
The Hard Way to Virtual Machine
Administration: towards DevOps

A Bridge between Developers and IT Operators

Christian Rodríguez, Lia Molinari, Francisco Javier Díaz
LINTI (Laboratory of Investigation in New Information Technologies)

National University of La Plata, UNLP
{car, lmolinari, javierd}@info.unlp.edu.ar

Abstract—The coexistence of multiple platforms and
the implementation of different virtualization models
makes server administration more complex every day.
The undeniable benefits both methodologies offer in
terms of performance optimization and energy saving
can be overshadowed if clear guidelines are not
established for configuration and maintenance in
accordance with the needs of increasingly agile
development models that demand quick responses.
DevOps is a possible solution to this situation. However,
it demands a new perspective in traditional roles within
technology areas.

Keywords—DevOps tools; IT Governance

I. INTRODUCTION

Technological areas in organizations have had to
adapt to a service model in general, and a development
model in particular, that calls not only for
effectiveness, but also efficiency. This new way of
working demands strong interaction between
development areas and the so-called support areas.
With the advent of new programming paradigms such
as agile methods, these development areas have begun
to train in obtaining results within a short period of
time. Support areas, with progressively more demands
from development areas generally function without a
proper structure suited for current trends. The LINTI
development area of the Computer Science School
identified this problem at an early stage, and searching
for solutions, decided to analyze and implement
DevOps through multiple tools (Chef1, Puppet2).

The formerly markedly separated areas of support
and development began to experience the demands of
technological evolution in terms of virtualization and
agile methods.

1 http://www.opscode.com/chef/
2 https://puppetlabs.com/solutions/devops/

Developers are releasing versions in very short
lapses of time, sometimes more than once a day, and
these applications must be tested and released to the
public.

Moreover, IT operations must deal with different
environments and their instances, which imply
configuration changes. Making these changes
individually can be tedious and impractical, and may
introduce a higher probability of errors. The response
must also be fast.

DevOps is a new trend oriented towards obtaining
a collaborative work relationship between
development and operations areas in Information
Technology (hereinafter IT). The goal of this
collaboration is to improve response times and
complete project phases according to plan without
disregarding reliability, stability, resilience and
security in the operations environment [1]. Important
firms such as Etsy and Facebook, among others, have
chosen DevOps.

Reference [2] offers the following definition of
DevOps: "an IT service delivery approach rooted in
agile philosophy, with an emphasis on business
outcomes, not process orthodoxy. The DevOps
philosophy (if not the term itself) was born primarily
from the activities of cloud service providers and Web
2.0 adopters as they worked to address scale out
problems due to increasing online service adoption.
DevOps is bottom up based, with roots in the Agile
Manifesto and its guiding principles. Because it
doesn't have a concrete set of mandates or standards,
or a known framework (e.g., ITIL, CMMI), it is
subject to a more liberal interpretation”.

DevOps is the result of the convergence of several
movements, such as Velocity Conference,
Infrastructure as Code, Agile Infrastructure, and Agile
System Administration, among others. It constitutes a
methodology that promotes communication,
collaboration and integration between software

JCS&T Vol. 13 No. 3 December 2013

118

developers and IT professionals. Its goal is to release
products and software services more quickly.

According to Mike Loukides [3], modern
applications must be resilient and fault tolerant; they
must be monitored and able to solve errors quickly. In
Cloud Computing, in Platform as a Service
environments (PaaS), the operations area and the
development area are integrated, blurring the
traditional separation of functions. The evolutionary
trend is towards the code, and those responsible for the
infrastructure, i.e. systems administrators and IT
corporate groups, must understand and accept this
evolution. It is time to stop segregated work. They
must cooperate and collaborate with developers.
Loukides informally calls this DevOps. One of the
DevOps mottos is “developers that think like operators
and operators that think like developers”.

Saanjev Shrama, in an article published on the
web3, introduces two concepts in this framework:

1. Cycle time

Cycle time is defined as the average time taken
from the time a new requirement is approved, a
change request is requested or a bug that needs to be
fixed via a patch is identified, to the time it is
delivered to production. Agile organizations want this
time to meet the bare bones minimum.

2. Versioning environments

Operators must deal with multiple configurations
and update installations. These changes imply the
creation of a new “version” of the environment. The
only way this can be done in time, with documentation
and minimum errors is by applying all changes
through scripts. These demands result in the creation
of Infrastructure as a Code.

Scripts generate new virtual environments that
must be versioned like traditional code, managing the
configuration in compliance with best practices.

In order to implement this methodology, it is
necessary to agree on the following:

• Infrastructure automation

• Control sharing

• One-step development and deployment

• Metric defining

3 Understanding DevOps – Part 5:
Infrastructure as Code.
http://sdarchitect.wordpress.com/2012/12/13/infrastru
cture-as-code/

II. ANALYSIS OF THE PROBLEM

The difficulty of managing the infrastructure in a
coordinated manner with the LINTI software
developments, where the main demand is the constant
modification of the programs already in production,
led to the analysis of available alternatives for
deployment automation (code release) and
configuration management. This analysis led to
researching the emerging technologies known as
Virtualization, DevOps and Infrastructure as Code,
among others.

The best way to describe the road taken is to do it
chronologically, showing the evolution of knowledge
gained in accordance with information and
experiences obtained in each stage. The initial
methodology, when there were few applications, was
to install each one of them in a separate server. When
the number of applications began to increase, the first
alternative was to install them in the same server with
several virtual hosts. The goal of this action was to
simplify the administration on the part of the support
area and, indirectly, to lower the costs, as having one
server per application was unnecessarily costly.
Although this approach simplified the administration,
an incident in which one of the applications was
targeted, which led to the rest of the applications in the
server being exposed, compromised the security of the
systems. At the time of the aforementioned security
incident, two important decisions were made:

• Independently from the security incident,
the application development area decided
to adopt the fundamental philosophy of
reuse, distribution and integration of
applications, based on the use of APIs
(Application Programming Interfaces),
WEB Services and SSO (Single Sign-
On).

• In light of the incident, alternatives were
analyzed and a decision was made to
separation the areas of production and
final user testing, adding the development
and testing areas to converge with new
development trends.

With these two crucial points in mind, two separate
paths were followed – environment generation and
application development with this new architecture. In
this instance, the need to build an environment for new
applications integrated through APIs was made more
complex by the amount of relations and dependencies
mandatory for its correct operation. This had so much
impact that the application developers' roles and
responsibilities were blurred, resulting in junior
developers without experience in configuring services
provided by IT areas having to install extremely
complex environments, losing sight of their real
function – developing.

JCS&T Vol. 13 No. 3 December 2013

119

Moreover, from the production perspective, many
applications require replication environments, load
balancing,caches and performance improving entities.
This makes it necessary to define and update
procedures and instructions that specify the steps to be
followed for installing each one of the involved parts.
This situation triggered a new stage: researching
trends in technological infrastructure management.
Multiple alternatives have been tested with the
permanent goal of simplifying the deployment of new
services, backups and hot service migration to servers
with more resources. Virtualization was the chosen
option.

Once virtualization had been adopted, the
proliferation of virtual machines slowly turned the
initial enthusiasm to awareness of a difficult issue:
their management was out of control. Although the
creation process of virtual machines is fairly simple,
their proliferation and maintenance, together with the
number of servers up for administration, updates and
configuration made it a daunting task. A clear example
of the increasing complexity of this environment was
the update of the SSL certificates before their expiry
date.

Thus, a research into alternative server
management and automation methods began.

Infrastructure as Code seemed to satisfy this
demand. After an exhaustive analysis, we opted for
Opscode Chef, a product that allows “infrastructure
programming” and testing using development
concepts like TDD (Test Driven Development). The
procedure was to program recipes that allowed us to
describe the creation of web servers that hosted
applications. It was also necessary to release the
applications using deployment automation tools such
as Capistrano, a task reserved to the most experienced
developers only. This was the first convergence point
between administrators and developers. They analyzed
the tools in a collaborative manner, and agreed on the
convenience of management simplicity as an
investment in the future for both parties.

III. THE SITUATION TODAY

Using tools like Chef allows recipes installed in

our servers to be versioned with SCM (Source Code
Management) like GIT and tested in virtual machines
like VirtualBox by administrators wishing to test
changes before applying them in production. We used
the following tools for the recipe development phase:

• Chef-solo

• Vagrant4

• Berkshelf5

• Chef recipes available at
http://community.opscode.com

Once a recipe works, it is uploaded to the Chef
server. This server holds all the tools used by the
servers whose administration has been automated.
Installing a new virtual server became considerably
simpler with the use of templates provided by the
virtualization tool itself, added to integration with
Chef. The automated servers are the ones that have a
direct impact in the development area. It is projected
that this procedure will be applied to other services
from different areas. For the development scenario,
Vagrant machines were used that offer the less
experienced developers the opportunity to work and
focus their efforts on development and not in
environment building. As regards environment
separation, the replication of the production
environment was simplified into a preproduction and
testing environment.

The problems detected at first are related to the
adoption of this new work scheme. Administrators
must now program, which was not normally their task.
This generated an initial resistence that grows weaker
as the advantages of this type of model surface. A
remarkable feature of the Chef server is its node
database with information on the whole organization,
which simplifies the configuration of backup and
monitoring applications such as godrb, SENSU,
Nagios, and Bacula, among others.

IV. BEST IT GOVERNANCE PRACTICES

Various practical tools exist to guide and support
IT leaders and decision makers in making IT
decisions. Some of the most relevant include the
following. The Control Objectives for Information and
related Technology (COBIT) [4] is a framework that
supports IT process management. COBIT describes
the central role of ICTs in creating value for business.
The Information Technology Infrastructure Library
(ITIL) [5] is a set of practices for IT service
management. ITIL practices can be used for aligning
IT services with organizational needs. ISO standards
define guidelines for process quality assurance (ISO
9000) [6] and information security systems
management (ISO 27001) [7].

4 Vagrant is open-source software for creating and
configuring virtual development environments.
http://www.vagrantup.com/
5 http://berkshelf.com/

JCS&T Vol. 13 No. 3 December 2013

120

Figure 1

One of the demands in the framework of the
functional structure of technological areas is the
Segregation of Duties (SoD). SoD plays an important
part in designing an IT function. This suggested
separation excludes the possibility that a single person
can be responsible for multiple critical functions, so
errors and wrongful appropriations can be detected
early on, in the normal course of business processes. It
allows for prevention and deterrence from fraudulent
or malicious acts. Reference [8] includes this
organizational (and traditional) chart, within the
context of SoD.

In Figure 1 and in the aforementioned standards
and best practices, the segregation between
development and operations functions is unequivocal.
AppDev is separated from Computer Operations. IT
Infrastructure Management is one of the divisions of
Computer Operations.

Note: Figure 1 was extracted from ISACA
(www.isaca.org).

DevOps, in order to improve performance, blurs
this distinction. One possible variation is that shown in
Figure 2.

According to Decision Theory [9], before making
a decision, the CIO should ask themselves the
following questions: 1) who receives the benefits; 2)
what are the associated risks; 3) who bears the risks;
and 4) what are the required resources; among others.
For answering such questions, decision elements
should be identified. Reference [10] includes a
reference model for technology innovation-related
decision-making processes (Figure 3).

It is clear that the benefit in using DevOps is
received by the user by obtaining deployments in the
expected time in the framework of agile
developments. The risks associated to the
implementation deserve to be analyzed, but in a first,
light conclusion, we can say that using code to manage
the infrastructure merits the definition of controls in
light of the possibility of modifications, well- or ill-
meaning, which can modify the cycle. These controls
would mitigate the risk.

Figure 2

Applying the RACI matrix is an alternative for
assigning responsibility levels for process practices to
multiple roles and structures. This matrix defines four
levels:

– Responsible: Who is performing the task? It
refers to roles in charge of the main activity to
complete it and produce the expected outcome.

– Accountable: Who is accountable for the
success of the task? It assigns responsibility for the
completion of the task (where responsibility ends). As
a principle, accountability cannot be shared.

 – Consulted: Who provides input? These roles are
essential. This input must be considered and, if
required, measures must be taken to ensure its
enforcement, including information on the process
owner and the Board of Directors.

Figure 3

– Informed: Who receives the information? These
roles are informed of the achievements and/or
deliverable tasks. Of course, the role that is
“responsible for making“ must always receive

IT
Director

AppDevOps

Transition Dev Deployment

JCS&T Vol. 13 No. 3 December 2013

121

appropriate information for task supervision, as must
the roles responsible for the area of interest.

Another aspect to be considered is the competence
of the staff that will participate in this development-
operation model. DevOps's motto, “developers who
think like operators and operators who think like
developers”, represents integration from the
perspective of business goals. However, how this task
is translated to integration in the framework of profile
and competence definition is a task that calls for
defining the training and background required for
these profiles.

 When technology areas are audited, the auditor is
guided by some of the reference frameworks quoted
above, or other best practices that do not contradict
them. Even those documents where innovation [11] is
taken into account must be analyzed again in light of
these trends.

V. CONCLUSIONS

The model adopted has allowed us to reduce

release time for applications developed with agile
methods. The business goal – to provide quick
responses to requirements – goes beyond application
development. In order to achieve this goal, all areas
must be integrated and synchronized.

However, it is worth clarifying that this type of
model demands a revision of the traditional
segregation of functions defined in reference
frameworks, best practices and standards.

All innovation implies experimentation, learning
from mistakes and improving. This, in turn, implies
risk. Every organization must analyze just how much

risk it is willing to take so that the development of
applications through agile methods is a business goal
that goes beyond the development area itself.

REFERENCES

[1] “Top 11 things you need to know about DevOps”.
Gene Kim. IT Revolution Press.
www.itrevolution.com

[2] David Mitchell Smith. Hype Cycle for Cloud
Computing, 2011. Gartner Publication Date: 27
July 2011

[3] O’Reilly..What is DevOps?. eBook.

[4] ISACA, COBIT Official Site,
http://www.isaca.org/cobit/pages/default.aspx

[5] ITIL Official Site, http://www.itil-officialsite.com/.

[6] ISO, ISO 9000 - Quality management.
http://www.iso.org/iso/iso_9000.

[7] ISO, ISO/IEC 27001:2005. Information technology
- Security techniques - Information Security
Management Systems –
Requirements.http://www.iso.org/iso/catalogue_det
ail? csnumber=42103.

[8] Tommie W. Singleton, Ph.D. What Every IT
Auditor Should Know About Proper Segregation of
Incompatible IT Activities. ISACA Journal,
Volume 6. 2012

[9] P. F.J. Pavesi, La Decisión, Ediciones
Cooperativas, 2000. ISBN 987-98315-6-X

[10] Lía Molinari, Elsa Estevez and Francisco Javier
Díaz. Technology Innovation – A Reference Model
for Decision-Making Processes. CACIC 2012.
Universidad del Noroeste de Buenos Aires
(UNNOBA). Argentina. In press

[11] Vittorio Chiesa, Paul Coughlan, Chris A. Voss.
Development of a Technical Innovation Audit.
Journal of Product Innovation Management.
Volume 13, Issue 2, pages 105–136, March 1996.

JCS&T Vol. 13 No. 3 December 2013

122

