
A Flexible Tool Suite for Change-Aware
Test-Driven Development of Web Applications

Esteban Robles Luna
LIFIA. F. Informática, UNLP

La Plata, Argentina
Also at CONICET

Juan Burella
DC. F. Cs Exactas, UBA
Buenos Aires, Argentina

Also at CONICET

Julián Grigera
LIFIA. F. Informática, UNLP

La Plata, Argentina

Gustavo Rossi
LIFIA. F. Informática, UNLP

La Plata, Argentina
Also at CONICET

ABSTRACT

Though Web Applications development fits well with Test-Driven

Development, there are some problems that hinder its success. In

this demo we present a tool suite to improve TDD; the suite sup-

ports the representation of web requirements using a domain-

specific language and the automatic generation of interaction tests

among others.

Keywords

Web engineering, TDD, Web requirements, Change management.

1. INTRODUCTION

Test-Driven Development (TDD) [2] is well suited for Web appli-

cations because of its features: it is agile, it uses tests as require-

ments artifacts, and also uses them to determine what require-

ments have been fulfilled. However, traditional unit testing fails to

provide quick feedback to stakeholders about interaction and

navigational requirements (i.e. those that affect look and feel and

represent the very nature of most Web applications). Additionally,

as navigation and interaction requirements change rapidly and

often, there is a need to improve change management to automati-

cally update the test suite and simplify application evolution. By

capturing requirement changes and deriving traceability links

between requirements and the software components that fulfill

those requirements, we can use change objects to upgrade the

application under development.

In [4] we presented WebTDD, an improvement of TDD aimed at

Web software. Our approach follows the basic TDD principles,

but instead of driving the development from handcrafted unit

tests, we start the process from automatically generated interaction

tests, which capture the way users interact with the application

and also help to outline the navigation and business models.

Due to the gap between requirements (e.g. expressed in use stories

[3]) and tests, some customer requirements might remain un-

checked. To bridge this gap, and considering the nature of Web

applications, we have devised a domain-specific language (DSL)

called WebSpec. WebSpec is used to capture interaction and

navigation requirements. Its diagrams have a two-fold objective:

they formalize navigation and interaction requirements, and they

serve to automatically generate a suite of interaction tests that the

final application must pass. We complement these diagrams with

Mockups (stub HTML pages).

As shown in Fig. 1, WebTDD follows a sprint based process; in

each sprint a set of requirements is implemented. We first capture

requirements (Sect. 2) and use them to simulate the application.

Then, we automatically generate a set of interaction tests (Sect. 3)

that the application must pass. When we capture requirements we

record the changes (Sect. 4) as first class objects and use them to

improve the implementation phase. In this paper we present our

tool suite to support WebTDD. Specifically we show:

• How to express navigation and interaction requirements,

simplifying the discussion with stakeholders.

• How tests are derived automatically from requirements.

• How changes in requirements are captured and then used to

improve the development cycle.

Figure 1. WebTDD approach

2. CAPTURING REQUIREMENTS

The development cycle starts by capturing requirements with

Mockups and WebSpec diagrams (Step 1 of Fig. 1). Mockups

help to agree on the application look and feel and WebSpec al-

lows to specify navigation, interaction and user interface aspects

in a more formal and comprehensive way (than, for example, user

stories). A WebSpec diagram can be derived either from use cases

or usage scenarios or stories. Similarly, mockups can be created

using modern tools like Balsamiq [1]. WebSpec is independent of

these technologies as long as the user interface elements can be

referenced using an ID based location (e.g. button with id =

“search”). WebSpec has two key elements: interactions and navi-

gations. An interaction represents a point where the user can in-

teract with the application by using the interaction’s widgets. A

diagram has a starting interaction represented with dashed lines.

Some actions (like clicking a button) might produce navigation

from one interaction to another. These actions are written in an

intuitive DSL with the syntax: var := expr | actionName(arg1,…

argn). We associate a mockup to each interaction to allow switch-

ing between the formal description and the proposed user inter-

face while discussing with the stakeholders.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICSE '10, May 2-8, 2010, Cape Town, South Africa

Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00

erobles@lifia.info.unlp.edu.ar, jburella@dc.uba.ar, {juliang, gustavo}@lifia.info.unlp.edu.ar

297

An example of a WebSpec diagram as produced by the tool suite

is shown in Fig. 2. To express the properties the application must

hold, we add invariants (Boolean predicates) to the interactions.

For instance, the Home interaction (not shown for clarity) must

satisfy: Home.tweets = ${tweets} which states that the value

shown in the tweets label should be equal to the number of tweets

variable (see the navigations where the variable is updated).

Using the mockups together with the actions and properties the

application must hold, we derive a set of simulations that begin

from the starting interaction. Each simulation opens a browser and

reproduces a specific path executing actions and showing labels of

the expected behavior of the application. Stakeholders can use

them to propose changes before the implementation stage.

The WebSpec Eclipse plugin provides an environment to create

WebSpec diagrams and to simulate them in a real browser.

Figure 2. Tweet WebSpec diagram

3. REQUIREMENTS VALIDATION

In the 2nd step of Fig. 1 we automatically generate a set of inter-

action tests from the WebSpec diagram. An interaction test is a

test that pops a Browser and executes a set of actions on it, in the

same way a user would do. This kind of tests allows making asser-

tions on UI elements based on their location, so we can check the

values of the different widgets. We can also automatically verify

whether a requirement has been successfully implemented by

validating that the application passes all tests.

For each WebSpec diagram, we derive a test suite. Each path de-

picted in the diagram will be translated into a test case that will be

named as the complete path’s trail. If the diagram is cycled, we

obtain finite paths by pruning to a specific length. A test case will

follow the actions specified in the path, and assertions will be

generated from the invariants of every interaction. The sentences

(assignments or actions) on navigations will be translated to sen-

tences in the test, such as typing text into a text field or clicking

buttons. Reaching an interaction will require that we check its

invariant (if any), by generating assertions on the test. As different

interactions may alter the variables bound to an invariant, it is

necessary to repeat the updated assertions after navigating to the

same interaction more than once.

The WebSpec Eclipse plugin supports tests generation to Sele-

nium [5] but other testing frameworks could be easily added by

extending the generation algorithm.

4. EVOLUTION

Evolution of applications starts with changes in the requirements,

and navigation/interaction requirements changes are specially

frequent during the development process. WebSpec can suffer

different changes, such as the addition or deletion of an interac-

tion or navigation. An interaction can be modified too by the

addition or deletion of widgets, changes in invariants, etc. Regard-

ing navigations, we can change its preconditions or the actions

that triggers them. All types of changes have been reified as first-

class change objects that could be used to improve the tool’s

traceability features and automate some of these changes in the

implementation. The WebSpec editor captures the changes made

to the diagrams and stores them in files to be latter use.

To improve the development cycle (Step 4 of Fig. 1) the suite

includes a change management tool that allows the manipulation

of these change objects to automate the effects of changes on con-

crete application’s artifacts. The mechanics of these effects de-

pend on the underlying implementation setting (GWT, WebRatio

[6], etc) thus we have handlers for each particular case.

As an example, let us suppose that an interaction has been added

to a WebSpec, so we create the corresponding Web page for this

interaction. When a change modifies an interaction structurally,

the page that represents this interaction must be modified accord-

ingly; Figure 3 shows how a text field element is added as the

effect of the addition of a text field in the interaction.

If any wid-

get attribute is changed, the effect on the page can be automati-

cally updated too. The tool suite has effect handlers for GWT,

Seaside and WebRatio, but new ones can be easily implemented.

Figure 3. Text field added to the Home interaction

5. CONCLUSIONS

We have shown an agile approach for Web applications develop-

ment and briefly described its supporting tool suite. Our WebTDD

tool suite allows us to visually specify navigation and interaction

requirements, automatically simulating the application according

to requirements and generating navigation tests to validate these

requirements. Changes are reified using “first class” objects, and

using a change management tool we can manipulate these change

objects, making them very useful in the development process. We

have shown how to improve the development process by automat-

ing the effect of presentation and navigation changes.

6. REFERENCES

[1] Balsamiq. http://www.balsamiq.com/products/mockups

[2] Beck, K. 2002 Test Driven Development: by Example. Addi-

son-Wesley Longman Publishing Co., Inc.

[3] Jeffries, R. E., Anderson, A., and Hendrickson, C. 2000 Ex-

treme Programming Installed. Addison-Wesley Longman

Publishing Co., Inc.

[4] Robles Luna, E., Grigera, J., and Rossi, G. 2009. Bridging

Test and Model-Driven Approaches in Web Engineering. In

Proceedings of the 9th international Conference on Web En-

gineering. Lecture Notes In Computer Science, vol. 5648.

Springer-Verlag, Berlin, Heidelberg, 136-150.

[5] Selenium web testing system. http://seleniumhq.org/

[6] The WebRatio Tool Suite. http://www.Webratio.com.

298

