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ABSTRACT 
This paper discusses automatic mapping methods for 
concurrent tasks to processors applying graph analysis for 
the relation among tasks, in which processing and 
communicating times are incorporated. 
Starting by an analysis in which processors are 
homogeneous and data transmission times do not depend 
on the  processors that are communicating (a typical case 
in homogeneous clusters), we progress to extend the 
model to heterogeneous processors having the possibility 
of different communication levels, applicable to a multi-
cluster. 
Some results obtained with the model and future work 
lines are presented, particularly, the possibility of 
obtaining the required optimal number of processors, 
keeping a constant efficiency level. 
 
Keywords: Parallel Systems. Cluster and Multi-Cluster 
Architectures. Performance Prediction Models. Mapping 
of Tasks to Processors. Homogeneous and Heterogeneous 
Processors. 
 

1. INTRODUCTION 
In Computer Science, computation models are used 
to describe real entities such as processing 
architectures. They provide an “abstract” or 
simplified version of the machine, capturing 
essential characteristics and ignoring 
implementation scarcely significant details [1]. A 
model is not necessarily related to a real computer; 
its main reason for existing is to help to understand 
the architecture functionality. It provides a frame for 
studying problems, obtaining ideas on the different 
structures, and developing solutions. Once an 
algorithm to solve a model problem is designed, it 
allows giving a significant description of the 
algorithm, deriving an accurate analysis, and to even 
predicting performance [2]. 
 
Mono-processor computing was benefited by the 
existence of a simple theoretical model of computer 
- RAM [3]. This made the development of 
algorithms possible, thus assuring correctness and 
the expected performance of the specific machine, 
upon which the algorithm would be executed, in a 

relative independent manner. Optimization for 
machine-depending features such as the processor 
clock, memory capacity, number of registers, cache 
levels and speed, etc, is handled by the compiler 
and/or execution monitor. Usually, at algorithm or 
programmer level, these elements are not taken into 
account. RAM simplicity and its accuracy in mono-
processor machine modeling have been 
demonstrated, and it has allowed important advances 
to achieve efficiency and performance prediction in 
mono-processor computation. 
 
In the case of parallel computers, the minimal 
requirements that a model should fulfill follow the 
ideas expressed for the mono-processor case: to be 
conceptually easy to understand and use; to have a 
valid determination of an algorithm correctness upon 
the model independently of the physical structure; to 
make the real performance agree with the one 
predicted by the model; and to be closer to the real 
architectures so as to minimize the conceptual gap 
between model and physical architecture. It becomes 
evident from these requirements that the possibility 
of performance prediction the parallel computation 
models may provide is a main goal; success or 
failure will depend to a large extent on this 
possibility [4].  
When dealing with parallel machines, a large 
number of abstract models are found, but no one is 
found with the RAM simplicity and precision. 
Besides, no one aims at becoming a model for all 
types of parallel machines, and technology cannot 
manage the “gap” between models and business 
computers. The difficulties involved in formulating a 
unique, simple, and accurate model for parallel 
computers can be measured by examining the 
variations in existing and proposed business 
computers [5] [6]. 
 
Each model tries to provide an abstraction to 
develop algorithms and programs in one type of 
parallel computers. The abstraction is usually 
simpler for working than any other instance of the 
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modeled type, despite the fact that this simplification 
is obtained at the cost of introducing imprecision in 
the modeling. Owing to the incapability of parallel 
compilers to compensate such imprecision, the 
algorithms developed for the model can result in an 
inefficient code in the target computer. As a result, 
model applicability is limited. 
 
Problems can be parallelized in different degrees, 
and in some cases to allocate “sub-problems” to 
different processors may imply more global time 
consumption. On the other hand, a problem may 
have different parallel formulations, and the 
efficiency of each one will depend on the physical 
architecture and the developed specific algorithm. 
Since parallelism implies the existence of several 
interacting processes, it is necessary to take into 
account concepts such as communication, 
synchronization, the architecture upon which the 
programs will be executed, the communication 
model used, the way in which the problem and the 
data are divided, etc.  
 
At present, the most frequently used architectures 
due to the cost/performance relation are the 
processor cluster and multi-clusters. For that reason, 
it is fundamental to study the performance prediction 
so as to determine the degree of precision of the 
existing models and the need to adjust them to this 
kind of platforms [7]. A fundamental element 
appearing in these architectures is the processor 
potential heterogeneity; this adds an element to the 
modeling complexity.  
Several models have been studied in order to 
characterize parallel application behavior, e.g. 
PRAM, LOGP [8], BSP, TIG, TPG, and TTIG [9]. 
This research focuses mainly on the models that 
characterize parallel application behavior in 
distributed architectures: TIG (Task Interaction 
Graph), TPG (Task Precedence Graph), and TTIG 
(Task Temporal Interaction Graph), which is a TIG 
and TPG combination [10].  
 
Once the graph that model the application is defined, 
the “mapping” problem is resolved by an algorithm 
that assures an automatic mechanism to carry out 
task allocation to processors, thus obtaining better 
results for the application execution [11] [12] [13] 
[14]. This is an NP- complete problem, and there are 
many factors to be taken into account which either 
directly or indirectly affect the program running time 
[15].  
 
Static mapping algorithms can be classified in two 
large groups: 
� optimal: all possible ways of allocating tasks to 

the different processors are evaluated. This kind 
of solution can only be dealt with when the 
number of possible configurations is low. If not, 
the optimal solution cannot be dealt with due to  

the combinatory explosion in the number of 
possible solutions. 
� heuristic: it is based on approaching methods 

that use “realistic” algorithm and parallel 
system overlapping. These groups produce sub-
optimal solutions but at the moment of 
execution, these solutions are more reasonable 
regarding the optimal strategies. 

 
1.1 Contribution of this paper 
This paper analyses the TTIG, a model that 
implements a TTIG graph made up of the same 
number of nodes as tasks the program has. It also 
includes the computation and communication costs 
as well as the maximal concurrency degree among 
the adjacent tasks, considering their mutual TPG 
dependences.  
The contribution of this work focuses on a TTIGHa 
model definition that allows representing parallel 
applications in a more realistic manner than those 
mentioned before; and it considers architecture 
heterogeneity, regarding both processors and the 
interconnection network. 
 
Moreover, the MATEHa mapping algorithm, which 
takes into account the model characteristics, is 
defined in order to perform the best task allocation 
to processors. 
 
Last but not least, the model capability to predict the 
algorithm execution time upon cluster and multi-
cluster (SIMULHa) architectures is verified. 
 

2. MAPPING MODEL AND ALGORITHM 
In this research, the TTIGHa (Temporal Task 
Interaction Graph in Heterogeneous Architecture) 
model that takes into account architectures with 
heterogeneous processors, which are connected by a 
heterogeneous network, is defined. 
 
Then, the MATEHa (Mapping Algorithm based on 
Task dependencies in Heterogeneous Architecture) 
mapping algorithm, allowing to determine task 
allocation to processors seeking to minimize the 
algorithm execution times in the architecture 
available is presented. 
 
To validate the functioning of the mapping 
algorithm, the environment developed to simulate 
the (SIMULHa) application execution is described. 
 
2.1 TTIGHa Model 
To define the TTIGHa model graph, the information 
related to the different characteristics of the 
processors and their intercommunications should be 
taken into account. In this way, the four-element G 
(V, E, Tp, and Tc) model graph is obtained: 
� V, the set of nodes, where each node represents 

a program Ti task. 
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� E, the set of edges representing node 
communication or graph tasks. 
� Tp, the set of processors, where for each 

processor, the corresponding type of processor 
is indicated. 
� Tc, the set of different communication types, 

where for each type of communication, the 
startup time and the transference time of one 
byte are indicated. 

 
Furthermore, for each node, the model stores the 
execution time at each of the different processor 
types existing in the wp(Ti) architecture (this 
represents the time for executing task in processor 
p). 
 
The set of edges E keeps a Csd matrix of a #m x #m 
dimension (#m being the total number of the 
architecture processors) for an A edge between Ti 
and Tj, where Csd(Ti,Tj) is the communication time 
between task Ti in processor s and task Tj in 
processor d. 
 
On the other hand, we have a Psd matrix of a #m x 
#m dimension, where psd(Ti,Tj) represents the 
degree of concurrence between task Ti in processor s 
and task Tj in processor d. 
 
The elements of matrices C and P are calculated as 
follows. 
 
2.1.1 Calculation of TTIGHa graph elements 
Be CP(Ti) the set of sub-tasks (computation phases) 
of task Ti and ctm(Ti,p) the time of computation 
phase m of task i in the processor p.  
 
Be CM(Ti,Tj) the set of Ti to Tj, and ccm(Ti,Tj) 
communications the amount of data in bytes of 
communication m between Ti and Tj.  
 
The TTIGHa graph calculation is done using the 
following values: 
� Time of task i computation in processor p: it is 

the addition of the computation time of all sub-
tasks, given by: 

∑
∈

=
)(

),()(
TiCPm

mp pTictTiw         (1) 

� Amount of communication between adjacent 
tasks Ti and Tj: it is the addition of the 
computation of all communications from Ti to 
Tj, given: 

∑
∈
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� Communication time between the adjacent tasks 
Ti (in processor s) and Tj (in  processor d):   

∑
∈
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),(*),(),(),(
TjTiCMm
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          where                                                     (3) 
startup (s,d) is the startup time for the  type 
of communication between processors s 

and d. 
com (s,d) is the time for communicating a 
byte between processors s and d. 
 

� Concurrence degree between adjacent tasks Ti 
(in processor s) and Tj (in processor d):  it is 
calculated from the simulation of the sub-graph 
isolated from both tasks, in which the 
dependences between sub-tasks Ti and Tj are 
taken into account, excluding their 
communications. It is calculated by the formula: 

)(
),(),(

Tjdw
TjTisdTPTjTisdp =

                (4) 
        where 

 TPsd(Ti,Tj) is the maximal time in which 
both tasks  can be executed in parallel. 

 
2.2 MATEHa Mapping Algorithm 
The strategy of this algorithm is to determine for 
each task of the graph to which processor should be 
allocated so as to obtain the highest architecture 
yielding. Such allocation is calculated considering 
the following factors: the task computation time in 
each processor, the time of communication with its 
adjacent tasks, depending on the place where they 
have been allocated, and the degree of parallelism 
with its adjacent tasks. The latter value is used to 
allocate to the same processor those tasks with the 
highest relative dependence degree, while the tasks 
that can be concurrently executed are allocated to 
different processors. 
 
The MATEHa algorithm can be divided into two 
steps: the first step determines the level of each 
graph node, and the second step consists in 
evaluating to which processor each graph task 
should be allocated.  
The algorithm pseudo code is the following: 
 
Procedure MATEHa ( G(V,E) ) 
{ 
     Calculate the level of each node corresponding to V of  G. 
     Allocate each task to a processor. 
} 

 
 
Procedure CalculateLevel (G) 
{ 
   Given a graph G, the level of an LN(T) node is defined as the

minimal number of tasks that should have started its
execution for the tasks corresponding to node T to be
started as well. The following formula expresses all that
has been stated above: 

),(min)( TTdTLN inSTin∈=  

    where: 
S is the set of initial nodes (tasks that do not depend on any

other task to start its execution), and  
 d(Tin,T) corresponds to the minimal number of arches that

have to be crossed from Tin to T.     
} 
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 Procedure AllocateTaskToProcessor (G) 
{ 

This algorithm starts from an initial list where tasks are
ordered from lowest to highest LN(Ti)value, and carries out
the following steps in order to obtain task allocation in the
processors:  

a. Select the first level n without allocation. 
b. Calculate the maximal max_gain(Ti) gain for those

tasks at level n that have not yet been allocated, together
with the proc_opt(Ti processor to which the task should
be allocated. Order the tasks in a decreasing manner
according to max_gain(Ti). 

c. Allocate the first task Ti of the list generated in step b to
the proc_opt(Ti) processor.  

d. If  there are still tasks without allocation at level n, one
should follow with  step b.  

e. If there still remain levels without processing, one
should go back to step a. 

} 
 

 
Procedure Calculate MaximalGain (G, t, proc_opt, max_gain) 
{ 

It crosses all graph Tp processors and calculates the cost the
execution of a task t has for each of them. This  cost is
calculated following these steps: 

a. Cost (t,m) = wm(t) + tAcum(m), where tAcum(m) is the
amount of time of each of the tasks alloted to m. 

b. For each  task j adjacent to t already allocated to a
processor q different from m, cost is updated as follows: 

Cost(t,m) = Cost(t,m) + wq(j) * (1- pqm(j,t) ) + Cqm(j,t) + Cmq(t,j)
 

Once all costs have been obtained, max_gain (t) and proc_opt
(t) are calculated as follows: 

max_gain (t) = max(cost(t,m)) – min (cost(t,l)) where m,l
correspond to Tp. 
proc_opt (t) = l, where l is the processor that minimizes the
cost of executing task t. 

} 
 

 
2.3 SIMULHa Simulation Algorithm  
This algorithm allows simulating the application 
execution on a specific architecture in the TTIGHa 
graph. To achieve that, the simulation algorithm has 
the following elements:  
� Execution time of each sub-tasks according to 

the processor where they are going to be 
executed (this datum is known since mapping 
has already been carried out). 
� For each sub-task: 

- the set of sub-tasks with which there is 
communication, together with the time it 
needs (depending on the number of bytes 
and the type of communication among the 
processors the sub-tasks belong to). 

- the previous sub-task (if any) within the 
task it belongs to. 

� For each processor, the order in which the 
allocated sub-tasks should be executed. 

 
With the data described above, the simulation 
algorithm executes each sub-task in each processor 
following the corresponding order, according to their 
dependences with other sub-tasks. As sub-tasks are 
being executed, each processor accumulates the 
execution and waiting times in order to obtain the 
final execution time. 

 
3. EXPERIMENTAL RESULTS 

To carry out the tests, an environment has been 
developed, which allows two basic actions.  
The first one is the generation of a TTIGHa graph. 
To achieve this, the system requires the following 
specifications: 
▪ number of different types of processors. 
▪ number of machines of each type. 
▪ number of different types of communication. 
▪ startup and one byte transference time for each 

type of communication. 
▪ type of communication used for each pair of 

processors. 
▪ number of application sub-tasks. 
▪ time each sub-task takes for each processor type  
▪ information referring to which sub-task 

corresponds to each task. 
▪ the volume of data each pair of sub-tasks 

interchanges. 
 
Once the information described above is entered, the 
TTIGHa graph is created, and the second action of 
the system, which calculates the mapping of tasks to 
processors, using the MATEHa algorithm is 
allowed. The environment permits to carry out this 
mapping both automatically and manually. The latter 
gives the possibility of grouping tasks in any 
particular processor and selecting a different 
execution order for each sub-task of a task. 
 
Once the mapping has been carried out, the system 
allows for the simulation of the parallel program 
execution according to the calculated allocation. 
When this simulation is over, the data obtained in 
the mapping process are visualized; it includes: 
▪ which processor was allocated for each task. 
▪ order of execution in each processor. 
▪ a graph showing the occupation and waiting 

time of each processor. 
 
Different tests to verify the MATEHa mapping 
algorithm functioning have been carried out, using 
the system described above [20]. Each test includes 
the following steps:  

1. Define the algorithm, determining the 
computation and communication phases. Then, 
the computation phases will be grouped in tasks. 

2. Collecting the data of the algorithm 
computation and communication phases, 
determine the parameters needed to shape the 
TTIGHa graph. 

3. Generate the TTIGHa graph, which represents 
the algorithm. 

4. Map the graph obtained in step 3 to the 
architecture used. 

a. Calculate task allocation in processors 
using the MATEHa mapping algorithm, 
and then carry our simulation. 
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b. Calculate the optimal allocation for the 
tasks (only as a reference measure). 

c. Compare the results in time of response for 
the allocations obtained in steps a. and b.    
 

The heterogeneous architecture used to carry out the 
tests consists of two clusters connected by a switch. 
One of the clusters is made up of 20 machines - 2.4 
Ghz Pentium IV with 1G RAM (cluster 1); the other 
is formed by 10 machines - 2 GHz Celeron with 128 
M RAM (cluster 2). In both clusters, the machines 
are interconnected by a 100 Mbits Ethernet net. 
 
Inititally we studied different Task Temporal 
Interaction Graphs, mapping on 4 processors with 
different heterogeneity level. The MATEHa 
algorithm was compared with the optimal mapping 
(which was obtained exploring all posible 
assignments). 
 
The 4 studied configurations were: 
Conf1: 4 homogeneous processors from Cluster 1. 
Conf2: 2 processors from Cluster 1 and 2 processors 
from Cluster 2. 
Conf3: 1 processor from Cluster 1 and 3 processors 
from Cluster 2. 
Conf4: 3 processors from Cluster 1 and 1 processor 
from Cluster 2. 
 
Table 1 shows some results, where mean time 
difference between MATEHa algorithm and optimal 
mapping is in the order of  5%. 
 

  Conf1 Conf2 Conf3 Conf4
Optimal Allocation (time)  993 1060 1193 993 
MATEHa Allocation (time) 993 1060 1293 1060 
Difference (%) 0 0 8.38 6.74 

Table 1 
 
An other example of the tests, Figure 1 shows a 
graph comparing the execution time required for the 
allocation automatically generated by the MATEHa 
algorithm and the times required by  two allocations 
manually done (alternative allocation 1,  alternative 
allocation 2), for the execution of an algorithm 
having 18 sub-tasks distributed in 12 tasks, with 
dissimilar computation times. This test was executed 
on 6 processors of cluster 2, and 2 processors of 
cluster 1. The graph shows that the MATEHa 
allocation minimizes the algorithm execution time. 
 
The possibility of using a simulation algorithm to 
predict the execution time of the application to be 
parallelized on an real architecture was studied. To 
achieve this, different tests were executed on the real 
architecture that had already been represented in 
each analyzed graph, to compare them with the 
results obtained in the simulations.  
 

 
Figure 1 

 
Figure 2 shows the comparison between the 
execution times on real architecture and the 
simulated time of the MATEHa allocation for the 
test mentioned above and illustrated in Figure 1.  
 

 
Figure 2 

 
4. ANALYSIS OF RESULTS AND 

CONCLUSIONS 
The purpose of this paper was to develop a model 
that would take into account a heterogeneous 
architecture. This generated the TTIGHa model 
definition. After defining the model, the MATEHa 
mapping algorithm, which takes into account the 
TTIGHa model characteristics, was analyzed and 
implemented. The last step taken was to develop a 
SIMULHa simulation algorithm that from the 
mapping (automatically or manually) generated for 
the algorithm could simulate its execution on the 
architecture, and thus obtain a prediction for the 
algorithm final time. 
  
In the tests performed to verify the goodness of the 
MATEHa mapping algorithm, the allocation of tasks 
to processors was optimal regarding the final time of 
the simulated algorithm. To verify this fact, the set 
of all possible allocations was determined, and the 
SIMULHa algorithm was used to carry out the 
simulation of the execution in each allocations. Of 
all allocations, the one that minimizes the algorithm 
final response time was chosen to be compared to 
the time obtained when simulating the allocation 
proposed for the MATEHa algorithm. 
 
To verify the accuracy with which the SIMULHa 
simulation algorithm predicts the response time of 
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[6] Baker M., R. Buyya. "Cluster Computing at a 
Glance". R. Buyya Ed., High Performance Cluster 
Computing: Architectures and Systems, Vol. 1, 
Prentice-Hall, Upper Saddle River, NJ, USA,pp.3-
47,1999.  

each of the processes of the test (therefore the final 
response time of the parallel algorithm), the parallel 
algorithm was executed on the real architecture, 
allocating tasks following the mapping performed by 
MATEHa. The time obtained for each process was 
almost the same as that of the SIMULHa simulated 
time.  

[7] Zoltan Juhasz (Editor), Peter Kacsuk (Editor), 
Dieter Kranzlmuller (Editor), Distributed and 
Parallel Systems : Cluster and Grid Computing (The 
International Series in Engineering and Computer 
Science). Springer; 1 edition (September 21, 2004) 

 
5. FUTURE WORK 

This study of the MATEHa mapping algorithm with 
the aim of obtaining a speedup and a reachable load 
balance optimization will be continued. Particular 
emphasis will be put in studying the cases in which 
the multi-cluster involves several communication 
stages. 

[8] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. 
Schauser, E. Santos, R. Suramonian and T. von 
Eicken, “LogP: Towards a Realistic Model of 
Parallel Computation}", SIGPLAN Notices (USA), 
vol 28 N° 7, pp 1-12, 1993.  
[9]C. Roig, “Algoritmos de asignación basados en 
un nuevo modelo de representación de programas 
paralelos”, Tesis Doctoral, Universidad Autónoma 
de Barcelona, 2002. 

 
Also we’re extending experimental work to check 
MATEHa results with optimal assignment results for 
increasing number of processors (8, 12 and 16).  

[10] Valiant L.G.. A Bridging Model for Parallel 
Computation. Communications of the ACM, 33(8): 
103-111, August 1990. 

 
Improvements will be done in the MATEHa 
algorithm in order to determine the optimal 
automatic architecture, and from that datum we will 
try to achieve an allocation that increases the 
application efficiency without increasing its final 
time. 

[11] A. Kalinov, S. Klimov. Optimal Mapping of a 
Parallel Application Processes onto Heterogeneous 
Platform. Proceedings of the 19th IEEE International 
Parallel and Distributed Processing Symposium 
(IPDPS’05), April 2005  
[12] J. Cuenca, D. Gimenez, and J. Martinez, 
“Heuristics for Work Distribution of a 
Homogeneous Parallel Dynamic Programming 
Scheme on Heterogeneous Systems”, Procss of the 
3rd International Workshop on Algorithms, Models 
and Tools for Parallel Computing on Heterogeneous 
Networks (HeteroPar’04), July 5-8, 2004 Cork, 
Ireland, IEEE CS Press. 
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