movement sensors, temperature sensors,
GPS and camera, among others. This poses new ways of
thinking of applications.

From the experience, it is worth noting that students who
chose JME as their development platform faced greater
difficulties, from adapting resource allocation to limitations in
the construction of friendly and custom user interfaces.
Students who opted for Android as their development
platform encountered simpler solutions with a consistent
interaction throughout the device and features that allowed
them to easily extend the functionality of the device
incorporating sensors.

7 References
[1] Agnes Koschmider, et. all, "Elucidating the Mashup
Hype: Definition, Challenges, Methodical Guide and Tools
for Mashups", Proceeding of 2nd Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the
Web (MEM 2009), April 2009.

[2] M. Xenos, D. Stavrinoudis and D. Christodoulakis. "The
correlation between developer-oriented and user-oriented
software quality measurements (a case study)". Proceedings
of the 5th European Conference on Software Quality,
Sponsored by European Organization for Quality − Software
Committee (EOQ-SC), Dublin Ireland, pp. 267-275, 1996 .

[3] E. Michael Maximilien, "Mobile Mashups: Thoughts,
Directions, and Challenges", 2008 IEEE International
Conference on Semantic Computing, pp.597-600.

[4] A. Easton and G. Easton. "Demystifying Mashups".
Proceedings of Informing Science & IT Education
Conference (InSITE) 2010, pp. 479-486.

[5] E. Ort, S. Brydon, and M. Basler. (2007, May) Mashup
styles, part 1: Server-side mashups. [Online]. Available:
http://java.sun.com/developer/technicalArticles/J2EE/mashup
1/index..html

[6] E. Ort, S. Brydon, and M. Basler.(2007, August)
Mashup styles, part 2: Client-side mashups. [Online].
Available:
http://java.sun.com/developer/technicalArticles/J2EE/mashup
_2/index.html

[7] A. Brodt and D. Nicklas, “The telar mobile mashup
platform for nokia internet tablet”. Proceedings of the 11th
international conference on Extending Database Technology
(EDBT 08), ACM, 2008, pp. 700–704.

[8] Opera Widget SDK: http://dev.opera.com/sdk/

http://java.sun.com/developer/technicalArticles/J2EE/mashup_2/index.html
http://java.sun.com/developer/technicalArticles/J2EE/mashup_2/index.html
http://java.sun.com/developer/technicalArticles/J2EE/mashup1/index..html
http://java.sun.com/developer/technicalArticles/J2EE/mashup1/index..html

	1 Introduction
	2 Motivation
	3 Why Teach Mashups?
	4 Architectures for Mashups
	5 Cases
	5.1 Mashup based on GoogleMaps
	5.2 Mashup based on Flickr
	5.3 Mashups based on Facebook
	5.4 Mashups based on Moodle

	6 Conclusions
	7 References

