
Identifying and modelling complex workflow

requirements in Web applications

M. Urbieta
1,2

, G. Rossi
1,2

, S. Gordillo
1,3

W. Schwinger
4
, W. R. Werner

5
 , and M.J. Escalona

6

1LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
 {murbieta, gustavo, gordillo}@lifia.info.unlp.edu.ar

2 Conicet
3CiCPBA

4Department of Telecooperation, Johannes Kepler University Linz

wieland.schwinger@jku.ac.at
5Information Systems Group, Johannes Kepler University Linz

werner@ifs.uni-linz.ac.at
6 IWT2 Group. University of Seville, Spain

mjescalona@us.es

Abstract Workflow plays a major role in nowadays business and therefore its

requirement elicitation must be accurate and clear for achieving the closest so-

lution to business’s needs. Due to Web applications popularity, the Web is be-

coming the standard platform for implementing business workflows. In this

context, Web applications and their workflows must be adapted to market de-

mands in such a way that time to minimize effort. As they get more popular,

they must give support to different functional requirements but also they con-

tain tangled and scattered behaviour. In this work we present a model-driven

approach for modelling workflows using a Domain Specific Language for Web

application requirement called WebSpec. We present an extension to WebSpec

based on Pattern Specifications for modelling crosscutting workflow require-

ments identifying tangled and scattered behaviour and reducing inconsistencies

early in the cycle.

Keywords. Requirements, Workflow, crosscutting, model-driven paradigm,

Web Application

1 Introduction

Nowadays business must adapt to global trends in order to keep users engaged; un-

planned marketing campaigns, season promotions (final season sales), crisis manage-

ment, among others business requirements are examples of unexpected requirements

that stress the whole applications’ infrastructure.

We will focus on the problem produced by those requirements that demand to

business processes change according to the users’ context. Depending on context

variables like current day, payment method, active market campaign, accessing de-

mailto:werner@ifs.uni-linz.ac.at
mailto:mjescalona@us.es

vice, etc. the system may modify the underlying workflow model; this may imply

executing a slightly different workflow providing adaptations which support new

requirements like discounts and free-shipping, or introduces new workflow steps like

new forms to be filled, etc. Unfortunately, these changes may affect different applica-

tion´s aspects. In Web Applications these changes compromise several applications’

tiers (model, navigation, and interface). When the underlying workflow changes, user

interfaces may, for example, introduce a new form that will demand new view con-

trollers that orchestrates validation and navigation, and finally the business model

must be modified for supporting new entities’ forms and fields.

To make matter worst, when new concerns are unforeseen and unpredictable like

Crisis Management[7] or Volatile requirements[8], these requirements are usually

introduced in an ad-hoc way. The inadequate implementation of these changes may

lead to a decay of software quality compromising application maintenance, stability,

and complexity, and finally the application’s budget.

In this paper we present a model-driven approach for analysing and modelling

workflow changes in Web adaptations in the early stage of requirement gathering.

The main contribution is a model-driven approach for dealing with base and adapta-

tion requirements. It is based on a clear separation of concerns applied in the early

phase of the software development process. The approach allows defining symmetri-

cally both base and adaptation requirements; later these models are used for imple-

menting test suites that assess the final application behaviour.

The rest of the paper is structured as follows: in Section 2 the problem will be mo-

tivated with simple but illustrative examples; in Section 3, we discuss some related

work; in Section 4, we present some background themes; in Section 5, we introduce

an extension for WebSpec that uses Pattern Specification; and in Section 6 we pre-

sent our model-driven approach for modelling workflow changes in Web Application

and in Section 7, a running example is presented; finally in section 8 we conclude and

discuss some further work we are pursuing.

2 Motivating example

We motivate our research with an example in the e-commerce domain. In the check-

out process for buying selected items, the user must follow a simple workflow pre-

senting several steps such as choosing the wrapping configuration (regular or special

for birthday), selecting the shipping address, and the payment method, etc. Suppose

an unforeseen event such as a catastrophe that leads to a donation campaign. We may

require the introduction of a new donation step in the workflow, where users can

choose between different pre-set amounts of money to donate. This change will re-

quire at least a set of modifications:

 Implement a page that holds a donation form with its corresponding fields;

 The corresponding step must be placed in the workflow and the workflow must be

modified to be coherent;

 New data needs to be stored and therefore we need to add persistence machinery

for these data;

 Navigation models demands modification to let users navigate to their donations

for example.

In this case the set of changes must be present only when the catastrophe campaign

is active otherwise they make no sense. In the mid-term we have an adaptation re-

quirement (the existing of a catastrophe and the donation campaign) which lead to a

“context-aware” workflow behaviour.

Additionally, the impact in the application of the adaptation may not be simple;

that is, the introduction of this adaptation may cross other workflows such as ticket

booking for a recital, product pre-order, etc. Therefore, the way in which the adapta-

tion requirements are modelled is critical to assure that they correctly implemented.

To make matter worst, the incoming of new context-aware requirements that cross-

cut several workflows make the situation more complex since different business do-

mains are compromised by the same set of events.

3 Related work

Adams [1] et al. presents the soviet “Activity Theory" as a driver for a more flexible

and better directed workflow support. A subset of the main theory´s principles high-

lights the need of context awareness in each possible workflow action execution. The

authors propose a set of criteria as requirements of Workflow Management Systems

(WfMSs). One criteria “adaptation by reflection” promotes flexible, dynamic and

evolving workflows. In this case, systems must record derivations (exceptional flows

in the workflow definition) capturing its reasons and its resolution that later can be-

come part of the next workflow instantiation. Although this attempt will help to im-

plement awareness workflows, it works reactively from exception instead of being a

proactive solution. As exceptions are captured in real-time, the solution recorded is

ad-hoc and isn´t neither modelled nor optimized by domain experts. This work was

assessed with the implementation of a WfMS so called YAWL [2] that allows imple-

menting dynamic workflows. The platform defines Worklet as a reusable unit of

work. Each time a workflow derivation event is detected it is either possible to choose

an already defined worklet or define a new one.

AO4BPEL [3] is an aspect-oriented extension to BPEL that allows describing

workflow´s crosscutting behaviour. The extension comprises a language that is used

to declare aspects and an execution engine that is responsible of weaving core work-

flows with workflow aspects. The language introduces constructors for pointcut,

jointpoint and advice concepts. It is noteworthy that the extension supports process-

level aspects being activated in all workflow instances and instance-level being acti-

vated on certain instance of the workflow. AO4BPEL is a powerful tool for describ-

ing aspects in Business Process models but aspects are taken into account later (in the

design phase) where crosscutting can not be identified and checked with stakeholders.

We are not aware about any approach that allows identifying workflows and speci-

fying its aspects in the requirement gathering phase in such a way that the whole ap-

plication behaviour is described allowing assessing its behaviour first with the user

and later by automatic testing.

4 Background

In this section we introduce some base work which we have used in our approach,

namely WebSpec for modelling workflow requirements and Pattern Specifications for

specifying the binding of requirements belonging to different concerns.

4.1 WebSpec

WebSpec [9] is a visual language; its main artefact for specifying requirements is

the WebSpec diagram which can contain interactions, navigations and rich behaviors.

A WebSpec diagram defines a set of scenarios that the web application must sat-

isfy. An interaction (denoted with a rounded rectangle) represents a point where the

user can interact with the application by using its interface objects (widgets). Interac-

tions have a name (unique per diagram) and may have widgets such as labels, list

boxes, etc. In WebSpec, a transition (either navigation or rich behavior) is graphi-

cally represented with arrows between interactions while its name, precondition and

triggering actions are displayed as labels over them. In particular, its name appears

with a prefix of the character ‘#’, the precondition between {} and the actions in the

following lines.

The scenarios specified by a WebSpec diagram are obtained by traversing the dia-

gram using the depth-first search algorithm. The algorithm starts from a set of special

nodes called “starting” nodes (interactions bordered with dashed lines) and following

the edges (transitions) of the graph (diagram).

As an example of WebSpec’s concepts we present in Fig. 1 the specification for

the user story: “As a customer, I would like to search products by name and see their

details” in an e-commerce application. Home represents the starting point of the speci-

fication and it contains 2 widgets: searchField text field and search button (see [9] for

further details).

Fig. 1. WebSpec diagram of the Search by name scenario.

WebSpec has a supporting tool [16] with features that allows, in the early phases

of requirement gathering, realizing simulation of application interaction against mock

interfaces and generating independent Web tests for testing the final development

result.

4.2 Pattern specification

Pattern Specifications (PSs) [6] is a tool for formalizing the reuse of models.

Originally the notation for PSs was presented using the Unified Modelling Language

(UML) as a base but in this work we will instead use the concept in the WebSpec

realm. A Pattern Specification describes a pattern of structure defined over the roles

which participants of the pattern play. Role names are preceded by a vertical bar (“|”).

A PS can be instantiated by assigning concrete elements to play these roles.

5 Crosscutting behaviour modelling using Pattern

Specification

WebSpec provides a powerful language for describing user’s interaction of Web ap-

plication as it was introduced in previous section. Nonetheless it lacks a means for

portraying generalization of interaction patterns; for example, common patterns re-

quired in determined workflows’ points (tasks or transitions) that stop the workflow

execution up to the manager authorizes to continue, or landmarks-like behaviour

where a given subworkflow can be accessed from steps belonging to a main work-

flow. This restriction increase size and complexity of diagrams, and effort to docu-

ment the requirement. So, we propose the use of Pattern Specifications where, in our

case, a role is a specialization of a WebSpec Interaction restricted by additional prop-

erties that any Interaction fulfilling the role must possess. A model conforms to a PS

if its model elements that play the roles of the PS, satisfy the properties defined by the

roles.

In Figure 2, a requirement that generalizes an interaction pattern defines two roles:

|sourceInteraction and |targetInteraction. The |sourceInteraction role (notice that

role’s name starts with “|”) demands a widget of type Label called mandatoryWidget

that must be present in the Interaction that conforms the role, and defines a new wid-

get of type TextField called introducedWidget that will be part of conforming Interac-

tion. The |targetInteraction role is analogous to the previous role; it demands a widget

of type Combobox called mandatoryWidget to be part of the interaction that matches

the role. Finally, when both roles are bound in a given diagram, a new interaction is

introduced with the corresponding transitions called IntroducedInteraction as it is

defined in Figure 2.

Fig. 2. Introducing interactions and elements in a Workflow requirement

In Figure 2, PS was used for introducing a new Interaction. Alternatively, it can be

used for defining constraints over a diagram that may lead to an overriding of existing

definitions. E.g. Navigations preconditions and actions may be introduced by PS in

order to enrich the scenario for making consistent a set of changes. This kind of situa-

tions is usually present in adaptive requirements where some behaviour is intended to

be replaced by other.

In Figure 3, we show a generalization of a Web application requirements that pro-

vides the option for donate. This introduces a banner between two roles describing the

donation goal and allows traversing towards a donation form. This requirement can be

instantiated in Figure 1 example where |stepOne role is bound with the Home interac-

tion and |stepTwo with the SearchResult interaction.

Fig. 3. Donation requirement model using PS

5.1 Yet another AOSD visual language?

Although there are several AOSD (Aspect-Oriented Software Development) formal

and visual languages already defined for almost any model of a Web application

(conceptual, navigational, and interface models), none of them covers requirement

gathering phase and indeed these are focused on describing just functional features

closer to the conceptual model [17].

Tackling crosscutting workflow behaviour in the early requirement analysis phase

allows identifying crosscutting behaviours in the system, and context variables that

rules adaptation behaviour. The use of WebSpec with PS, will help to separate matter

of interest in (WebSpec) requirement diagrams and thus in the whole System Re-

quirement Specification (SRS) documents.

In this case, the extension provided for WebSpec using PS not only allows defining

high level reusable requirements for Web Applications; it also helps to derive the set

of tests that will be used for validating the final result of the application design and

implementation.

6 Our approach in a nutshell

Next, we will present our approach to identify, design and implement adaptive re-

quirements in Web Workflows. The approach is based on the idea that any adaptive

requirement must be treated as first–class; as a consequence we consider these re-

quirements as belonging to separate concern
1
 [11] allowing us to isolate, model and

later compose both core application workflows with adaptive requirements. In this

aspect we focus on Web workflow requirements, specifically in analysis and model-

ling aspects. Their impact in different application tiers has been already presented

in[14,12].

2. Workflow

requirement modeling

3. Workflow requirement

generalizations modelling

C
o

re
 W

e
b

 w
o

rk
fl
o

w

p
ro

c
e

s
s

A
d

a
p

ta
ti
o

n

re
q

u
ir
e

m
e

n
t

lif
e

c
y
c
le

5. Test Derivation

 basic

 adaptation

4. Consistency validation

1. Workflow requirement gathering

Web method underlaying tasks: design,

development, testing and deploy

In
c
o

n
s
is

te
n

c
ie

s
 f
o

u
n

d

Fig. 4. Overall schema for workflow requirement modelling

The approach comprises a set of steps that are depicted in Figure 4 and described

below:

Step 1: Workflow requirement gathering. Using well-known requirement elicita-

tion techniques such as meetings, surveys, Joint Application Development

(JAD), etc. a Software Requirement Specification (usually in natural lan-

guage) is produced. In the case of an agile underlying development process, a

briefer description is usually produced with user stories [4].

Step 2: Workflow requirement modelling. Web application requirements are for-

malized using a requirement Domain Specific Language (DSL). This formal-

ization is essential during the requirement gathering process with stake-

holders. By means of using a requirement DSL, the tasks such as tests deri-

vation and scenarios simulations can be automated easily. In this work, we

selected WebSpec as requirement DSL.

Step 3: Workflow requirement generalizations modelling. Base Workflow

changes are modelled using the Pattern Specification extension for the re-

quirement DSL; in this paper we exemplify with the WebSpec extension.

Step 4: Consistency validation. Syntactic and semantic analysis is performed over

requirements. By means of an algebraic comparison of models, candidate

structural and navigational conflicts are detected. On the other hand, candi-

date conflicts are analyzed and semantic equivalences are detected. For each

candidate conflict, both the new requirement and the compromised require-

1
 In software engineering a concern represents a matter of interest that groups a coherent set

of requirements.

ment are translated from a high abstraction level (the requirements DSL) to a

minimal form, using an atomic constructor in order to detect semantic differ-

ences. Semantic equivalences between requirements are detected for warning

requirement analysts. For more information see [13].

In the case of adaptation requirements, a previous weaving is performed

among both kind of requirements obtaining instantiated PS.

Step 5: Test derivation. In this step, both traditional WebSpec diagram and Web-

Spec PS extension are processed for producing tests that allow validating the

final Web Application. This also allows assessing the set of requirement with

users by using simulations in the early stages of UI mocking. Later the same

tests are used in the testing phase of the software development process.

In the following section we present a simple but illustrative example for modeling

workflow requirements. First, a simple workflow for checking out products in an e-

commerce Web application is modelled using WebSpec. On the other hand, a simple

requirement that introduces context awareness in the workflow is designed using PS.

6.1 Requirement gathering (Step 1)

We use as a running example the development of an e-commerce site. In Figure 5,

user stories [4] derived from gathered requirements are shown. There are three user

stories: “Checkout process” (US1), “Reduced checkout process from smartphone”

(US2), and “Ordering a product” (US3). The first, on the left-hand side, defines a

basic workflow for checking out selected products in a straightforward way where

issues such as product wrapping, delivery and payment method must be covered. In

the middle, it is required that the delivery configuration step in the workflow must be

removed and in its place the current location is used for setting up the shipping ad-

dress. Finally, on the right-hand side, a user story defines another view point of the

checkout process defined by a different stakeholder.

US1 - Checkout process

As a customer

I want to be able to buy a given

product from its page

So that i can easily set up product

wrapping, delivery address and

payment method.

US2 - Reduced checkout

process from smartphone
As a customer

I want to save steps when

accessing from a smartphone

So that i can avoid setting up

delivery address using current

location

US3 – Ordering a product

As a customer

I want to be able to request a given

product from its page

So that i can order a product

simply selecting it and choosing its

wrapping

Fig. 5. Application’s user stories

6.2 Workflow requirement modelling (Step 2)

For this step we will adopt a workflow’s definition presented in [15] where a work-

flow has as a main objective to deal with a case. A workflow has a set of elements

that allows achieving the objective: a state and a set of interconnected task where each

one can have conditions that enable its execution. From this definition, we claim that

WebSpec can help modelling Workflows requirement from a user interaction perspec-

tive. User stories define the case that motivates workflow design with WebSpec.

WebSpec interaction are used for presenting available tasks and state information,

meanwhile transition are used for describing workflow conditions and state changes.

Therefore workflows are described in a WebSpec scenario that comprises a set of

(WebSpec) interactions and transition. Each Interaction describes the expected work-

flow’s input and output using widgets (Labels, Radio Button, etcs.) meanwhile transi-

tions represents actions that application must perform with its corresponding guard.

In Figure 6, the checkout process in a Web application is depicted as a set of inter-

actions where the user is able to select a product for start setting out its purchase (in-

teraction Products); next she is able to choose whether a simple or gift wrap should be

used; next, delivery information must be introduced such as address and city; and

finally the list of current orders is shown.

Fig. 6. WebSpec scenario for Checkout process based on US1

6.3 Workflow requirement generalizations modelling (Step 3)

So far, we have modelled workflows in Web application using WebSpec. Sometimes

there are requirements, such as US2 – “Reduced checkout process from smartphone”,

that introduce enhancements over main workflows like adaptations or temporal

changes. In order to model this kind of requirements, we will use the proposed exten-

sion of WebSpec that introduces PS concepts for generalizing behaviours.

In Figure 7, User Story 2 (US2) is modelled overriding the default navigation pre-

sented in Figure 6 where delivery information specification (Delivery interaction) is

by-passed, and, instead, Order Status interaction is exhibited after selecting Packag-

ing configuration. This “by passing” is achieved defining a transition that goes from

“Packing” interaction to “Order status” interaction. As the specification is abstract, it

defines the “|Packaging” role that later binds to Packaging interaction and “|Order

status” that later binds to Order status interaction overriding the transition identified

with #next originally defined in Figure 6.

Fig. 7. WebSpec diagram for “Reduced checkout process for smartphones” user story

The semantic result of this adaptation can be seen in Figure 8 where Delivery in-

teraction is not part of the workflow any more.

{context[device.kind]=smartphone}

click(Packaging.next)

Fig. 8. Resulting WebSpec diagram after composing requirements

For example, the requirement modeled in Figure 3, donation requirement can also

be introduced in the checkout by binding “|stepOne” role with “Packaging” and

“|stepTwo| with Order status. After weaving diagrams, it is possible to donate to ca-

tastrophe help´s funding after performing the checkout process. For the sake of space,

we are not showing the weaving result.

Although roles in this example only bind to one interaction, it is possible to have

situations were a role may be bound to several interactions when having scattered

behaviour.

6.4 Consistency validation (Step 4)

Conflicts between requirements may arise when two (or more) stakeholders have a

different point of view for a given workflow requirement. These situations present

themselves as structural or navigational inconsistencies. The former type corresponds

to a difference in the data belonging to a business concept meanwhile the latter de-

fines a difference in the way interaction occurs. For more information see [13].

User story US3 proposes a slightly different workflow with respect to the one pre-

sented in Figure 6 corresponding to US1. The proposed workflow differs from the one

in US1 in the way it is navigated and the data handled.

In Figure 9 a navigational conflict and a structural conflict are highlighted with an

ellipse. The navigational conflict is present since it is possible to browse from the

Product interaction towards Packaging and Delivery interactions defined in S1 and

S3 respectively. On the other hand, the structural conflict occurs in a contradiction in

the way in which the City and Country widgets are defined in the Delivery interac-

tion; in US1 they are expected as Labels but in US3 they are expected as Combobox

widgets.

Fig. 9. WebSpec scenario for Checkout process based on US3

Navigational conflict Structural conflict

6.5 Test derivation (Step 5)

Once all scenarios were described, design and further development tasks can start.

The information gathered so far allows generating both core workflow and work-

flow’s adaptation tests. That is, main workflow’s tests are derived for checking navi-

gation, and inputs/outputs from each user interaction step in the workflow. Comple-

mentary, specific tests are derived for those WebSpec diagrams that bind any adapta-

tions (WebSpec diagrams that generalize behaviour using PS) where these validate

the behaviour corresponding to the base workflow woven with adaptation requirement

models.

In Code 1, we can see the result of the automatic test generation feature of Web-

Spec that checks the workflow of Figure 6. Besides, Code 2 shows a test case that

checks the described mobile adaptation (see Figure 7 for adaptation design and Figure

8 for the resultant Workflow). Both tests uses the Selenium [10] engine for executing

actions, assessments, and navigation automatically like a user would do.

public void

testCheckoutWflow(){

sel.click("id=aProduct");

sel.waitForPageToLoad("30000");

sel.select("id=Simple", "1");

sel.click("id=next");

sel.waitForPageToLoad("30000");

sel.type("id=Address", "..");

sel.click("id=next");

sel.waitForPageToLoad("30000");

}

 public void testMobCheckoutWflow(){

//context configuration

configureContextForMobileDevice()

sel.click("id=aProduct");

sel.waitForPageToLoad("30000");

sel.select("id=Simple", "1");

sel.click("id=next");

sel.waitForPageToLoad("30000");

//steps removed by "Reduced

//checkout process for smartphones"

//requirements

}

Code 1. Checkout workflow test case. Code 2. Reduced Checkout workflow for

mobile access test case.

7 Conclusions & Future Works

In this work we have presented a novel approach for modeling Workflows in Web

applications for both traditional requirements as well as crosscutting one. By using

WebSpec diagrams, workflows were modeled as a set of interactions representing

their steps and transitions for defining interactions’ connections. In this work, a PS

extension for WebSpec, allowing easily specify crosscutting workflow’s behavior,

was introduced. On the other hand, the approach allows modeling requirements asso-

ciated to Inter-Organization Workflows [5] that, as we are aware, do not have sup-

porting tools.

We are now implementing some extensions that allow using this approach over

WebSpec. WebSpec diagram composition is may be the most important extension to

be implemented since it must enable composing diagrams based on PS with base

WebSpec diagrams. Next, the tool should reason over the set of diagram producing a

semantic view (used internally) for generating tests that checks the workflows includ-

ing the adaptation behaviour specified with PS.

Finally, UML class diagrams and business process models can be sketched from

WebSpec diagrams by reasoning over them. Heuristics must be studied in order to

produce accurate design models. Obtained UML and business process modes can be

used also for producing prototype applications.

8 References

1. Adams, M., Edmond, D., ter Hofstede, A.: The Application of Activity Theory to Dynamic

Workflow Adaptation Issues. In: PACIS 2003 Proceedings. Paper 113 (2003)

2. Adams, M., ter Hofstede, A. H. M., Edmond, D., M. P. van der Aalst, W.: Worklets: a

service-oriented implementation of dynamic flexibility in workflows. In Proc. of the 2006

Confederated international conference on On the Move to Meaningful Internet Systems:

CoopIS, DOA, GADA, and ODBASE, pp. 291-308 (2006)

3. Charfi, A.: Aspect-Oriented Workfow Languages:AO4BPEL and Applications. In: Phd

thesis, Fachbereich Informatik, der Technischen Universit at Darmstadt. http://d-

nb.info/985111321 (2007)

4. Cohn, M.: Succeeding with Agile: Software Development Using Scrum (1st ed.). Addison-

Wesley Professional (2009)

5. Divitini, M., Hanachi, C., Sibertin-Blanc, C.: Inter-organizational workflows for enterprise

coordination. In: Coordination of Internet agents. Springer-Verlag, London, UK pp. 369-

398 (2001)

6. France, R., Kim, D., Ghosh, S., Song, E.: A UML-Based Pattern Specification Technique.

In: IEEE Transactions on Software Engineering, Volume 30(3) (2004)

7. Luecke, R.: Crisis Management: Master the Skills to Prevent Disasters. Harvard Business

Press Books. ISBN 978-1591394372 (2004)

8. Moreira, A., Araújo, J., Whittle, J.: Modeling Volatile Concerns as Aspects. In: CAiSE,

pp. 544-558 (2006)

9. Robles, E., Garrigós, I., Grigera, J., Winckler, M.: Capture and Evolution of Web Re-

quirements Using WebSpec. In: ICWE 2010, pp. 173-188 (2010)

10. Selenium. http://seleniumhq.org/

11. Sutton, S., Rouvellou, I.: Modeling of Software Concerns in Cosmos. In Proc. of ACM

Conf. AOSD 2002, pp. 127-133, ACM Press (2002)

12. Rossi, G., Urbieta, M., Ginzburg, J.: Modular and Systematic Interface Design for Rich

Internet Applications. In: Handbook of Research on Web 2.0, 3.0, and X.0: Technologies,

Business, and Social Applications, ed. San Murugesan, pp. 59-74 (2010)

13. Urbieta, M., Escalona Cuaresma, M.J., Robles Luna, E., Rossi,G.: Detecting Conflicts and

Inconsistencies in Web Application Requirements. In: ICWE Workshops,278-288 (2011)

14. Urbieta, M., Rossi, G., Distante, M., Ginzburg, J.: Modeling, Deploying, and Controlling

Volatile Functionalities in Web Applications. In: International Journal of Software Engi-

neering and Knowledge Engineering (IJSEKE), vol. 22(1), pp. 129-155 (2012)

15. van der Aalst,W., van Hee, K.:Workflow Management Models, Methods, and Systems.

The MIT Press, ISBN 978-0262720465 (2004)

16. WebSpec Language, http://code.google.com/p/webspec-language/

17. Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger, W., Kap-

sammer, E.: A survey on UML-based aspect-oriented design modeling. ACM Comput.

Surv. (CSUR) 43(4):28 (2011)

http://d-nb.info/985111321
http://d-nb.info/985111321
http://seleniumhq.org/
http://code.google.com/p/webspec-language/

