

1UNLP Fellow for Advanced Formation. Assistant Professor of Practical Work, School of Computer Science, UNLP.
ldgiusti@lidi.info.unlp.edu.ar.
2 CONICET PhD Fellow. Assistant Professor of Practical Work, School of Computer Science, UNLP. francoch@lidi.info.unlp.edu.ar.
3 Full Time Tenure Professor. School of Computer Science, UNLP. mnaiouf@lidi.info.unlp.edu.ar.
4 Full Time Professor. Computer and Operating Systems Architecture Departament – Universidad Autónoma de Barcelona.
ana.ripoll@uab.es
5 CONICET Senior Researcher. Full Time Tenure Professor. School of Computer Science, UNLP. degiusti@lidi.info.unlp.edu.ar.

* This research has the financial support of the CIC ,the YPF Foundation, and the CyTEDGrid Project

A Model for the Automatic Mapping of Tasks to Processors in
Heterogeneous Multi-cluster Architectures *

Laura De Giusti1, Franco Chichizola2, Marcelo Naiouf3, Ana Ripoll4, Armando De Giusti5

Instituto de Investigación en Informática (III-LIDI) – Facultad de Informática – UNLP
Dpto. de Arquitectura de Computadoras y Sistemas Operativos – Univ. Autónoma de Barcelona.

ABSTRACT
This paper discusses automatic mapping methods for
concurrent tasks to processors applying graph analysis for
the relation among tasks, in which processing and
communicating times are incorporated.
Starting by an analysis in which processors are
homogeneous and data transmission times do not depend
on the processors that are communicating (a typical case
in homogeneous clusters), we progress to extend the
model to heterogeneous processors having the possibility
of different communication levels, applicable to a multi-
cluster.
Some results obtained with the model and future work
lines are presented, particularly, the possibility of
obtaining the required optimal number of processors,
keeping a constant efficiency level.

Keywords: Parallel Systems. Cluster and Multi-Cluster
Architectures. Performance Prediction Models. Mapping
of Tasks to Processors. Homogeneous and Heterogeneous
Processors.

1. INTRODUCTION
In Computer Science, computation models are used
to describe real entities such as processing
architectures. They provide an “abstract” or
simplified version of the machine, capturing
essential characteristics and ignoring
implementation scarcely significant details [1]. A
model is not necessarily related to a real computer;
its main reason for existing is to help to understand
the architecture functionality. It provides a frame for
studying problems, obtaining ideas on the different
structures, and developing solutions. Once an
algorithm to solve a model problem is designed, it
allows giving a significant description of the
algorithm, deriving an accurate analysis, and to even
predicting performance [2].

Mono-processor computing was benefited by the
existence of a simple theoretical model of computer
- RAM [3]. This made the development of
algorithms possible, thus assuring correctness and
the expected performance of the specific machine,
upon which the algorithm would be executed, in a

relative independent manner. Optimization for
machine-depending features such as the processor
clock, memory capacity, number of registers, cache
levels and speed, etc, is handled by the compiler
and/or execution monitor. Usually, at algorithm or
programmer level, these elements are not taken into
account. RAM simplicity and its accuracy in mono-
processor machine modeling have been
demonstrated, and it has allowed important advances
to achieve efficiency and performance prediction in
mono-processor computation.

In the case of parallel computers, the minimal
requirements that a model should fulfill follow the
ideas expressed for the mono-processor case: to be
conceptually easy to understand and use; to have a
valid determination of an algorithm correctness upon
the model independently of the physical structure; to
make the real performance agree with the one
predicted by the model; and to be closer to the real
architectures so as to minimize the conceptual gap
between model and physical architecture. It becomes
evident from these requirements that the possibility
of performance prediction the parallel computation
models may provide is a main goal; success or
failure will depend to a large extent on this
possibility [4].
When dealing with parallel machines, a large
number of abstract models are found, but no one is
found with the RAM simplicity and precision.
Besides, no one aims at becoming a model for all
types of parallel machines, and technology cannot
manage the “gap” between models and business
computers. The difficulties involved in formulating a
unique, simple, and accurate model for parallel
computers can be measured by examining the
variations in existing and proposed business
computers [5] [6].

Each model tries to provide an abstraction to
develop algorithms and programs in one type of
parallel computers. The abstraction is usually
simpler for working than any other instance of the

JCS&T Vol. 7 No. 1 April 2007

39

modeled type, despite the fact that this simplification
is obtained at the cost of introducing imprecision in
the modeling. Owing to the incapability of parallel
compilers to compensate such imprecision, the
algorithms developed for the model can result in an
inefficient code in the target computer. As a result,
model applicability is limited.

Problems can be parallelized in different degrees,
and in some cases to allocate “sub-problems” to
different processors may imply more global time
consumption. On the other hand, a problem may
have different parallel formulations, and the
efficiency of each one will depend on the physical
architecture and the developed specific algorithm.
Since parallelism implies the existence of several
interacting processes, it is necessary to take into
account concepts such as communication,
synchronization, the architecture upon which the
programs will be executed, the communication
model used, the way in which the problem and the
data are divided, etc.

At present, the most frequently used architectures
due to the cost/performance relation are the
processor cluster and multi-clusters. For that reason,
it is fundamental to study the performance prediction
so as to determine the degree of precision of the
existing models and the need to adjust them to this
kind of platforms [7]. A fundamental element
appearing in these architectures is the processor
potential heterogeneity; this adds an element to the
modeling complexity.
Several models have been studied in order to
characterize parallel application behavior, e.g.
PRAM, LOGP [8], BSP, TIG, TPG, and TTIG [9].
This research focuses mainly on the models that
characterize parallel application behavior in
distributed architectures: TIG (Task Interaction
Graph), TPG (Task Precedence Graph), and TTIG
(Task Temporal Interaction Graph), which is a TIG
and TPG combination [10].

Once the graph that model the application is defined,
the “mapping” problem is resolved by an algorithm
that assures an automatic mechanism to carry out
task allocation to processors, thus obtaining better
results for the application execution [11] [12] [13]
[14]. This is an NP- complete problem, and there are
many factors to be taken into account which either
directly or indirectly affect the program running time
[15].

Static mapping algorithms can be classified in two
large groups:
� optimal: all possible ways of allocating tasks to

the different processors are evaluated. This kind
of solution can only be dealt with when the
number of possible configurations is low. If not,
the optimal solution cannot be dealt with due to

the combinatory explosion in the number of
possible solutions.
� heuristic: it is based on approaching methods

that use “realistic” algorithm and parallel
system overlapping. These groups produce sub-
optimal solutions but at the moment of
execution, these solutions are more reasonable
regarding the optimal strategies.

1.1 Contribution of this paper
This paper analyses the TTIG, a model that
implements a TTIG graph made up of the same
number of nodes as tasks the program has. It also
includes the computation and communication costs
as well as the maximal concurrency degree among
the adjacent tasks, considering their mutual TPG
dependences.
The contribution of this work focuses on a TTIGHa
model definition that allows representing parallel
applications in a more realistic manner than those
mentioned before; and it considers architecture
heterogeneity, regarding both processors and the
interconnection network.

Moreover, the MATEHa mapping algorithm, which
takes into account the model characteristics, is
defined in order to perform the best task allocation
to processors.

Last but not least, the model capability to predict the
algorithm execution time upon cluster and multi-
cluster (SIMULHa) architectures is verified.

2. MAPPING MODEL AND ALGORITHM
In this research, the TTIGHa (Temporal Task
Interaction Graph in Heterogeneous Architecture)
model that takes into account architectures with
heterogeneous processors, which are connected by a
heterogeneous network, is defined.

Then, the MATEHa (Mapping Algorithm based on
Task dependencies in Heterogeneous Architecture)
mapping algorithm, allowing to determine task
allocation to processors seeking to minimize the
algorithm execution times in the architecture
available is presented.

To validate the functioning of the mapping
algorithm, the environment developed to simulate
the (SIMULHa) application execution is described.

2.1 TTIGHa Model
To define the TTIGHa model graph, the information
related to the different characteristics of the
processors and their intercommunications should be
taken into account. In this way, the four-element G
(V, E, Tp, and Tc) model graph is obtained:
� V, the set of nodes, where each node represents

a program Ti task.

JCS&T Vol. 7 No. 1 April 2007

40

� E, the set of edges representing node
communication or graph tasks.
� Tp, the set of processors, where for each

processor, the corresponding type of processor
is indicated.
� Tc, the set of different communication types,

where for each type of communication, the
startup time and the transference time of one
byte are indicated.

Furthermore, for each node, the model stores the
execution time at each of the different processor
types existing in the wp(Ti) architecture (this
represents the time for executing task in processor
p).

The set of edges E keeps a Csd matrix of a #m x #m
dimension (#m being the total number of the
architecture processors) for an A edge between Ti
and Tj, where Csd(Ti,Tj) is the communication time
between task Ti in processor s and task Tj in
processor d.

On the other hand, we have a Psd matrix of a #m x
#m dimension, where psd(Ti,Tj) represents the
degree of concurrence between task Ti in processor s
and task Tj in processor d.

The elements of matrices C and P are calculated as
follows.

2.1.1 Calculation of TTIGHa graph elements
Be CP(Ti) the set of sub-tasks (computation phases)
of task Ti and ctm(Ti,p) the time of computation
phase m of task i in the processor p.

Be CM(Ti,Tj) the set of Ti to Tj, and ccm(Ti,Tj)
communications the amount of data in bytes of
communication m between Ti and Tj.

The TTIGHa graph calculation is done using the
following values:
� Time of task i computation in processor p: it is

the addition of the computation time of all sub-
tasks, given by:

∑
∈

=
)(

),()(
TiCPm

mp pTictTiw (1)

� Amount of communication between adjacent
tasks Ti and Tj: it is the addition of the
computation of all communications from Ti to
Tj, given:

∑
∈

=
),(

),(),(
TjTiCMm

m TjTiccTjTic (2)

� Communication time between the adjacent tasks
Ti (in processor s) and Tj (in processor d):

∑
∈

+=
),(

),(*),(),(),(
TjTiCMm

sdsd dscomTjTiccdsstartupTjTiC

 where (3)
startup (s,d) is the startup time for the type
of communication between processors s

and d.
com (s,d) is the time for communicating a
byte between processors s and d.

� Concurrence degree between adjacent tasks Ti
(in processor s) and Tj (in processor d): it is
calculated from the simulation of the sub-graph
isolated from both tasks, in which the
dependences between sub-tasks Ti and Tj are
taken into account, excluding their
communications. It is calculated by the formula:

)(
),(),(

Tjdw
TjTisdTPTjTisdp =

 (4)
 where

 TPsd(Ti,Tj) is the maximal time in which
both tasks can be executed in parallel.

2.2 MATEHa Mapping Algorithm
The strategy of this algorithm is to determine for
each task of the graph to which processor should be
allocated so as to obtain the highest architecture
yielding. Such allocation is calculated considering
the following factors: the task computation time in
each processor, the time of communication with its
adjacent tasks, depending on the place where they
have been allocated, and the degree of parallelism
with its adjacent tasks. The latter value is used to
allocate to the same processor those tasks with the
highest relative dependence degree, while the tasks
that can be concurrently executed are allocated to
different processors.

The MATEHa algorithm can be divided into two
steps: the first step determines the level of each
graph node, and the second step consists in
evaluating to which processor each graph task
should be allocated.
The algorithm pseudo code is the following:

Procedure MATEHa (G(V,E))
{
 Calculate the level of each node corresponding to V of G.
 Allocate each task to a processor.
}

Procedure CalculateLevel (G)
{
 Given a graph G, the level of an LN(T) node is defined as the

minimal number of tasks that should have started its
execution for the tasks corresponding to node T to be
started as well. The following formula expresses all that
has been stated above:

),(min)(TTdTLN inSTin∈=

 where:
S is the set of initial nodes (tasks that do not depend on any

other task to start its execution), and
 d(Tin,T) corresponds to the minimal number of arches that

have to be crossed from Tin to T.
}

JCS&T Vol. 7 No. 1 April 2007

41

 Procedure AllocateTaskToProcessor (G)
{

This algorithm starts from an initial list where tasks are
ordered from lowest to highest LN(Ti)value, and carries out
the following steps in order to obtain task allocation in the
processors:

a. Select the first level n without allocation.
b. Calculate the maximal max_gain(Ti) gain for those

tasks at level n that have not yet been allocated, together
with the proc_opt(Ti processor to which the task should
be allocated. Order the tasks in a decreasing manner
according to max_gain(Ti).

c. Allocate the first task Ti of the list generated in step b to
the proc_opt(Ti) processor.

d. If there are still tasks without allocation at level n, one
should follow with step b.

e. If there still remain levels without processing, one
should go back to step a.

}

Procedure Calculate MaximalGain (G, t, proc_opt, max_gain)
{

It crosses all graph Tp processors and calculates the cost the
execution of a task t has for each of them. This cost is
calculated following these steps:

a. Cost (t,m) = wm(t) + tAcum(m), where tAcum(m) is the
amount of time of each of the tasks alloted to m.

b. For each task j adjacent to t already allocated to a
processor q different from m, cost is updated as follows:

Cost(t,m) = Cost(t,m) + wq(j) * (1- pqm(j,t)) + Cqm(j,t) + Cmq(t,j)

Once all costs have been obtained, max_gain (t) and proc_opt
(t) are calculated as follows:

max_gain (t) = max(cost(t,m)) – min (cost(t,l)) where m,l
correspond to Tp.
proc_opt (t) = l, where l is the processor that minimizes the
cost of executing task t.

}

2.3 SIMULHa Simulation Algorithm
This algorithm allows simulating the application
execution on a specific architecture in the TTIGHa
graph. To achieve that, the simulation algorithm has
the following elements:
� Execution time of each sub-tasks according to

the processor where they are going to be
executed (this datum is known since mapping
has already been carried out).
� For each sub-task:

- the set of sub-tasks with which there is
communication, together with the time it
needs (depending on the number of bytes
and the type of communication among the
processors the sub-tasks belong to).

- the previous sub-task (if any) within the
task it belongs to.

� For each processor, the order in which the
allocated sub-tasks should be executed.

With the data described above, the simulation
algorithm executes each sub-task in each processor
following the corresponding order, according to their
dependences with other sub-tasks. As sub-tasks are
being executed, each processor accumulates the
execution and waiting times in order to obtain the
final execution time.

3. EXPERIMENTAL RESULTS

To carry out the tests, an environment has been
developed, which allows two basic actions.
The first one is the generation of a TTIGHa graph.
To achieve this, the system requires the following
specifications:
▪ number of different types of processors.
▪ number of machines of each type.
▪ number of different types of communication.
▪ startup and one byte transference time for each

type of communication.
▪ type of communication used for each pair of

processors.
▪ number of application sub-tasks.
▪ time each sub-task takes for each processor type
▪ information referring to which sub-task

corresponds to each task.
▪ the volume of data each pair of sub-tasks

interchanges.

Once the information described above is entered, the
TTIGHa graph is created, and the second action of
the system, which calculates the mapping of tasks to
processors, using the MATEHa algorithm is
allowed. The environment permits to carry out this
mapping both automatically and manually. The latter
gives the possibility of grouping tasks in any
particular processor and selecting a different
execution order for each sub-task of a task.

Once the mapping has been carried out, the system
allows for the simulation of the parallel program
execution according to the calculated allocation.
When this simulation is over, the data obtained in
the mapping process are visualized; it includes:
▪ which processor was allocated for each task.
▪ order of execution in each processor.
▪ a graph showing the occupation and waiting

time of each processor.

Different tests to verify the MATEHa mapping
algorithm functioning have been carried out, using
the system described above [20]. Each test includes
the following steps:

1. Define the algorithm, determining the
computation and communication phases. Then,
the computation phases will be grouped in tasks.

2. Collecting the data of the algorithm
computation and communication phases,
determine the parameters needed to shape the
TTIGHa graph.

3. Generate the TTIGHa graph, which represents
the algorithm.

4. Map the graph obtained in step 3 to the
architecture used.

a. Calculate task allocation in processors
using the MATEHa mapping algorithm,
and then carry our simulation.

JCS&T Vol. 7 No. 1 April 2007

42

b. Calculate the optimal allocation for the
tasks (only as a reference measure).

c. Compare the results in time of response for
the allocations obtained in steps a. and b.

The heterogeneous architecture used to carry out the
tests consists of two clusters connected by a switch.
One of the clusters is made up of 20 machines - 2.4
Ghz Pentium IV with 1G RAM (cluster 1); the other
is formed by 10 machines - 2 GHz Celeron with 128
M RAM (cluster 2). In both clusters, the machines
are interconnected by a 100 Mbits Ethernet net.

Inititally we studied different Task Temporal
Interaction Graphs, mapping on 4 processors with
different heterogeneity level. The MATEHa
algorithm was compared with the optimal mapping
(which was obtained exploring all posible
assignments).

The 4 studied configurations were:
Conf1: 4 homogeneous processors from Cluster 1.
Conf2: 2 processors from Cluster 1 and 2 processors
from Cluster 2.
Conf3: 1 processor from Cluster 1 and 3 processors
from Cluster 2.
Conf4: 3 processors from Cluster 1 and 1 processor
from Cluster 2.

Table 1 shows some results, where mean time
difference between MATEHa algorithm and optimal
mapping is in the order of 5%.

 Conf1 Conf2 Conf3 Conf4
Optimal Allocation (time) 993 1060 1193 993
MATEHa Allocation (time) 993 1060 1293 1060
Difference (%) 0 0 8.38 6.74

Table 1

An other example of the tests, Figure 1 shows a
graph comparing the execution time required for the
allocation automatically generated by the MATEHa
algorithm and the times required by two allocations
manually done (alternative allocation 1, alternative
allocation 2), for the execution of an algorithm
having 18 sub-tasks distributed in 12 tasks, with
dissimilar computation times. This test was executed
on 6 processors of cluster 2, and 2 processors of
cluster 1. The graph shows that the MATEHa
allocation minimizes the algorithm execution time.

The possibility of using a simulation algorithm to
predict the execution time of the application to be
parallelized on an real architecture was studied. To
achieve this, different tests were executed on the real
architecture that had already been represented in
each analyzed graph, to compare them with the
results obtained in the simulations.

Figure 1

Figure 2 shows the comparison between the
execution times on real architecture and the
simulated time of the MATEHa allocation for the
test mentioned above and illustrated in Figure 1.

Figure 2

4. ANALYSIS OF RESULTS AND

CONCLUSIONS
The purpose of this paper was to develop a model
that would take into account a heterogeneous
architecture. This generated the TTIGHa model
definition. After defining the model, the MATEHa
mapping algorithm, which takes into account the
TTIGHa model characteristics, was analyzed and
implemented. The last step taken was to develop a
SIMULHa simulation algorithm that from the
mapping (automatically or manually) generated for
the algorithm could simulate its execution on the
architecture, and thus obtain a prediction for the
algorithm final time.

In the tests performed to verify the goodness of the
MATEHa mapping algorithm, the allocation of tasks
to processors was optimal regarding the final time of
the simulated algorithm. To verify this fact, the set
of all possible allocations was determined, and the
SIMULHa algorithm was used to carry out the
simulation of the execution in each allocations. Of
all allocations, the one that minimizes the algorithm
final response time was chosen to be compared to
the time obtained when simulating the allocation
proposed for the MATEHa algorithm.

To verify the accuracy with which the SIMULHa
simulation algorithm predicts the response time of

JCS&T Vol. 7 No. 1 April 2007

43

[6] Baker M., R. Buyya. "Cluster Computing at a
Glance". R. Buyya Ed., High Performance Cluster
Computing: Architectures and Systems, Vol. 1,
Prentice-Hall, Upper Saddle River, NJ, USA,pp.3-
47,1999.

each of the processes of the test (therefore the final
response time of the parallel algorithm), the parallel
algorithm was executed on the real architecture,
allocating tasks following the mapping performed by
MATEHa. The time obtained for each process was
almost the same as that of the SIMULHa simulated
time.

[7] Zoltan Juhasz (Editor), Peter Kacsuk (Editor),
Dieter Kranzlmuller (Editor), Distributed and
Parallel Systems : Cluster and Grid Computing (The
International Series in Engineering and Computer
Science). Springer; 1 edition (September 21, 2004)

5. FUTURE WORK

This study of the MATEHa mapping algorithm with
the aim of obtaining a speedup and a reachable load
balance optimization will be continued. Particular
emphasis will be put in studying the cases in which
the multi-cluster involves several communication
stages.

[8] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Suramonian and T. von
Eicken, “LogP: Towards a Realistic Model of
Parallel Computation}", SIGPLAN Notices (USA),
vol 28 N° 7, pp 1-12, 1993.
[9]C. Roig, “Algoritmos de asignación basados en
un nuevo modelo de representación de programas
paralelos”, Tesis Doctoral, Universidad Autónoma
de Barcelona, 2002.

Also we’re extending experimental work to check
MATEHa results with optimal assignment results for
increasing number of processors (8, 12 and 16).

[10] Valiant L.G.. A Bridging Model for Parallel
Computation. Communications of the ACM, 33(8):
103-111, August 1990.

Improvements will be done in the MATEHa
algorithm in order to determine the optimal
automatic architecture, and from that datum we will
try to achieve an allocation that increases the
application efficiency without increasing its final
time.

[11] A. Kalinov, S. Klimov. Optimal Mapping of a
Parallel Application Processes onto Heterogeneous
Platform. Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium
(IPDPS’05), April 2005
[12] J. Cuenca, D. Gimenez, and J. Martinez,
“Heuristics for Work Distribution of a
Homogeneous Parallel Dynamic Programming
Scheme on Heterogeneous Systems”, Procss of the
3rd International Workshop on Algorithms, Models
and Tools for Parallel Computing on Heterogeneous
Networks (HeteroPar’04), July 5-8, 2004 Cork,
Ireland, IEEE CS Press.

6. REFERENCES
[1] Grama A., Gupta A., Karypis G., Kumar V., "An
Introduction to Parallel Computing. Design and
Analysis of Algorithms", Pearson Addison Wesley,
2nd Edition, 2003
[2] Leopold C., "Parallel and Distributed
Computing. A survey of Models, Paradigms, and
Approaches", Wiley Series on Parallel and
Distributed Computing. Albert Zomaya Series
Editor, 2001

[13] Y. Kishimoto and S. Ichikawa, “An Execution-
Time Estimation Model for Heterogeneous
Clusters”, Proceedings of the 18th International
Parallel and Distributed Processing Symposium
(IPDPS 2004), 26-30 April 2004, Santa Fe, New
Mexico, USA, CDROM/Abstracts Proceedings,
IEEE Computer Society 2004.

[3] A.V. Aho, J.E. Hopcroft, and J.D. Ullman.The
Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Massachusetts, 1974
[4] S. Akl, “Parallel Computation. Models and
Methods”, Prentice-Hall, Inc., 1997.

[15] M. Garey and D. Johnson. Computers and
Intractability. W.H. Freeman and Co. S. Francisco,
1979.

[5] M. J. Flynn, Computer Architecture: Pipelined
and Parallel Processor Design. Jones and Bartlett,
1995

JCS&T Vol. 7 No. 1 April 2007

44

