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Abstract. Lately, many multi-agent systems (MAS) are designed
as multi-modal systems [9, 15, 23, 22, 26, 28, 18]. Moreover, there
are different techniques for combining logics, such as products, fib-
ring, fusion, and modalisation, among others [1, 14, 16]. In this paper
we focus on the combination of special-purpose logics for building
“on demand” MAS. From these engineering point of view, among
the most used normal logics for modeling agents’ cognitive states
are logics for beliefs, goals, and intentions, while, perhaps, the most
well-known non-normal logics for MAS is the logic of agency (and,
possibly, ability). We explore combinations of these normal and non-
normal logics. This lead us to handle Scott-Montague structures,
(neighbourhood models, in particular) which can be seen as a gen-
eralization of Kripke structures [20].

Interested in the decidability of such structures, which is a guar-
antee of correct systems and their eventual implementations, we give
a new presentation for existing theorems that generalize the well-
known results regarding decidability through the finite model prop-
erty via filtrations for Kripke structures. We understand that the pre-
sentation we give, based on neighbourhood models, better fits the
most accepted and extended logic notation actually used within the
MAS community.

1 Motivation and Aims

In [32] Smith and Rotolo adopted [13]s cognitive model of individ-
ual trust in terms of necessary mental ingredients which settle under
what circumstances an agent x trusts another agent y with regard
to an action or state-of-affairs, i.e. under which beliefs and goals an
agent delegates a task to another agent. Using this characterization of
individual trust, the authors provided a logical reconstruction of dif-
ferent types of collective trust, which for example emerge in groups
with multi-lateral agreement, or which are the glue for grounding in
solidum obligations raising from a “common front” of agents (where
each member of the front can behave, in principle, as creditor or
debtor of the whole). These collective cognitive states were charac-
terized in [32] within a multi-modal logic based on [9]s axiomatisa-
tion for collective beliefs and intentions combined with a non-normal
modal logic for the operator Does for agency.

In a subsequent work, the multi-relational model in [32] was re-
organized as a fibring, a particular combination of logics which
amounts to place one special-purpose normal logics on top of an-
other [31]. In this case, the normal logic was put on top of the non-
normal one. For doing this, authors first obtained two restrictions of
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the original logics. By exploiting results in regard to some techniques
for combining logics, it was proved that [32]s system is complete
and decidable. Hence, the sketch for an appropriate model checker is
there outlined.

One motivation regarding a further combination of those special
purpose logics for MAS is the aim to have an expressive enough sys-
tem for modelling interactions between a behavioural dimension and
a cognitive dimension of agents, and testing satisfiability of the cor-
responding formulas. For example, for modelling expressions such
as Doesi (Belj A ) which can be seen as a form of persuasion or
influence: agent i makes agent j have A as belief. This formula can-
not be written in the fibred language in [31] neither in the original
language in [32] because such languages have a restriction over the
form of the wffs: no modal operator can appear in the scope of a
Does. In [31], authors outlined a combination of the normal and the
non-normal counterparts of the base logics. That combination lead
to an ontology of pairs of situations allowing a structural basis for
more expressiveness of the system. That combination is the result of
(again) splitting of the original structure, which is a multi-relational
frame of the form [32, 17]:

F = 〈A,W, {Bi}i∈A, {Gi}i∈A, {Ii}i∈A, {Di}i∈A〉

where: A is a set of agents, W is a set of posible worlds, and
{Bi}, {Gi}, {Ii}, {Di} are the accessibility relations for beliefs,
goals, intentions, and agency respectively. The underlying set of
worlds of the combination is an ontology of pairs of worlds
(wN , wD). There are two structures where to respectively test the va-
lidity of the normal modalities and the non-normal modalities. The
former is a Kripke model; the latter a neighbourhood model. The def-
inition of a formula being satisfied in the combined model at a state
(wN , wD) amounts to a scan through the combined structure, done
according to which operator is being tested. Normal operators move
along the first componentwN , and non-normal operators move along
the second component of the current world wD .

Regarding the application to agents, it is also common that the
cognitive modalities are extended with temporal logics. For example,
Schild [29] provides a mapping from Rao and Georgeff’s BDI logic
[27] to µ-calculus [24]. The model of Rao and Georgeff is based on
a combination of the branching time logic CTL∗ [8] and modal op-
erators for beliefs, desires, and intentions. Schild collapses the (orig-
inal) two dimensions of time and modalities onto a one dimensional
structure. J. Broersen [5] presents an epistemic logic that incorpo-
rates interactions between time and action, and between knowledge
and action.

Correspondingly, H. Wansing in [2] points out that (i) agents act
in time, (ii) obligations change over time as a result of our actions
and the actions of others, and (iii) obligations may depend on the



future course of events. In ([2], Section 10.3) he adopts a semantics
reflecting the non-determinism of agency: models are based on trees
of moments of time branching to the future. Agentive sentences are
history dependent, formulas are not evaluated at points in time but
rather at pairs (moment, history), where history is a linearly ordered
set of moments.

Cohen and Levesque [7, 21] embed, using function mappings, a
modal logic of beliefs and goals with a temporal logic with non-
deterministic and parallel features.

In this paper we define a combination of logics for MAS as a
special case of neighbourhood structures. Previously, we give a new
presentation of decidability results which apply to a particular kind
of models: neighbourhood models. In the literature, the analysis of
transfer of logical properties from special purpose logics to com-
bined ones is usually based on properties of normal logics. It is
claimed that the proof strategies in the demonstration of transfer-
ence of properties of normal logics could in principle be applied to
non-normal modal logics [12]. In a mono-modal logic with a box
modality, normality implies that the following formulas are valid:
2(p → q) → (2p → 2q) and 2(p ∧ q) ↔ (2p ∧ 2q), as well
as the admission of the rule from ` A infer ` 2A [3, 12]. None of
this is assumed to hold for a non-normal logics. We indeed use a non
normal modal logic for agency, as developed by Elgesem [11, 17];
and aim to put it to work with normal logics for, e.g, beliefs and
goals. The logic of agency extends classical propositional logic with
the unary symbol Does satisfying the following axioms: ¬(Does>),
(Does A ) ∧ (Does B) ⇒ Does(A ∧ B) and Does A ⇒ A to-
gether with the rule of Modus Ponens and the rule saying that from
A ⇔ B you can conclude Does A ⇔ Does B. The intended read-
ing of Does A is that ‘the agent brings it about that A ’. (See Sec-
tion 2.1 in [11].) A detailed philosophical justification for this logic
is given in [11] and neighborhood and selection function semantics
are discussed in [11, 17].

One advantage regarding the choice of a logic of agency such as
Does relies on the issue of action negation. For Does, and for other
related logics of action such as the one in [5], action negation is well-
understood: given that the logic for Does is Boolean, it is easy to de-
termine what ¬Does A means. This allows providing accurate def-
initions for concepts such as e.g. “refrain”, especially useful in nor-
mative MAS: I have the opportunity and ability to do something, but
I do not perform it as I have the intention not to. Up to now, although
addressed, there are no outstanding nor homogeneous solutions for
the issue on action negation in other relevant logics for MAS such as
dynamic logics (see e.g. [4, 5, 25]).

We organize the work as follows. In Section 2 we directly adapt
for neighbourhood models the strategy in [3] regarding the finite
model property (FMP) via filtration. This includes: (i) establishing
conditions for finding a filtration of a neighbourhood model, (ii) the
demonstration of a filtration theorem for the neighbourhood case,
(iii) guaranteeing the existence of a filtration, and (iv) the proof of the
FMP Theorem for a mono-modal neighbourhood model. In Section
3 we show how the results in Section 2 can be applied for proving
decidability of a neighbourhood model with more than one modality.
We also devise examples for a uni-agent mono-modal non-normal
system, a uni-agent multi-modal system and a multi-modal multi-
agent system. In Section 4 we concentrate on a combined MAS, with
an underlying neighbourhood structure. Conclusions end the paper.

2 Decidability for the neighbourhood case through
the extension of the FMP strategy for the Kripke
case.

We mentioned that normal logics can be seen as a platform for the
study of transference of decidability results for non-normal logics
and combination of logics. We rely on well-studied results and ex-
isting techniques for Kripke structures, which are usual support of
normal logics, to provide a new presentation of existing decidability
results for a more general class of structures supporting non-normal
logics.

We start from the definitions given by P. Blackburn et. al. [3]. In
[3](Defs. 2.36, 2.38 and 2.40), the construction of a finite model for
a Kripke structure is supported in: (i) the definition of a filtration, (ii)
the Filtration Theorem, (iii) the existence of a filtration for a model
and a subformula closed set of formulas, and (iv) the Finite Model
Property Theorem via Filtrations.

B. Chellas, in its turn, defined filtrations for minimal models in [6]
(Section 7.5). Minimal models are a generalization of Kripke ones. A
minimal model is a structure 〈W,N,P 〉 in whichW is a set of possi-
ble worlds and P gives a truth value to each atomic sentence at each
world. N , is a function that associates with each world a collection
of sets of worlds. The notation used throughout is one based on truth
sets (‖A ‖ is the set of points in a model where the wff A is true).
Truth sets are a basic ingredient of selection function semantics.

In what follows we give a definition of filtration for Scott-
Montague models using a neighbourhood approach and notation.
Neighbourhood semantics is the most important (as far as we con-
sider) generalization of Kripke style (relational) semantics. The set of
possible worlds is replaced by a Boolean algebra, then the concept of
validity is generalized to the set of true formulas in an arbitrary sub-
set of the Boolean algebra, but (generally for every quasi-classical
logics) the subset must be a filter. This ‘neighbourhood approach’
focuses on worlds, which directly leads us to the underlying net of
situations that ultimately support the system: relative to a worldw we
are able to test whether agents believe in something or carry out an
action. The neighbourhood semantics better adapts to the specifica-
tion of most prevailing modal multi-agent systems, which lately tend
to adopt the Kripke semantics with a notation given as in [3]. This
because, probably, that notation is more intuitive for dealing with sit-
uations and agents acting and thinking according to situations, rather
than considering formulas as ‘first class’ objects. This is crucial in
current practical approaches to agents; in a world an agent realises
its posibilities of succesful agency of A , its beliefs, it goals, all rela-
tive to the actual world w, In this perspective, situations are a sort of
“environmental support” for agent’s internal configuration and visi-
ble actions. Worlds are, therefore, in a MAS context, predominantly,
abstract descriptions of external circumstances of an agent’s commu-
nity that allow or disallow actions, activate or nullify goals.

That is why we prefer to work with neighbourhood models as
models for MAS, keeping in mind that, while it is possible to de-
vise selection function models for MAS, this is not nowadays usual
practice. Also, as it is well-known, the difference between selec-
tion function semantics and neighbourhood semantics is merely at
the intuitive level (their semantics are equivalent, and both known as
ScottMontague semantics [17]).

P. Schotch has already addressed the issue of paradigmatic nota-
tion and dominating semantics for modalities. In his work [30] he
points out that the necessity truth condition together with Kripkean
structures twistedly “represent” the model-theoretic view of the area,
given that -among other reasons- many “nice” logics can be devised



with those tools. Moreover, due to this trend, he notes that previous
complex and important logics (due to Lewis, or to the “Pennsylva-
nia School”) have become obsolete or curiosities just because their
semantics is less elegant.

We adopt an eclectic position in this paper: we choose a struc-
ture that allows non-normal semantics and we go through it with the
notation as given in [3], which is currently well-accepted and well-
understood for modal MAS.

Next we outline some tools for finding a filtration of a neighbour-
hood model. We generalize the theorems for Kripke structures given
in [3].

Definition 1 (Neighbourhood Frame). A neighbourhood frame [20,
6] is a tuple 〈W, {Nw}w∈W 〉 where:

1. W is a set of worlds, and
2. {Nw}w∈W is a function assigning to each elementw inW a class

of subsets of W , the neighbourhoods of w.

We will be working with a basic modal language with a single
unary modality, let us say ‘#’. We asume that this modality has a
neighbourhood semantics. For example, ‘#’ may be read as the Does
operator, or an ability operator, as proposed by Elgesem [11]; or rep-
resent a “refrain” operator based on Does and other modalities such
as ability, opportunity and intentions.

Definition 2 ((Recall Def. 2.35 in [3]) Closure). A set of formulas Σ
is closed under subformulas if for all formulas ϕ, if ϕ∨ϕ′ ∈ Σ then
so are ϕ and ϕ′; if ¬ϕ ∈ Σ then so is ϕ; and if #ϕ ∈ Σ then so is
ϕ. (For the Does modality, for example, if Doesϕ ∈ Σ so is ϕ).

Definition 3 (Neighbourhood Model). We define M =
〈W, {Nw}, V 〉 to be a model, where 〈W, {Nw}〉 is a neigh-
bourhood frame, and V is a valuation function assigning to each
proposition letter p in Σ a subset V (p) of W (i.e. for every
propositional letter we know in which worlds it is true).

Given Σ a subformula closed set of formulas and given a neigh-
bourhood model M, let ≡Σ be a relation on the states of M defined
by w ≡Σ v iff ∀ϕ ∈ Σ (M, w |= ϕ iff M, v |= ϕ). That is, for all
wff ϕ, ϕ is true inw iff is also true in v. Clearly≡Σ is an equivalence
relation. We denote the equivalence class of a state w of M with re-
spect to ≡Σ by [w]Σ (or simply [w] when no confusion arises).

Let WΣ = {[w]Σ /w ∈W}.
Next we generalize for neighbourhood models the concept of fil-

tration given in [3].

Definition 4 (Filtrations for the neighbourhood case). Suppose Mf

is any model 〈W f , {Nw}f , V f 〉 such that W f = WΣ and:

1. If U ∈ Nw then {[u]/u ∈ U} ∈ Nf
[w] ,

2. For every formula #ϕ ∈ Σ, if U ∈ Nf
[w] and (∀[u] ∈

U)(M, u |= ϕ), then M, w |= #ϕ,
3. V f (p) = {[w] /M, w |= p}, for all proposition letter p in Σ.

Condition (1) requires that for every neighbourhood ofw there is a
corresponding neighbourhood of classes of equivalences for the class
of equivalence of w (i.e. [w]) in the filtration. Condition (2) settles,
among classes of equivalences, the satisfaction definition regarding
a world and its neighbourhoods.

We use U for the neighbourhoods in the original model M, and U
for the neighbourhoods of [w] in the filtration Mf .

Theorem 1 (Filtration Theorem for the neighbourhood case.). Con-
sider a unary modality ‘#’. Let Mf be a filtration of M through
a subformula closed set Σ. Then for all ϕ in Σ and all w in M,
M, w |= ϕ iff Mf, [w] |= ϕ. That is, filtration preserves satisfiabil-
ity.

Proof. We show that M, w |= ϕ iff Mf , [w] |= ϕ. As Σ is sub-
formula closed, we use induction on the structure of ϕ. We focus on
the case ϕ = #γ. Assume that #γ ∈ Σ, and that M, w |= #γ.
If M, w |= #γ then there is a neighbourhood U such that U ∈ Nw

and (∀u ∈ U)(M, u |= γ), that is, for every world in that neighbour-
hood, γ holds. Thus, by application of the induction hypothesis, for
each of those u we have that Mf , [u] |= γ. By condition (1) above,
{[u]/u ∈ U} ∈ Nf

[w]. Hence Mf , [w] |= #γ.
Conversely we have to prove that if Mf , [w] |= ϕ then M, w |= ϕ.
Assume that ϕ = #γ and Mf , [w] |= #γ. By truth def-

inition, there exists U neighbourhood of [w] such that (∀[u] ∈
U)(Mf , [u] |= γ). Then by inductive hypothesis (∀[u] ∈
U)(M, u |= γ). Then by condition (2) M, w |= #γ.

Note that clauses (1) and (2) above are devised to make the
neighbourhood case of the induction step straightforward.

Existence of a filtration.

Notation. [U ] = {[u]/u ∈ U} i.e. [U ] is a set of classes of equiv-
alences. Define Ns

[w] as follows: [U ] ∈ Ns
[w] iff (∃w ≡Σ w′/U ∈

Nw′). That is, [U ] is a neighbourhood of [w] if there exists a neigh-
bourhood U in the original model reachable through a world w′

which is equivalent to w (under ≡Σ). This definition leads us to the
smallest filtration.

Lemma 1 (See Lemma 2.40 in [3]). Let M be any model, Σ any
subformula closed set of formulas,WΣ the set of equivalence classes
of W induced by ≡Σ, V f the standard valuation on WΣ. Then
〈WΣ, N

s
[w], V

f 〉 is a filtration of M through Σ.

Proof. It suffices to show thatNs
[w] fulfills clauses (1) and (2) in Def-

inition 4. Note that it satisfies (1) by definition. It remains to check
that Ns

[w] fulfills (2).
Let #ϕ ∈ Σ, we have to prove that (∀U ∈ Ns

[w]) (∀[u] ∈
U)(M, u |= ϕ) → (M, w |= #ϕ). We know that U =
[U ] for some U ∈ Nw′ such that w ≡Σ w′. Recall that (∀[u] ∈
U)(M, u |= ϕ) means that (∀u ∈ U)(M, u |= ϕ). By truth defini-
tion M, w′ |= #ϕ, then becausew ≡Σ w′ we get M, w |= #ϕ.

Theorem 2 (Finite Model Property via Filtrations). Assume that ϕ
is satisfiable in a model M as in Definition 3; take any filtration Mf

through the set of subformulas of ϕ. That ϕ is satisfiable in Mf is
immediate from the Filtration Theorem for the neighbourhood case.

Being ≡Σ an equivalence relation, and using Theorem 1 it’s easy
to check that, a model M and any filtration Mf are equivalent mod-
ulus ϕ. This result is useful to understand why the original properties
of the frames in the models are preserved. This results are provided
in [Chellas] for the preservation of frames clases through filtrations.

Example 1 (uni-agent mono-modal system). A simple system can
be defined with structure as in Definition 3, where we can write and
test situations like the one following:

Bus stop scenario ([13], revisited). Suppose that agent y is at the
bus stop. We can test whether y raises his hand and stops the bus by
testing the validity of the formula: Doesy(StopBus). This simple



kind of systems are proved decidable via FMP through Definition 4,
Theorem 1 and Lemma 1 in this Section. They are powerful enough
to monitor a single agent’s behaviour.

Note that Doesy(StopBus) holds in a worldw in a model M, that
is, M, w |= Doesy(StopBus) iff (∃U ∈ Nyw ) such that (∀u ∈
U) (M, u |= StopBus).

3 Extension to the multi-agent multi-modal case
Recall that the original base structure discussed in [32] is a multi-
relational frame of the form:

F = 〈A,W, {Bi}i∈A, {Gi}i∈A, {Ii}i∈A, {Di}i∈A〉

where:

• A is a finite set of agents;
• W is a set of situations, or points, or possible worlds;
• {Bi}i∈A is a set of accessibility relations wrt Bel, which are tran-

sitive, euclidean and serial;
• {Gi}i∈A is a set of accessibility relations wrt Goal, (standardKn

semantics);
• {Ii}i∈A is a set of accessibility relations wrt Int, which are serial;

and
• {Di}i∈A is a family of sets of accessibility relations Di wrt Does,

which are pointwise closed under intersection, reflexive and serial
[17].

This original structure contains the well-known normal operators
Bel, Goal, and Int. They have a necessity semantics, plus character-
izing axioms (see for example [19, 9]). These operators are the ones
we aim to arbitrarily combine with the non-normal Does.

Note that the necessity semantics for the Kripke case can be
written using neighbourhood semantics in the following way (see
[6] Theorem 7.9 for more detail):

MK , w |= ϕ iff (∀v /wRv)(MK , v |= ϕ)⇐⇒MN , w |= ϕ iff
(∀ vk ∈ Nw) (∀u ∈ vk)(MN , u |= ϕ)

where MK is a Kripke model, and MN is a neighbourhood model.

The intuition behind this definition is that each world v accessible
from w in MK is a neighbourhood of w in MN . Standard models
can be paired one-to-one with neighbourhood models in such a way
that paired models are pointwise equivalent [6].

So we can think of having a {Niw} for each normal modality, as
we do for the Does modality.

Now let us consider a multi-modal system with structure
〈W, {N1w}, ..., {Nmw}〉 and let us assume that we have one agent.
It is straightfoward to extend the application of Theorem 1 (Section
2) to this structure. Asume a basic modal language with modalities
#1, ...,#m, each with a neighbourhood semantics. Also, consider a
set Σ closed for subformulas that satisfies: (i) if ϕ ∨ ϕ′ ∈ Σ then
ϕ ∈ Σ and ϕ′ ∈ Σ; (ii) if ¬ϕ ∈ Σ, then ϕ ∈ Σ; and (iii) if
#i ϕ ∈ Σ, then ϕ ∈ Σ for every #i.

Definition 5 (Extends Definition 4). Let M =
〈W, {N1w}, ..., {Nmw}, V 〉 be a model, Σ a subfor-
mula closed set, ≡Σ an equivalence relation. Let Mf =
〈W f , {N1w}f , ..., {Nmw}f , V f 〉 such that W f = WΣ and:

1. If U ∈ Niw then {[u]/u ∈ U} ∈ Nf
i[w]

; and

2. For every formula #i ϕ ∈ Σ, if U ∈ Nf
i[w]

and (∀[u] ∈
U)(M, u |= ϕ), then M, w |= #i ϕ.

3. V f (p) = {[w] /M, w |= p}, for all proposition letter p in Σ.

It is easy to check that if Σ is a subformula closed set of formulas,
then Mf is a filtration of M through Σ. That is, for all ϕ in Σ and
all w in M, M, w |= ϕ iff Mf, [w] |= ϕ . Proof is done by repeated
application of Theorem 1 (Section 2). Clearly, it suffices to prove
the result for a single ‘#i’ as all modalities have a neighbourhood
semantics. It is worth mentioning that authors in [10], for example,
proceed with the direct repeated application of the notion of filtration
for proving the FMP of their (normal) multi-modal system.

Example 2 (uni-agent multi-modal system). A simple system can
be defined according to Definition 5, where we can depict scenarios
and test situations like the one following:

Bus stop example (revisited). Agent x is at the bus stop having
the goal to stop the bus: Goalx(Doesx(StopBus)).

Note that Goalx(Doesx(StopBus)) holds in a world w in
a model M, that is, M, w |= (Goalx Doesx(StopBus)) iff
(∃U ∈ Nxw ) such that (∀u ∈ U)(M, u |= Doesx(StopBus)),
and (∀u ∈ U)(M, u |= Doesx(StopBus)) iff (∃U ′ ∈ Nyu) such
that (∀u′ ∈ U ′)(M, u′ |= StopBus).

Further extension: multi-agent case
Extending the system to many agents will not add anything sub-

stantially new to Definition 5. A multi-agent system is a special case
of the multi-modal case; the structure is merely extended with the
inclusion of new modalities. For example, include Beli, Goali, and
Inti, for each agent i and a Doesi for each agent i. Thus, for every
agent, include its corresponding modalities, each of which brings in
its own semantics.

Example 3 (multi-agent multi-modal system). A multi-agent
multi-modal system for the bus stop scenario is, for example:

Bus stop example (re-revisited). The formula
Belx(Doesy(StopBus))) stands for ‘agent x believes that
agent y will stop the bus’, meaning that he thinks he will not
have to raise the hand himself. This formula holds in a world
w in a model M, that is, M, w |= Belx Doesy(StopBus) iff
(∃U ∈ Nxw ) such that (∀u ∈ U)(M, u |= Doesy(StopBus)),
and (∀u ∈ U)(M, u |= Doesy(StopBus)) iff (∃U ′ ∈ Nyu) such
that (∀u′ ∈ U ′)(M, u′ |= StopBus).

Another example.

Bus stop example (persuasion). Doesx(Goaly(StopBus))
can be seen as a form of persuasion, meaning that ‘agent x makes
agent y stop the bus’. Doesx(Goaly(StopBus))) holds in a world
w in a model M, that is, M, w |= Doesx Goaly(StopBus) iff
(∃U ∈ Nxw ) such that (∀u ∈ U)(M, u |= Goaly(StopBus)),
and (∀u ∈ U)(M, u |= Goaly(StopBus)) iff (∃U ′ ∈ Nyu) such
that (∀u′ ∈ U ′)(M, u′ |= StopBus).

Recall that we could not write and test wff with modalities within
the scope of a Does in [32] and [31]. Doesi(Goalj A ) is a formula
in which the normal modality appears within the scope of a (non-
normal) Does.



4 Combination of Mental States and Actions

Up to now, we described MAS under a single point of view: in this
situation an agent believes this way, and acts that way. We are now
interested in describing systems in which two points of view coexist:
a cognitive one, and a behavioural one. These differ from the former
ones on the ontology adopted.

We already referred in the Introduction that it is common to com-
bine agent’s behaviour with time. As a further example, a combina-
tion between a basic temporal and a simple deontic logic for MAS
has been recently depicted in [33]. That combination puts together
two normal modal logics: a temporal one and a deontic one. In the re-
sultant system it is possible to write and test the validity of formulas
with arbitrarily interleaved deontic and tense modalities. There are
two structures (W,R) and (T,<) which are respectively the under-
lying ontologies where a deontic point of view and a temporal point
of view are interpreted (both are Kripke models). (W,R) represents a
multigraph over situations, (T,<) represents a valid time line. Next,
it is built an ontology W × T of pairs (situation, point in time) rep-
resenting the intuition “this situation, at this time”. We note that such
combination can be seen as a special case of the structure that we out-
line next. This outline (which is more general) allows combinations
of non-normal operators having neighbourhood semantics.

For simplifying our presentation, we work again with the less pos-
sible number of modalities (say just two). We choose a normal, cog-
nitive modality (let us say Bel, for beliefs), and a non-normal be-
havioural one (let us say Does, for agency).

Proposition 1. If 〈WB , {NB}b∈WB 〉 and 〈WD, {ND}d∈WD 〉 are
neighbourhood frames, then:

C = 〈WB×WD, {NB}(b,d)∈WB×WD
, {ND}(b,d)∈WB×WD

〉 is a
combined frame, where:

• WB ×WD is a set of pairs of situations;
• S ∈ NB(b,d)

iff S = m× {d}, m ∈ NBb ; and
• T ∈ ND(b,d)

iff T = {b} × n, n ∈ NDd .

At a point (wB , wD) we have a pair of situations which are, re-
spectively, environmental support for an internal configuration and
for an external one. According to both dimensions, we test the va-
lidity of wffs: beliefs are tested on wB and throughout the neigbour-
hoods of wB provided by dimension S. The S dimension keeps un-
touched the behavioral dimension bound to wB i.e. wD is the second
component on the neighbourhood S of wB . (respectively for wd and
T ).

In its turn, a combined model is a strucure 〈C, V 〉where V is a val-
uation function defined as expected. It is plain to see that this struc-
ture is an instance of Definition 5. That means there exists a flitration
for a model based on this structure.

A MAS with structure as in Proposition 1 is said to be two-
dimensional in the sense given by Finger and Gabbay in [14]: the
alphabet of the system’s language contains two disjoint sets of op-
erators, and formulas are evaluated at a two-dimensional assignment
of points that come from the prime frames’ sets of situations. More-
over, in this “Beliefs × Actions” outline, there is no strong interac-
tion among the logic of beliefs and the logic of agency as we define
no interaction axioms among both special purpose logics. Our Propo-
sition 1 much resembles the definition of full join given in [14] (Def
6.1) (two-dimensional plane).

Example 4 (Uni-agent combined system). Agent’s beliefs and ac-
tions. According to Proposition 1, we can define a system where to
write and test formulas like e.g. Belx(Doesx(Belx A )). This for-
mula is meant to stand for “agent x believes that s/he does what
s/he believes” which can be seen as a kind of “positive introspec-
tion” regarding agency. This formula is not to be understood as an
axiom bridging agency and beliefs; nonetheless it may be interesting
to test its validity in certain circumstances: one may indeed believe
that one is doing what meant to (expected correspondence between
behaviour and belief), while one may believe one is doing something
completely different to what one is effectively doing (e.g. poison-
ing a plant instead of watering it; or some other forms of erratic
behaviour). Moreover, there are occasions where one performs an
action which one does not believes in (e.g. obeying immoral orders).

For testing such formula, one possible movement along the multi-
graph is:

M, (wB , wD) |= Belx(Doesx(Belx A )) iff (∃U ∈
NB(wB,wD)

) such that (∀ (u,wD) ∈ U) (M, (u,wD) |=
Doesx(Belx A ). In its turn, (M, (u,wD) |= Doesx(Belx A ) iff
(∃V ∈ ND(u,wD)

) such that (∀ (u, v) ∈ V) (M, (u, v) |= Belx A ).
Finally, (M, (u, v) |= Belx A ) iff (∃U ′ ∈ NB(u,v)

) such that
(∀ (u′, v) ∈ U ′) (M, (u′, v) |= A ).

In connection with our Example 4, it is worth mentioning that J.
Broersen defines and explains in [5] a particular logics for doing
something (un)knowingly. In that work (Section 3) the author ex-
plicitly defines some constraints for the interaction between knowl-
edge and action, namely (1) an axiom that reflects that agents can not
knowingly do more than what is affected by the choices they have,
and (2) an axiom establishing that if agents knowingly see to it that
a condition holds in the next state, in that same state agents will re-
call that such condition holds. The frames used are two-dimensional,
with a dimension of histories (linear timelines) and a dimension of
states agents can be in. Behaviours of agents can be interpreted as
trajectories going from the past to the future along the dimension
of states, and jumping from sets of histories to subsets of histories
(choices) along the dimension of histories.

5 Conclusions
The idea of combining special purpose logics for building “on de-
mand” MAS is promising. This engineering approach is, in this pa-
per, balanced with the aim to handle decidable logics, which is a basis
for the implementation and launching of correct systems. We believe
that the decidability issue should be a prerequisite to be taken into
account during the design phase of MAS.

Within the MAS community the neighbourhood notation is, pos-
sibly, most widely used, well-understood, and well-recognized than
the selection function notation. We gave a “neighbourhood outline”
to decidability via filtration for a particular kind of models, namely
neighbourhood models. These models are suitable for capturing the
semantics of some non-normal operators found in the MAS litera-
ture (such as agency, or ability, among others) and, of course, also
the semantics of normal modal operators as most MAS use.

We also offered technical details for combining logics which can
be used as a basis for modeling multi-agent systems. The logics re-
sulting from different possible combinations lead to interesting levels
of expressiveness of the systems, by allowing different types of com-
plex formulas. The combinations outlined in this paper are, given
the logical tools presented in Section 2, decidable. There are for sure
several other possible combinations that can be performed. For exam-



ple, Proposition 1 can be extended to capture more cognitive aspects
such as e.g. goals, or intentions. In that case, the cognitive dimen-
sion (In Proposition 1, characterized by S) is to be extended with the
inclusion of normal operators. Moreover, within our neighbourhood
outline and on top of the uni-agent modalities, collective modalities
such as mutual intention, collective intention; also elaborated con-
cepts such as trust or collective trust can also be defined.

We can push the combination strategy even further, by proposing
the combination of modules which are in its turn combinations of
special purpose logics, in a kind of multiple level combination. This
strategy has to be carefully studied, and is matter of our future re-
search.
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