
1 Professor at Universidad Nacional Arturo Jauretche
2 CONICET Fellow
3 CONICET Researcher

A tool for detecting transient faults in execution of parallel scientific
applications on multicore clusters

Diego Montezanti*1, Enzo Rucci*2, Dolores Rexachs+,
Emilio Luque+, Marcelo Naiouf* and Armando De Giusti*3

* III-LIDI, School of Computer Science, Universidad Nacional de La Plata

Calle 50 y 120, 1900 La Plata (Buenos Aires), Argentina
{dmontezanti, erucci, mnaiouf, degiusti}@lidi.info.unlp.edu.ar

+ Department of Computer Architecture and Operating Systems, Universitat
Autònoma de Barcelona

Campus UAB, Edifici Q, 08193 Bellaterra (Barcelona), Spain
{dolores.rexachs, emilio.luque}@uab.es

Abstract. Transient faults are becoming a critical
concern among current trends of design of general-
purpose multiprocessors. Because of their capability
to corrupt programs outputs, their impact gains
importance when considering long duration,
parallel scientific applications, due to the high cost
of re-launching execution from the beginning in case
of incorrect results. This paper introduces SMCV
tool which improves reliability for high-performance
systems. SMCV replicates application processes and
validates the contents of the messages to be sent,
preventing the propagation of errors to other
processes and restricting detection latency and
notification. To assess its utility, the overhead of
SMCV tool is evaluated with three computationally-
intensive, representative parallel scientific
applications. The obtained results demonstrate the
efficiency of SMCV tool to detect transient faults
occurrences.

Keywords: Transient fault, parallel scientific
application, soft error detection tool, message
content validation.

1 INTRODUCTION

The increase in the integration scale, in order to
improve computing performance of current
processors, as well as the growing size of the
computer systems (towards upcoming exascale), are
factors that make reliability an important issue.
Particularly, transient faults, also named soft errors,
are becoming a critical concern because of their
capability to affect program correctness [1].

A transient fault is caused by interference from
the environment, such as electromagnetic radiation,
overheating or input power variations. It can alter
signal transfers, register values, or some other
processor component, temporarily inverting one or
several bits of the affected hardware element [2].
Although short-lived transient faults do not cause
permanent physical damage to the processor,
depending on the moment or specific location of the
occurrence, they may corrupt computations,

resulting in either control flow faults or data faults
that may propagate and cause incorrect program
execution [3][4]. Soft errors have led to costly
failures in high-end systems in recent years [5][6].

The increasing number of transistors per chip
involves lower voltage thresholds and higher
internal operating temperatures. As a consequence,
the vulnerability of the entire chip to transient faults
(i.e. the soft error rate) is expected to increase
significantly [7][8]. As soft errors can cause serious
reliability problems, all general purpose
microprocessors (especially those that form part of
high availability systems) should employ fault-
tolerance techniques to ensure right operation.

The impact of transient faults becomes more
significant in the context of High Performance
Computing (HPC). Since the year 2000, error reports
due to transient faults in large computers or server
groups have become more frequent [5][6]. Moreover
the impact of the faults becomes more relevant in the
case of long-duration applications, given the high
cost of re-launching execution from the beginning.
These factors justify the need for a set of strategies
to improve the reliability of high-performance
computation systems.

Historically, transient faults have been a design
concern in critical environments, such as flight
systems or high-availability servers. To face them,
additional hardware is introduced, varying from
watchdog co-processors to redundant hardware
threads [9][10][11][12][13][14]. Storage devices,
memories, caches have efficient built-in mechanisms
such as Error Correcting Codes (ECC´s) or parity
bits, capable of detecting or even correcting this type
of faults [4]. In practice, these techniques are costly
or impossible to apply to processor elements [3] and
they result inefficient in general purpose computers,
due mainly to the high cost of designing, developing
and verifying redundant custom hardware [1]. In this
context, the faults that affect processor registers are
a concern. In addition, as architectural trends point
toward multicore designs, there is substantial interest
in adapting such parallel hardware resources for
transient fault tolerance.

JCS&T Vol. 14 No. 1 April 2014

32

To provide protection with lower (or zero)
hardware costs, software-only approaches have been
proposed [3][4]. Despite having some limitations
(they have to execute additional instructions and are
unable to examine microarchitectural state),
software-only techniques have shown promise, in
the sense that they can significantly improve
reliability with reasonable performance overhead
[15][16][17]. This characteristic makes software-
redundancy-based strategies to be the most
appropriate for general purpose computational
systems.

Most software-duplication based techniques are
designed for serial programs. From this standpoint, a
parallel application can be viewed as a set of
sequential processes that have to be protected from
the consequences of transient faults adopting the
software-based techniques.

MPI [18] is currently the de facto standard that
defines an API for a message-passing parallel
programming model. MPI is designed for achieving
portable high-performance communication in
parallel applications. However, while the current
parallel computing systems are improving their
robustness, the MPI specification does not fully
exploit the capabilities of the current architectures
[19][20].

Because the addition of reliability features in
communication increases processing and resource
overheads, MPI offers limited fault-handling
facilities. Despite the fact that MPI processes may
fail because of any external fault (e.g. processor,
network or power failures), detection of such faults
is not defined in the standard.

According to such scenario, in recent past SMCV
methodology has been proposed [21], which is a
software-only approach specifically designed for the
detection of transient faults in message-passing
parallel scientific applications that execute on
multicore clusters.

In order to facilitate the usability of SMCV
methodology, this paper presents SMCV tool, which
is a library of modified MPI functions and data types
with extended functionality for fault detection by
comparison upon sending, message contents
duplication upon reception, and concurrency control
between replicas. SMCV tool has the goal of helping
programmers and users of parallel scientific
applications to achieve reliability in their executions,
obtaining correct final results or, at less, reporting
the silent fault occurrence and avoiding its
consequences by leading to a safe-stop state. This
avoids the unnecessary and costly wait until
execution finishes, allowing application re-launching
after a restricted delay due to latency of detection.
This is an important feature, owing to the long
duration executions of such applications.

To estimate the impact of SMCV tool on
performance of message-passing parallel scientific
applications, and in order to evaluate the
convenience of its utilization, a set of experiments
was made, using three benchmark parallel
applications: matrix multiplication [22]; solution to
Laplace’s equation [23]; and DNA sequence
alignment [24]. With these experiments, the
performance of the tool was evaluated for various
problem sizes using different number of processes,
obtaining 93.7 maximum and 24.3 average percent
overhead in absence of faults. As explained further
on, at least two executions of the original application
and final results comparison are needed to determine
if a transient fault has occurred when no fault
tolerance strategy is employed by the system.
Accordingly, these results demonstrate the
efficiency of SMCV tool.

The rest of this paper is organized as follows:
Section 2 discusses related works. Section 3 reviews
the theoretical context of transient faults. Section 4
and Section 5 describes SMCV methodology and
SMCV tool respectively. In Section 6, the
experimental work carried out is described, whereas
Section 7 presents and analyzes the obtained results.
Finally, Section 8 presents the conclusions and
future lines of work in relation to this paper.

2 RELATED WORKS

Redundancy techniques can be broadly classified
into two kinds: hardware-based and software-based.
There have been various implementations of
software-only, hardware-only, and hybrid techniques
for transient fault mitigation [3][4].

All hardware-based approaches require the
addition of some new hardware logic to meet
redundancy requirements. Several researchers have
also made use of multiplicity of hardware blocks
readily available on multithreaded/multicore
architectures to implement computation redundancy
[10][11][12][14].

Fault tolerance based on software replication is a
well-populated field with decades of history. Their
main advantage is that they do not require any
additional hardware. Among the purely software
solutions, PLR [1] is a process replication-based
one. Other software-only techniques for transient
fault detection are the compiler-based ones. At
compile time, they insert redundant computations
[16], control flow assertions [15] or both [4].

As regards to hybrid strategies, in [3], the authors
propose a fault-tolerant typed assembly language, in
an attempt to exploit the benefits of both hardware
and software-based systems for fault tolerance.

All the previously mentioned proposals are
designed for sequential applications. SMCV is

specific for message-passing parallel scientific
applications.

JCS&T Vol. 14 No. 1 April 2014

33

There are some approaches that extend MPI to
implement process replicas on MPI applications for
hard faults. MPI/FT [20] is an MPI-based
middleware that provides additional services for
detection and recovery of failed MPI processes. FT-
MPI [19] specifies the semantics of a fault tolerant
version of MPI and implements that specification.
Whereas the two mentioned strategies provide
support for failures that make a process to terminate,
SMCV provides a mechanism for detecting transient
faults in MPI applications improving at the same
time system availability. No proposals for transient
fault detection in parallel scientific applications
based on message validation were found while
researching for this work.

3 BACKGROUND ON SOFT ERRORS

As aforementioned, transient faults affect system
hardware elements, but their effects are observed on
the program execution (assuming deterministic
programs). According to these effects, they can be
classified into the following categories:

� Latent Error (LE): also called benign fault,
is a fault that corrupts data that are not used
by the application so, despite the fault
effectively happening, it does not propagate
to affect the correctness of the execution
and has no impact on the results.

� Detected Unrecoverable Error (DUE): is a
detected error that has no possibility of
recovery. DUEs are a consequence of faults
that cause abnormal conditions that are
detectable on some intermediate software
layer level (e.g. Operating System,
communication library). Normally, they
cause the abrupt stop of the application.

� Time-Out Error (TO): due to fault, the
program does not terminate within a given
amount of time.

� Silent Data Corruption (SDC): is the
alteration of data during the execution of a
program that does not cause any abnormal
condition and goes undetected by system
software. Its effects are silently propagated
to corrupt final results. This is the worst
case, because the application appears to
execute correctly buy silently produce
incorrect output [1].

4 SMCV METHODOLOGY OVERVIEW

SMCV is a detection strategy based on validating
the contents of the messages to be sent in
deterministic parallel scientific applications. In
particular, SMCV intercepts faults that produce TOs
and SDCs. Under this approach, each application

process is duplicated and the process and its replica
run concurrently, which requires a synchronization
mechanism. When a communication is to be
performed (point-to-point or collective), the process
temporarily stops execution and waits for its replica
to reach the same point. Once there, all fields from
the message to be sent are compared to validate that
the contents of both threads are the same. Only if
this proves true, one of the threads sends the
message, ensuring that no corrupt data are
propagated to other process. The recipient(s) of the
messages stop upon reception and remain on hold.
Once received, it copies the contents of the message
to its replica and both processes continue with their
computation. Finally, when application execution
finishes, the obtained results are checked to detect
faults that may have occurred after communications
ended, (i.e. the serial part of the application).

Figure 1 shows SMCV detection outline whereas
Figure 2 shows the SMCV behavior in presence of
transient faults. More details about SMCV
methodology can be found in [21].

Fig. 1. SMCV detection outline.

Fig. 2. SMCV behavior in presence of a transient fault

5 SMCV TOOL

5.1 Description

To implement SMCV methodology, SMCV tool was
developed. It consists of a library of modified MPI
functions and data types that can be used in MPI

JCS&T Vol. 14 No. 1 April 2014

34

applications developed using C language. SMCV
library redefines MPI functions and data types with
only one syntactic change (the MPI prefix is
replaced with SMCV). In turn, it adds two new
functions: SMCV_Call and SMCV_Validate .
For threads replication and synchronization,
Pthreads functions are used. MPI functions
redefinition is necessary to provide transient fault
detection in a transparent way to applications code
and their programmers. This implies application
source code modification and recompiling.

5.2 Basic Functions

MPI standard defines six basic functions [25]. The
SMCV library core consists of the six redefined MPI
basic functions and two other. These eight functions
are enough to develop a wide range of parallel
applications that are able to detect transient faults.
SMCV basic functions are described below:

SMCV_Init. Initiate a SMCV environment.
SMCV_Finalize. Terminate a SMCV

environment.
SMCV_Comm_size. Determine number of

processes.
SMCV_Comm_rank. Determine process

identifier.
SMCV_Call. Create a new thread that executes

the code to be validated.
SMCV_Send. Synchronize the process and its

replica. The second to reach the synchronization
point compares all the fields of the message to be
sent (byte to byte). If all fields match, the first thread
sends the message. Once sent, both threads continue
with their execution. If any field differs, a safe-stop
is produced because a SDC has occurred. Moreover,
there is a (configurable) time for the second thread
to reach the synchronization point, in order to be
able to intercept TOs.

SMCV_Recv. Synchronize the process and its
replica. The first to reach the synchronization point
receives the message and remains on hold. When the
second thread arrives, it copies the contents of the
message received. After that, both threads continue
with their execution. Like SMCV_Send, there is a
(configurable) time for the second thread to reach
the synchronization point, in order to be able to
intercept TOs.

SMCV_Validate. Synchronize the process and
its replica. The second to reach the synchronization
point compares both threads’ final result (byte to
byte). If the final results match, the threads continue
with their execution. Otherwise, a safe-stop is
produced because a SDC has occurred. Like
SMCV_Send, there is a (configurable) time for the
second thread to reach the synchronization point, in
order to be able to intercept TOs.

5.3 Usage

The next steps must be followed to incorporate
SMCV features in MPI application code:

1. Replace MPI header with SMCV header.
2. Encapsulate the code to be validated (data

and instructions) in a void * function.
3. Make a call to SMCV_Call function

passing the previously defined function to it
as an argument.

4. Replace MPI prefix with SMCV in all MPI
functions and data types.

5. Make a call to SMCV_Validate in order
to validate the application final result.

Figure 3 shows an example of how to adapt and
MPI application in order to incorporate SMCV
features.

 Fig. 3. Example of how to adapt a MPI application in
order to incorporate SMCV features. Up: MPI application
source code. Down: SMCV-adapted MPI application
source code.

6 EXPERIMENTAL WORK

6.1 Architecture Used

Experimental work was carried out on a cluster of
Blade multicores with four blades. Each blade has
two quad core Intel Xeon e5405 2.0GHz processors
with 64Kb private L1 cache and 6Mb L2 cache
(shared between pairs of cores), 10Gb RAM
memory (shared between both processors) and
250Gb local disk. The operating system is
GNU/Linux Debian 6.0.7 (64 bits, kernel version

#include <mpi.h>
int main (int argc, char ** argv)
{
 MPI_Init();
 /* Process data, instructions
and MPI functions */
 MPI_Finalize();
 return 0;
}

#include <smcv.h>
int main (int argc, char ** argv)
{
 SMCV_Init();
 SMCV_Call(&smcv_process)
 SMCV_Finalize();
 return 0;
}
void * smcv_process () {
 /* Thread data, instructions
and SMCV functions */
 SMCV_Validate();
}

JCS&T Vol. 14 No. 1 April 2014

35

2.6.32) and the MPI library used is OpenMPI
(version 1.6.4).

6.2 Benchmark Applications Used

Three benchmark parallel applications were
selected: matrix multiplication [22]; solution to
Laplace’s equation [23]; and DNA sequence
alignment [24]. These benchmark applications were
selected because of three main reasons: first, they
are well-known, representative scientific
applications; second, they are computationally
intensive; and third, they have three different
communication patterns: Master-Worker, Single-
Program-Multiple-Data (SPMD) and Pipeline,
respectively.

Tests were carried out using MPI and SMCV
versions of the three selected benchmark
applications. The steps described in Subsection 5.3
were followed to incorporate SMCV features to
original applications’ codes. Finally, because SMCV
was especially designed to be used in context of
HPC applications, the –O optimization level was
used at compile time.

6.3 Tests Carried Out

Benchmark applications were tested using different
number of processes: P={4, 8, 16}. Various problem
sizes were used for each application: N={2048,
4096, 8192, 16384} for matrix multiplication;
N={4096, 8192, 16384} for solution to Laplace’s
equation and N={65536, 131072, 262144, 524288}
for DNA sequence alignment. At most four
processes were mapped by node, which means that
in original applications execution only four cores of
each node were used. In the case of SMCV
applications, all the cores of each node were used
(the replicas execute on available cores). Each
experiment was run five times and the results were
averaged to improve stability.

7 RESULTS

To assess the incidence of SMCV tool over the
applications performance when escalating the
problem and/or the architecture, the Overhead
metric is analyzed. The overhead is a consequence
of the processes duplication, the synchronization
with the replicas, the comparison and duplication of
the messages contents and the final validation of the
results. In addition, the processes duplication
increases contention for system resources. Equation
1 indicates how to calculate this metric, where
APP_ET is the original application execution time
and SMCV_APP_ET is the SMCV-adapted
application execution time.

����ℎ��� =
(
��
����� ����_��)

���_��
× 100 (1)

Figures 4, 5 and 6 shows the overheads obtained

with SMCV applications (matrix multiplication,
solution to Laplace's equation and DNA sequence
alignment, respectively) for various problem sizes
using different number of processes.

The charts show that the three benchmark
applications present similar behaviors. As it can be
observed, overhead decreases as the problem size
grows. This is due to, with larger problem sizes,
applications spend more time computing than
communicating and, consequently, the time required
to synchronize threads and to duplicate and validate
message contents reduces (in the case of matrix
multiplication, data duplication produces disk-
swapping when N=16384 and P={8,16} and, as a
consequence, overhead reduction does not remain).
On the other hand, the number of messages to be
sent increases as the number of processes grows.
This leads to an overhead increase because time
required to synchronize threads and to compare and
duplicate message contents enlarges.

As mentioned above, overhead behaviors are
similar, but the same does not occur with overhead
values. Matrix multiplication is the application with
largest overhead values. This is due to the sizes of
the messages that processes send (matrix sizes go
from 16MB to 1GB according to N), aggravated by
the fact that they use collective communication
operations for it. Unlike OpenMPI, SMCV library
does not optimize this kind of communication
operations [26]. Last, the final result of this
application is a matrix and the time required to
validate it is not insignificant.

Overhead values of the solution to Laplace’s
equation are lower than the corresponding ones to
matrix multiplication. Even though processes
repeatedly interchange messages (which increases
the number of synchronizations), the time required
to validate them reduces because of the smaller
message size (they go from 16KB to 64KB
depending on N). Another influence factor is that the
final result is a single number and, in consequence,
the time necessary to validate it is negligible.

DNA sequence alignment presents overhead
values even lower than the corresponding ones to the
solution to Laplace’s equation. All the processes
receive and send messages repeatedly (except the
first and the last of the pipeline). Because of these
messages are of fixed size and very small (136B),
the time required to validate them is not significant.
Like the previous case, final result validation does
not demand considerable time.

In this set of experiments, SMCV tool provides
fault detection with 93.7 maximum and 24.3 average
percent overhead. This represents an advantage with
respect to the original execution, which has to be
repeated (and final results have to be compared) to

JCS&T Vol. 14 No. 1 April 2014

36

ensure a correct output if a SDC does not occur.
Moreover, if a SDC occurs, a third re
a new comparison) is required to pick the outputs of
the runs that form a majority as the correct ones

Fig. 4. Overheads obtained for SMCV
multiplication for various problem sizes using different

number of processes.

Fig. 5. Overheads obtained for SMCV
Laplace’s equation for various problem sizes using

different number of processes

Fig. 6. Overheads obtained for SMCV
alignment for various problem sizes

number of processes.

8 CONCLUSIONS AND FUTURE WORK

Transient faults are becoming more frequent in large
computers and their impact is higher
long duration applications. In this paper,
is presented to help programmers and users of
scientific parallel applications to achieve reliability
in their executions, obtaining correct final results or,
at less, reporting the silent fault occurrence
limited time lapse and leading to a safe
Experimental results show that, when running three
different benchmark parallel applications on a
multicore cluster for various problem size
different number of processes, SMCV tool provides

ensure a correct output if a SDC does not occur.
Moreover, if a SDC occurs, a third re-execution (and

is required to pick the outputs of
the runs that form a majority as the correct ones.

Overheads obtained for SMCV-matrix
multiplication for various problem sizes using different

number of processes.

Overheads obtained for SMCV-solution to
Laplace’s equation for various problem sizes using

different number of processes.

. Overheads obtained for SMCV-DNA sequence
 using different

number of processes.

LUSIONS AND FUTURE WORK

Transient faults are becoming more frequent in large
is higher in the case of

In this paper, SMCV tool
programmers and users of

applications to achieve reliability
in their executions, obtaining correct final results or,
at less, reporting the silent fault occurrence within a

and leading to a safe-stop state.
when running three

parallel applications on a
for various problem sizes and using

, SMCV tool provides

fault detection with 93.7 maximum and 24.3
percent overhead. These results demonstrate the
tool’s efficiency to provide transient fault detection
in message-passing parallel scientific

Future lines of work focus on

� Extending current SMCV

implementation to give full
applications (at the moment it only su
blocking communication functions and
some collective communication routines).

� Optimizing collective communications
implementation to take benefit of MPI
features, in order to minimize overheads

� Automating the procedure to adapt the
original application source code to use
SMCV tool.

� Emulating non-deterministic functions, to
extend SMCV methodology
support to transient fault detection
deterministic MPI scientific

REFERENCES

[1] Shye, A., Blomstedt, J., Moseley, T., Reddi
J., Connors, D. A.: PLR: A software approach to
transient fault tolerance for multicore
architectures; IEEE Transactions on Dependable
and Secure Computing. 6(2), pp. 135
(2009)

[2] Wang, N. J., Quek, J., Rafacz, T. M., Patel, S. J.:
Characterizing the Effects of Transient Faults on
a High-Performance Processor Pipeline. In:
Proceedings of the Int
Dependable Systems and Networks, pp. 61
IEEE Press, Florence (2004)

[3] Perry, F., Mackey, L., Reis G. A., Ligatti, J.,
August, D. I., Walker, D.: Fault
assembly language. In: Proceedings of the 2007
ACM SIGPLAN conference on Programming
language design and implementation, pp. 42
ACM Press, San Diego

[4] Reis, G. A., Chang, J., Vachharajani, N.,
Rangan, R., August, D. I.: SWIFT: Software
Implemented Fault Tolerance. In: Proceedings
of the International Symposium on Code
generation and optimization, pp. 243
Press, Washington DC (2005)

[5] Baumann, R. C.: Soft errors in commercial
semiconductor technology: Overview and
scaling trends. In: IEEE 2002 Reliability Physics
Tutorial Notes, Reliability Fundamentals, pp.
121 01.1--121 01.14.

[6] Michalak, S. E., Harris, K. W., Hengartner, N.
W., Takala, B. E., Wender , S. A.: Predicting the
number of fatal soft errors in Los Alamos
National Labratory’s ASC Q computer; IEEE
Transactions on Device and Materials
Reliability. 5(3), pp. 329

[7] Gramacho, J., Rexachs del Rosario, D., Luque,
E.: A Methodology to Calculate a Program ´s
Robustness against Transient Faults. In:
Proceedings of the International 2011

maximum and 24.3 average
percent overhead. These results demonstrate the

to provide transient fault detection
scientific applications.

Future lines of work focus on four aspects:

current SMCV library
implementation to give full support to MPI
applications (at the moment it only supports
blocking communication functions and
some collective communication routines).
Optimizing collective communications
implementation to take benefit of MPI
features, in order to minimize overheads.
Automating the procedure to adapt the

cation source code to use

deterministic functions, to
extend SMCV methodology for giving

transient fault detection in non-
scientific applications.

Shye, A., Blomstedt, J., Moseley, T., Reddi, V.
J., Connors, D. A.: PLR: A software approach to
transient fault tolerance for multicore
architectures; IEEE Transactions on Dependable
and Secure Computing. 6(2), pp. 135--148

Wang, N. J., Quek, J., Rafacz, T. M., Patel, S. J.:
he Effects of Transient Faults on

Performance Processor Pipeline. In:
Proceedings of the Int. Conference on
Dependable Systems and Networks, pp. 61--70.
IEEE Press, Florence (2004)
Perry, F., Mackey, L., Reis G. A., Ligatti, J.,
August, D. I., Walker, D.: Fault-tolerant typed
assembly language. In: Proceedings of the 2007
ACM SIGPLAN conference on Programming
language design and implementation, pp. 42--53.

ss, San Diego (2007)
Reis, G. A., Chang, J., Vachharajani, N.,
Rangan, R., August, D. I.: SWIFT: Software
Implemented Fault Tolerance. In: Proceedings
of the International Symposium on Code
generation and optimization, pp. 243–254. IEEE

C (2005)
Baumann, R. C.: Soft errors in commercial
semiconductor technology: Overview and
scaling trends. In: IEEE 2002 Reliability Physics
Tutorial Notes, Reliability Fundamentals, pp.

Michalak, S. E., Harris, K. W., Hengartner, N.
, Takala, B. E., Wender , S. A.: Predicting the

number of fatal soft errors in Los Alamos
National Labratory’s ASC Q computer; IEEE
Transactions on Device and Materials
Reliability. 5(3), pp. 329--335 (2005)
Gramacho, J., Rexachs del Rosario, D., Luque,

: A Methodology to Calculate a Program ´s
Robustness against Transient Faults. In:
Proceedings of the International 2011

JCS&T Vol. 14 No. 1 April 2014

37

Conference on Parallel and Distributed
Processing Techniques and Applications, pp.
645--651. WorldComp Press, Las Vegas (2011)

[8] Mukherjee, S.; Weaver, C.; Emer, J.; Reinhardt,
S., Austin, T.: A systematic methodology to
compute the architectural vulnerability factors
for a high-performance microprocessor. In:
Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture,
pp. 29--40. IEEE Press, San Diego (2003)

[9] Mahmood, A., McCluskey, E. J.: Concurrent
error detection using watchdog processors-a
survey. IEEE Transactions on Computers. 37(2),
pp. 160--174 (1988)

[10] Reinhardt, S. K., Mukherjee S. S.: Transient
Fault Detection via Simultaneous
Multithreading. In: Proceedings of the 27th
annual International Symposium on Computer
Architecture, pp. 25--36. IEEE Press, Vancouver
(2000)

[11] Kontz M., Reinhardt S. K., Mukherjee S. S.:
Detailed Design and Evaluation of Redundant
Multithreading Alternatives. In: Proceedings of
the 29th Annual International Symposium on
Computer Architecture, pp. 99--110. IEEE
Press, Anchorage (2002)

[12] Vijaykumar T. N., Pomeranz, I. Cheng, K.:
Transient-Fault Recovery using Simultaneous
Multithreading. In: Proceedings of the 29th
Annual International Symposium on Computer
Architecture, pp. 87--98. IEEE Press, Anchorage
(2002)

[13] Gomaa M., Scarbrough C., Vijaykumar T. N.,
Pomeranz, I.: Transient-Fault Recovery for chip
Multiprocessors. In: Proceedings of the 30th
Annual International Symposium on Computer
Architecture, pp. 98--109. IEEE Press, San
Diego (2003)

[14] Rotenberg E.: AR-SMT: A Microarchitectural
Approach to Fault Tolerance in
Microprocessors. In: Proceedings of the 29th
Annual International Symposium on Fault-
Tolerant Computing, pp. 84--91. IEEE Press,
Wisconsin (1999)

[15] Oh, N., Shirvani, P. P., McCluskey, E. J.:
Control-flow checking by software signatures.
IEEE Transactions on Reliability, 51(1), pp.
111-122 (2002)

[16] Oh, N., Shirvani, P. P., McCluskey, E. J.: Error
detection by duplicated instructions in super-
scalar processors; IEEE Transactions on
Reliability. 51(1), pp. 63--75 (2002)

[17] Reis, G. A., Chang, J., August, D. I.: Automatic
instruction level software-only recovery
methods; IEEE Micro Top Picks. 27 (1), pp. 36-
-47 (2007)

[18] Message Passing Interface Forum,
http://www.mpi-forum.org/

[19] Fagg, G.E., Gabriel, E., Chen, Z., Angskun, T.,
Bosilca, G., Pjesivac-Grbovic, J., Dongarra, J.J.:
Process Fault-Tolerance: Semantics, Design and
Applications for High Performance Computing;
Int. Journal of High Performance Applications.
19(4), pp. 465--478 (2005)

[20] Batchu, R., Dandass, Y., Skjellum, A., Beddhu,
M.: MPI/FT: A Model-Based Approach to Low-
Overhead Fault Tolerant Message-Passing
Middleware; Cluster Computing. 7 (4), pp. 303--
315 (2004)

[21] Montezanti, D., Frati, F.E., Rexachs, D., Luque,
E., Naiouf, M.R., De Giusti, A.: SMCV: a
Methodology for Detecting Transient Faults in
Multicore Clusters.; CLEI Electron. J. 15(3), pp.
1--11 (2012)

[22] Leibovich, F., Gallo, S., De Giusti, A., De
Giusti, L., Chichizola, F., Naiouf, M.:
Comparación de paradigmas de programación
paralela en cluster de multicores: pasaje de
mensajes e híbrido. In: Anales del XVII
Congreso Argentino de Ciencias de la
Computación. pp. 241--250. Editorial RedUNCI,
La Plata (2011)

[23] Andrews, G.: Foundations of Multithreaded,
Parallel, and Distributed Programming. Addison
Wesley Longman, EEUU (2000).

[24] Rucci, E., Chichizola, F., Naiouf, M., De Giusti,
A.: Parallel Pipelines for DNA Sequence
Alignment on Cluster of Multicores. A
comparison of communication models.; Journal
of Communication and Computer. 9(12), pp.
516--522 (2012)

[25] Dongarra, J., Foster, I., Fox, G., Gropp, W.,
Kennedy, K., Torczon, L., White, A.: The
Sourcebook of Parallel Computing. Morgan
Kauffman, EE.UU. (2003)

[26] Graham, R., Shipman, G.: MPI Support for
Multi-core Architectures: Optimized Shared
Memory Collectives. In: Proceedings of the 15th
European PVM/MPIUsers' Group Meeting on
Recent Advances in Parallel Virtual Machine
and Message Passing Interface. pp. 130--140.
Springer-Verlag Berlin (2008)

JCS&T Vol. 14 No. 1 April 2014

38

	Text4: Received: December 2013. Accepted: February 2014.

