
V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 225–241, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Hypertextual Programming for Domain-Specific
End-User Development

Sebastian Ortiz-Chamorro1,4, Gustavo Rossi1,2, and Daniel Schwabe3

1 LIFIA, Universidad Nacional de La Plata, Argentina
2 CONICET, Argentina

3 Departamento de Informática, PUC-Rio, Brazil
4 Departamento de Electrónica e Informática, Universidad Católica de Asunción, Paraguay

{sortiz,gustavo}@lifia.info.unlp.edu.ar, dschwabe@inf.puc-rio.br

Abstract. Domain-specific languages (DSLs) have successfully been used for
end-user development. However, dealing with language syntax poses signifi-
cant learning challenges. In this paper, we introduce hypertextual programming,
a technique that represents language syntax as hypertext. With this technique,
instead of dealing with textual languages, users can inspect and construct their
programs mainly by using navigation. Beyond merely representing the syntax,
hypertext can be used to provide various views of a single program code. Nev-
ertheless, to reap the benefits of this technique, adequate hypertextual editors
must be built. This paper argues that many of the lessons learned in the web en-
gineering area can be used to deal with this problem. Millions of users navigate
the World Wide Web. Hypertextual programming leverages this widely avail-
able end-user skill to facilitate the construction of computer programs.

Keywords: hypertextual programming, end-user development, interfaces for
end-user development, domain-specific languages, web engineering.

1 Introduction

Domain-specific languages (DSLs, a.k.a. scripting languages) have successfully been
used for end-user development [1,2,3]. These languages help domain experts con-
struct, inspect and test computer programs that operate within defined realms. Part of
their success may be attributed to the fact that they present a set of familiar concepts
to the end-user. However, DSLs force the user to “learn the arcane syntax and vo-
cabulary conventions of the language” [2]. This initial step constitutes a difficult and
undesirable challenge for the end-user.

Even in the case of DSLs, language syntax may be very complex. Consider the
case of writing business rules in Jess [4], a popular rule-engine. The following is an
example of a valid sequence of Jess commands:

(defglobal ?*threshold* = 20)

(bind ?age = 15)

(if (> ?age ?*threshold*) then

226 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe

 (printout t "adult" crlf)

 else

 (printout t "minor" crlf))

The syntax of these commands is correct, but one missing or extra parenthesis
would render the whole program syntactically invalid. We also have to take into ac-
count that dealing with language syntax in order to write a program goes way beyond
avoiding syntactic errors. Executing the above set of commands in Jess 7.0 would
actually generate a runtime error: Not a number: “=”

This is because of a subtlety: even though syntactically correct, the second line ac-
tually assigns the string “=”, not the number 15, to the age variable. If the user’s
intention was to assign the numeric value 15 to this variable, the following would be
the correct Jess instruction:

(bind ?age 15)

Other language conventions may involve constantly memorizing and recalling (or
at least searching through) an ever changing set of available elements to use. For
example, in Jess, the set of available functions at a given program point contains all
the predefined language functions and also any functions that the user has already
defined. This is representative of many other languages where users are required to
declare, define or import variable declarations, functions and other language elements
before using them.

A different dimension of dealing with the language syntax in programming in-
volves understanding the program code. Programming is an iterative process where,
typically, the programmer has to read and understand existing code, identify the part
or parts of the program that will be modified in a particular iteration and then perform
the changes. Going back to the Jess example, a beginner will need significant effort to
understand the complex language syntax. This adds a heavy burden to the authoring
process.

Visual programming techniques have been developed to mitigate this problem by
giving users graphic representations that may be more easily recognizable in some
cases. These techniques have been used for end-user development [3]. However,
visual programming has problems of its own. Among other things, some authors ar-
gue that visual programming may have scalability problems [5].

Graphic or not, the length and complexity of the end-user’s programs, together
with the limitations stated above and the need to focus on the specific parts that are
undergoing modification call for a representation of the program code as a set of
manageable pieces that the user can browse for inspection.

If a program is divided into units to be presented to the user, this user will need an
intuitive and consistent way to select the specific parts to be viewed and modified.

This paper presents a technique based on the use of hypertext development envi-
ronments that embody the syntax and conventions of the underlying language and use
navigation as the main tool to inspect and modify programs. Hypertext systems [6]
provide interactive environments where users can navigate through defined pieces of
information (nodes). Beyond code browsing, in this paper we argue that by ade-
quately using widely available tools like the World Wide Web, users can be provided
with explicit controls that present them with a carefully chosen set of modification

 Hypertextual Programming for Domain-Specific End-User Development 227

options for each specific node given the underlying language syntax. This has the
potential to greatly reduce the programming learning effort.

This technique grew out of more than a decade of experience in the construction of
web-applications that had various end-user development features. These ranged from
small business process management rule definitions to the complete development
environment presented in this paper as a concrete example of hypertextual program-
ming: Benefit Catalog and Benefit Configurator. This dyad of applications constitutes
a complete end-user development, versioning, testing, deployment and run-time envi-
ronment for dynamic health-care insurance policy programming.

Expressing language syntax through navigation poses a significant engineering
challenge. Hypertextual programming draws heavily on ideas from web engineering
[7]. Several web design methodologies address the problem of expressing an underly-
ing structure (usually a domain model) through a web-application [8,9,10,11,12]. In
this case, the underlying structure is the syntax of a domain-specific language. The
description of hypertextual programming that we present in this paper is a first at-
tempt towards applying the lessons learned in web engineering to the problem of
constructing hypertextual programming environments for a given DSL.

The structuring of this paper loosely follows the chronological development of hy-
pertextual programming. In our experience, it is easier to understand this technique by
starting with a concrete example and then exploring the general ideas and definitions
behind it. Section 2 contains a description of Benefit Catalog and Benefit Configurator
and includes some general requirements, architecture and hypertextual programming
characteristics. In section 3, we present a more general description of hypertextual
programming and some web engineering ideas that may help in the construction of
hypertextual developing environments. Section 4 discusses related work. Finally, the
conclusions of this paper and future research are presented in section 5.

2 Benefit Catalog and Benefit Configurator

Health-care insurance is a fertile ground for domain-specific end-user development.
The process of administering health care insurance policies involves complex deci-
sion-making based on knowledge gained throughout decades of industry experience.
Domain experts in this area may take years to learn the intricacies of just the sub-
areas of the business that they work on. Merely the first step of the process from the
client’s point of view, which is helping to choose, customize and issue a health care
policy, involves maintaining a sizable catalog of products that can be tailored to a
specific client’s needs. The health insurance products rendered by this process must
comply with a considerable number of company guidelines and policies, and also any
applicable laws.

Benefit Catalog and Benefit Configurator allow domain experts (benefit engineers)
to: i)collaboratively develop a dynamic catalog of health-care insurance products
(each dynamic product definition is called a product template); ii)maintain a library of
parts to be used by different product templates; iii)test the product templates;
iv)promote the approved versions of product templates for use in a production
environment; v)run the product templates developed as an interactive sequence of
questions to be asked to specialized company sales representatives; vi)based on the

228 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe

answers, generate and store health-care insurance policy specifications (called answer
sets) as the output of these interactive questionnaires; and vii)provide support for the
full product development life cycle, including the management of different versions
of product templates and reusing previous answer sets for health care policy renewal.

An important requirement of this application is that the whole process described
above has to be done without the intervention of professional programmers or com-
pany IT staff. This project required benefit engineers, that is, domain experts that do
not have any professional programming background, to develop, test and manage
product templates by themselves using a web environment. This requirement clearly
prompted us to focus on the construction of tools that facilitate end-user development.

Fig. 1. Benefit Catalog and Benefit Configurator architectural diagram. Product templates are
stored in the product template database, then, they are rendered as “executble” PTL XML.

An architectural diagram of the applications is shown in Fig. 1. Benefit Catalog is a
fully web-based product template development environment. This tool saves product
templates both in the product template database and also as programs written in the
PTL1 XML language. This allows users to query the product template database and
obtain information about the various product templates that have been developed.

Additionally, benefit engineers can test and manage product templates’ versions
and the product part libraries that are used to build them.

Benefit Configurator is a PTL interpreter that runs these programs and generates an
interactive series of questions to be answered by specialized sales representatives;
then, based on the answers provided, it produces a health care insurance policy for the
client (an answer set) and saves it to the answer set database.

The answer sets database is then transformed and imported into various down-
stream systems, including legal (text) contract generators and various claims systems
among others.

1 PTL stands for Product Template Language.

 Hypertextual Programming for Domain-Specific End-User Development 229

2.1 Product Template Language

We created an internal domain-specific language for product template specification.
The Product Template Language (simply called PTL) is an XML [13] language that
was built as an extension of the Cytera.Rules language [14]. Cytera.Rules is a Cytera
Systems Inc. proprietary XML business rules language that allows the creation and
evaluation of basic string, mathematical and boolean-based rules. PTL allows the
representation and processing of rules involving objects and operations that are spe-
cific to the health-care insurance area.

In order to run PTL, almost all of the Cytera.Rules language interpreter had to be
rewritten. To avoid this inconvenience in future projects, we developed a business
rules language called AtOOmix with the aim of allowing the creation and implemen-
tation of XML domain-specific languages as extensions of existing AtOOmix lan-
guages without the need to fully rebuild the original languages and interpreters [15].

2.2 Benefit Catalog Hypertextual Programming Environment

It is important to point out that the benefit engineers never had direct contact with
PTL. A fully web-based PTL editor was developed as the core of the Benefit Catalog
application. This editor has several features aimed at facilitating the benefit engineers’
tasks. Benefit Catalog represents the PTL code of an existing product template as a
hierarchical collection of web pages that the user can navigate through.

Benefit Engineers never had to learn PTL, they only had to use the web-application
that serves as user-interface. This is similar to the case of users that employ a web-
application to populate a database: these users never have to deal directly with the
database tables; they merely have to interact with the web-application.

Benefit engineers can also create and modify PTL code with Benefit Catalog.
Fig. 2 shows how a new question is created. First, the user activates the Attach Plan
Choice Question anchor in the Grouping node. This takes the user to the Question
node. In this case, since it is a new question, users must fill-in the appropriate fields
and then click on the Attach button. A benefit engineer can also create a new question
by copying and then modifying an existing one. The Copy link is also shown in Fig. 2.

Right after a question has been created, and also throughout subsequent develop-
ment sessions, benefit engineers can use navigation to go back to the question to
inspect or modify it, e.g. change the grouping it belongs to, add a rule to turn-on the
question or change the set of possible answers.

As a comparative example, the following code is a simplified PTL representation
of a plan choice question:

<grouping name=“Deductible”>

 <pcq question_part=“fam_ded”>

 <when_turned_on_rule>

 <operation op=“=”>

 <var type=“String”>ded_yn</var>

 <const type=“String”>Yes</var>

230 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe

 </operation>

 </when_turned_on_rule>

 <quality_type>core</quality_type>

 <funding_type>SI</funding_type>

 <seq>1</seq>

 <eff_dt>05/11/2005</eff_dt>

 <trm_dt>05/11/2007</trm_dt>

 <save>Y</save>

 <txt>Do you want a family deductible?</txt>

 <answer type=“String” qi=“Core” cc= “Y”

 mndt=“Federal”>Yes</answer>

 <answer type=“String” qi=“Core” cc= “Y”

 mndt=“Federal”>No</answer>

 </pcq>

...

Writing these rules manually requires an important effort. The syntax is complex
and many language conventions have to be taken into account. For example, all ques-
tions have to reference previously defined question parts and answers. This is also
true of quality types, funding types, quality indicators, cost containment and mandate
indicators. In all these cases, with Benefit Catalog, values are assigned by simply
choosing them from select lists. The application interface enforces the language con-
ventions instead of leaving that burden to the user.

Reading questions directly from PTL would also a problem for the end-user, espe-
cially as the number of questions becomes large (a template with more than 200 rule-
activated questions is not unusual). The background web page shown in Fig. 2 is an
example of high-level code visualization. Questions belonging to a specific group are
displayed on a single page. At this level, only the most critical question information is
displayed to provide the user with a comprehensive view of the set of questions that
form the group.

Using this web interface, benefit engineers can add other constructs used in prod-
uct templates like cost sharing components and define rule-driven properties for them.
Users can also define benefit options, benefit service levels for the benefit options and
rules to populate them with the dynamic cost sharing components previously defined.
For sake of space and simplicity, we do not provide the details of all these program-
ming primitives in this paper. The number of these additional primitives is at least
five times higher than the ones related to plan choice questions and involve more
health-care insurance-specific concepts that are not as easy to explain as questions
and answers. The main features of hypertextual programming on this system are ade-
quately illustrated with plan choice questions.

 Hypertextual Programming for Domain-Specific End-User Development 231

Fig. 2. Creating a new question in Benefit Catalog

To complete the program lifecycle, benefit engineers can run their product tem-
plates in a test environment, manage different versions of the same product template
and activate it for it use in a production environment where it is used to interactively
configure health-care plans. It is important to point out that all of this process is done
by the benefit engineers themselves through Benefit Catalog and without the interven-
tion of IT staff or professional developers.

3 Hypertextual Programming

Benefit Catalog and other applications that provide similar features cannot be ade-
quately characterized neither as visual programming tools nor as text or structure
based editors either. Rather, Benefit Catalog can be seen as an example of hypertex-
tual programming.

We define hypertextual programming as a form of programming that uses naviga-
tion as the primary tool to inspect and edit the application code, and is supported by a
computer system that: i) represents the entire program source code as hypertext; and
ii) allows all the possible finite language instances to be generated as navigation paths
through it.

In contrast to hypertextual programming, visual programming provides the user
with a set of mainly graphic (as opposed to purely textual) elements that users can
manipulate in order to develop a program. Benefit Catalog does not provide a graphic

232 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe

representation of programs (in this case product templates); it rather provides an in-
teractive system where the users can explore and modify the program code by using
navigation.

At the same time, this application is no traditional text editor either. Text editors
usually present programs as collections of characters divided in files. Development is
achieved mainly by adding and deleting characters in those files. Integrated develop-
ment environments like Eclipse [16] provide some forms of navigation between dif-
ferent portions of the program code and features like auto-complete; however, we
consider that they do not provide all the necessary features for hypertextual program-
ming. First, navigation is not the primary means for source-code browsing and –most
importantly– editing. Second, the source code structure at large is not represented as
hypertext.

One basic definition of hypertext describes it as text structured in such a way that it
has several possible reading paths. An example that satisfies this definition is the
famous novel “Rayuela” by Argentinian writer Julio Cortazar. However, several au-
thors insist on having automated navigation support for an artifact to be considered a
hypertext system [6]. In the same fashion, we view hypertextual programming as an
activity that is inseparable from a computer system that provides automated support
for its key aspects. We call this computer system a hypertextual editor.

This definition requires program inspection and editing to be done primarily
through navigation, but in our experience, the combination of this and other pro-
gramming and interface construction techniques offer bigger potential. As an exam-
ple, we found that mathematical and logical formulas may not always be well suited
for hypertext representation. Breaking up such formulas in various nodes would lead
to unnecessarily long navigation paths that contain very little information in each one
of them. Consider the following formula:

1 + (2 * (Math.cos(a + b)))

If we represent it as eight nodes (1, +, 2, *, Math.cos, a, +, b) and provide the
corresponding navigational links between them, very little information would be dis-
played in each node and the user would have to traverse a long navigation path just to
read it.

This example is representative of other cases where better results might be ob-
tained simply by using text to represent sub-parts of a language. In these cases, the
text subparts can be used as node components.

In other cases, graphic elements may be more expressive to represent sub-parts of a
language. Again, these graphic elements may also be used as node components.

When creating or altering language elements (e.g. adding a question or a group),
users are creating or modifying node and link instances; they expect these changes to
be reflected in the space that they are navigating (the specific instance of the naviga-
tional model at a given time). In other words, with hypertextual programming, the
development of a computer program can be viewed as the construction of a navigation
space, or more formally, as the iterative instantiation of a given navigational model.

Our definition requires the language syntax to be represented through hypertext. In
the next section, we give a more detailed description of how a widely used language
syntax definition can be represented in this way.

 Hypertextual Programming for Domain-Specific End-User Development 233

3.1 Expressing Language Syntax through Hypertext

Several web engineering methodologies separate conceptual design from navigational
design in such a way that the nodes and links in navigational models are based on the
objects, attributes and relations found in the conceptual model [8,9,10,11,12]. For
example, Fig. 3 shows the conceptual and navigational models for part of a health
care information website in OOHDM [8].

In OOHDM, navigational objects (nodes and links) are explicitly defined as views
on conceptual objects. Nodes are composed of attributes that potentially belong to
several classes in the conceptual model. In the conceptual model shown in Fig. 3, a
Medical Condition class has as attributes the Name and General Information about it.
The symptoms associated with a condition are a related but separate class. Treatment
is also on a separate class.

In the navigational model, a node based on the Medical Condition conceptual class
shows more than merely the Name and General Information. A list of Symptoms,
Tests and available Treatments are also displayed in this node. Here, only Test names
are displayed (other attributes are hidden at this level), and these names are anchors
that trigger navigation to the Test node. A similar thing occurs with the Treatment
node. However, not necessarily all conceptual classes become nodes. In our example,
there is no node corresponding to the Symptom class.

Fig. 3. Conceptual and Navigational models for a health care information website

234 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe

Links are the navigational realization of relations appearing in the conceptual
model. In our example, the Has relation between the Medical Condition and Treat-
ment conceptual classes becomes the Has link between the Medical Condition and
Treatment nodes.

This separation of concerns allows web developers to deal with the understanding
of complex domains and the creation of a navigational scheme that expresses this
underlying domain as separate issues. At the same time, these practices force the
developers to elaborate a solid and coherent underlying foundation (the domain
model) that will be rendered to the web site user in the form of a concrete navigation
structure.

A hypertextual editor’s navigational design should also express an underlying
structure. The key difference is that the underlying structure being expressed through
navigation is not an object model, but rather the syntax of a domain-specific pro-
gramming language. In order to do this, there must be a correspondence between
language syntax and navigational design. Fig. 4 is an example of the correspondence
between PTL syntactic elements as defined in XML Schema [17,18] and part of
Benefit Configurator’s navigational classes.

Fig. 4. An example of correspondence between PTL’s XML Schema-defined syntax and Bene-
fit Catalog’s navigational class diagram. PTL’s XML Schema is presented using XML Spy’s
visual schema notation. Tag attributes are not shown.

Nodes have a correspondence with XML language tags. The node’s content may
come from the data contained in the tag that it represents and also from related tags.
For example, the Question node contains, among other things, the grouping name,
from the parent Grouping tag; the question text attribute, from the QuestionText child
tag; and the list of answers for the question, from the Answer tags below.

 Hypertextual Programming for Domain-Specific End-User Development 235

Not all tags become nodes. For example, there is no node that corresponds to the
Answer tag. The contents of these tags are displayed in the Question node. Also note
that not all the complete contents of a tag are shown in the node that represents it. For
example, the Grouping node does not show all the details of the Question tags that it
contains. The question of what tags should constitute nodes and what information to
include in them are design choices that have to be decided by the software engineers
in charge of the project. General Web design and usability guidelines should be taken
into account [19].

Nodes are weaved by the links that connect them in such a way that links corre-
spond to the syntactic rules that define the language structure. The links in Benefit
Catalog correspond to the XML Schema definitions that specify the tag structure. For
example, the contains link from Grouping to Question corresponds to the xs:sequence
XML Schema definition that specifies the content of the Grouping tags to include a
sequence of Question tags.

One last element that needs to be defined in order to complete the navigation de-
sign is the context diagram. The context diagram groups navigational objects into sets
and defines access structures that the user can employ to reach and move through
these objects. Fig. 5 shows part of the context diagram for Benefit Catalog.

Fig. 5. Part of the Benefit Catalog context diagram

From the main menu, users have direct access to an index of product templates,
listed alphabetically. When users access this index, they enter into the Product Tem-
plate Alphabetical context, where product templates are listed by name. From that
context, the user can go to the Groupings context where groupings are displayed by
sequence order.

Although Benefit Catalog does not use this feature, in OOHDM, navigational
classes may be decorated when appearing in a particular context. Decorating naviga-
tional classes may become important as more potent context diagrams are built.

236 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe

3.2 Navigating beyond Syntax

Benefit Catalog has a very simple context diagram that stems directly from PTL’s
hierarchical XML Schema definition, e.g. groupings and questions are only displayed
by sequence.

It is important to point out that many other contexts can be built around these navi-
gational elements, providing the user with different views of the program code. For
example, a possible improvement for Benefit Catalog could be displaying questions
indexed by the variables that are used in its activation rules, or by its answers. This
would help visualize what questions a certain variable helps turn on and off, or in
what questions a certain answer is used in.

In fact, navigational design in web engineering in general is to a large extent, the
definition of the various navigational contexts that the user will be traversing while
performing the various tasks the applications purports to support. Therefore, the natu-
ral place to look for them is in the task descriptions (for example, in user interaction
diagrams).

The potential features of hypertextual editors go beyond merely representing the
underlying language syntax. The various tasks performed by end-users should be an
important guide for organizing sets of navigational elements.

4 Related Work

4.1 Hypertext CASE Tools

There are different ways in which hypertext can support the software engineering
process. Sometimes, these approaches are hard to compare because they may all use
hypertext but they use it in completely different ways or to address different software
engineering problems.

Østerbye developed a system to explore the idea of using hypertext for literate pro-
gramming [22]. The goal of this work was to use the linking capabilities of hypertext
to help weave together smalltalk code and documentation to facilitate inspection. In
classic literate programming spirit, the aim was to construct a human-oriented repre-
sentation of code and documentation. By using hypertext, the program can go beyond
a linear document.

However, the advantages of this technique come at a great cost. The developer has
to design all the navigation for the hypertext program representation. Even the authors
point out that a drawback of this technique is “the well-known problem of hypertext,
that one looses the feeling for where the information presently available at the screen
belongs in the overall document”.

First, it is important to point out that this system, and literate programming in gen-
eral, assumes that there is an underlying programming language that will be used in
the development process (Smalltalk in this case). Literate programming (with or
without hypertext) uses this basic tool –the programming language(s)–, rearranging
and combining source code with documentation in order to make them easy to absorb
by a human reader; we can say that literate programming is at least one-level above
purely textual programming languages. Hypertextual programming is proposed as an

 Hypertextual Programming for Domain-Specific End-User Development 237

alternative to textual programming languages. Moreover, hypertextual programming
could be used for literate programming.

There are some similarities between this literate programming system and the hy-
pertextual environments described in this paper. In this literate programming system,
some of the Smalltalk constructs are represented as nodes and some of the syntax
rules as links. However, this relationship is not strict and the nodes contain important
portions of textual code.

This Smalltalk literate programming system does not conform to our definition of
hypertextual programming. Although the result of the programming process is hyper-
text (a program-document that developer can navigate through) and navigation may
be used throughout the development process, programming is done primarily by edit-
ing text, not by using navigation. The most important criterion or our definition is not
met. By using this or a similar system, the end-user would still have to learn a textual
programming language. That’s precisely what we are trying to avoid.

Using hypertext for end-user development also has to address the user disorienta-
tion problem. In order to do this, the web engineering techniques discussed in this
paper were developed in part to deal with this problem. However, using these tech-
niques for designing navigation is in turn a costly task usually done by professional
web engineers. As opposed to this Smalltalk literate programming system, the present
proposal does not leave navigational design to the developer (in our case, an end-user
doing development). When designing a hypertextual editor, engineers have the re-
sponsibility of transforming language syntax into navigational design and create an
application where the user is less likely to get lost.

Then, when end-users add or modify navigational elements, they may create links
and nodes, but these actions do not alter the underlying navigational model (they
simply instantiate it).

The Chimera open hypermedia system [23] uses hypertext to help manage and
combine heterogeneous software engineering tools. Some of these engineering tools
are programming language IDEs. Chimera also uses hypertext at a level above pro-
gramming languages. The same can be said about Ishys [24].

Hypertextual programming editors may be one of the many systems combined by
Chimera and other open hypermedia systems.

4.2 Visual and Textual Programming

Visual programming languages provide “some visual representations (in addition to
or in place of words and numbers) to accomplish what would otherwise have to be
written in a traditional one-dimensional programming languages” [25]. Despite its
advantages, visual programming may have scalability problems [5], including scal-
ability from a program-size standpoint and also scalability from a problem-domain
standpoint.

From a program-size standpoint, the Benefit Catalog example that we presented
was successfully used by end-users to develop programs (dynamic health care prod-
ucts) that are sizable and complex by various measures: i) the programs had several
thousand rules; ii) they were collaboratively developed; iii) the development process
of these programs typically takes several months; iv) these programs went through
several maintenance cycles.

238 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe

The various levels of abstraction and potentially different views of the source code
given by a well-designed hypertextual editor, provide an adequate tool to deal with
large programs.

From a problem-domain standpoint, this paper has provided guidelines to build hy-
pertextual editors for any character-based, domain-specific language. Since domain-
specific languages have been used in several areas, this suggests that hypertextual
programming may also be scalable on this respect. In fact, we have used this tech-
nique in health-care insurance, small business rules definitions and programming
email alerts for an academic system.

Visual programming techniques may be more appropriate to express some pro-
gramming concepts. Even in these cases, hypertextual programming is well-suited for
use in combination with visual and other programming and interface construction
techniques.

In the case of textual programming, having to learn the syntax and conventions of
character-based programming languages constitutes a considerable problem for end-
users. The importance of this problem cannot be overstated. Providing a hypertextual
editor that embodies the syntax and language conventions, transforming them in navi-
gational paths to be traversed by the end-user significantly reduces this burden.

However, in the case of end-users who have already learned a textual domain-
specific language, there may be no clear advantage in starting to use a hypertextual
editor for the same language.

5 Conclusions and Future Research

In this paper we introduced the concept of hypertextual programming. This
programming technique represents the program code as hypertext [6], allowing the
end-user to inspect and modify this code mainly by using navigation.

Millions of users navigate the World Wide Web. Hypertextual programming lever-
ages this widely available end-user skill to facilitate the construction of computer
programs.

The user is provided with an environment that allows interactive source code ex-
ploration through navigation. A well-designed environment could facilitate reading
and understanding by providing various views of the source code at potentially differ-
ent levels of abstraction and a consistent way to move between them.

In a hypertextual editor, the user interacts with interface elements in order to mod-
ify the program code. On any given node, a carefully chosen set of relevant editing
controls allows program modification without overwhelming the user. When com-
bined with DSLs, many of these interface components may represent concepts that are
familiar to the user. This technique is expected to significantly reduce the learning
effort needed to begin developing domain-specific programs.

We presented and discussed a concrete example of a hypertext editor, Benefit Cata-
log, both as validation and to illustrate this technique. On this application, end-users
have been effectively developing, testing, debugging, maintaining, deploying and
running complex programs for dynamic health care policy configuration without the
intervention of professional programmers or IT staff.

 Hypertextual Programming for Domain-Specific End-User Development 239

Beyond syntax representation, various navigational contexts may be created in or-
der to provide the user with a rich set of navigation paths that take into account the
various tasks that form the software development process.

However, reaping the benefits described above requires well-designed hypertextual
editors. This entails significant engineering challenges. Among other things, editors
have to express the syntax of the underlying language through a concrete navigational
and interface design to begin with. In this paper, we argue that many of the techniques
used in web engineering, most noticeably design methodologies [8,9,10,11,12], can
be helpful on this respect, leveraging years of academic research and real-world ex-
perience.

Hypertext has been used in programming before. We reviewed three representative
examples [22,23,24]. In general, all of these tools and techniques assume that there
are one or more underlying programming languages and use hypertext to rearrange
and/or link the potentially different program sources with other documents and prod-
ucts of the software engineering process. In general, they use hypertext on an above-
language level. As an exception, in the Smalltalk literate programming system that we
reviewed [22], some of the Smalltalk syntax is expressed in the form of links. How-
ever, nodes still contain significant portions of textual code and the rendering of the
program in the form of nodes and links is guided by the literate-programming goal of
human readability. In this system, although navigation may play a role in the devel-
opment process, it is not the primary means to edit the program code. Text editing is
still a central part of the development process. Therefore, this system does not con-
form to our definition of hypertextual programming. More importantly, the user has to
know Smalltalk in order to use this system. The need to learn a textual language is
precisely what hypertextual programming tries to avoid.

We made a comparison with these tools mainly to clarify that their use of hypertext
is different and addresses other problems related to software development. The side-
by-side comparison should not be with these techniques, but mainly against visual and
textual programming.

Hypertextual programming is different from visual programming. The first does
not rely mainly on the expressive power of graphics to facilitate the development
process; it rather relies on the organization of the source code as a set of nodes and an
intuitive mechanism to move around these nodes: navigation.

It has been argued that visual programming may have scalability problems [5].
Hypertextual programming can help to mitigate the problem of dealing with a great
number of visual primitives at one time by providing different views of the program
code and a systematic mechanism to tie them up: navigational links. At the same time,
hypertextual editors can benefit from the use of visual techniques as part of their in-
terface.

We provided general guidelines to build hypertextual editors for textual, domain-
specific languages. This suggests that hypertextual programming may also be useful
in different areas (domain-scalability). In fact, we have used this technique in health-
care insurance, small business rules definitions and programming email alerts for an
academic system.

With textual programming, the user has to learn the syntax and conventions of
character-based programming languages. This constitutes a significant problem that
hypertextual programming may help to solve. Providing a hypertextual editor that

240 S. Ortiz-Chamorro, G. Rossi, and D. Schwabe

embodies the syntax and language conventions, transforming them in navigational
paths to be traversed by the end-user may significantly reduce this burden.

We discussed some basic correspondence principles that should exist between
XML Schema [17] syntax elements and a navigational model that may serve as guides
in the design process. Still, more formal and detailed methodologies for designing
hypertextual editors could be developed in the future.

Moreover, a careful and detailed review of the use of navigational contexts for
building hypertextual editors may be beneficial.

Several design patterns for hypertext in general have been developed [20] since
they were first introduced in [21]. Design patterns that are specific to hypertextual
editors may be needed. In our experience, building nodes that are overly small or
providing an excessive number of editing controls on a single node are not desirable.
However, some of these problems may be related to more fundamental limitations of
this technique. The answer may lie in the fact that some languages may be more suit-
able than others for use with hypertextual programming.

Our definition requires the hypertext editor to be able to generate all possible finite
instances of the language and it requires navigation to be the main inspection and
editing mechanism. Although a more formal demonstration should be performed, one
seemingly direct consequence is that all (or at least the main) editing tasks for the
given language should be achievable through navigation.

This paper discusses mainly languages defined in XML Schema. The specifics of
other grammars deserve further investigation.

Since a hypertextual development environment has a correspondence with the syn-
tactic elements of the underlying code, it may be viewed simply as a mapping be-
tween the language syntax and the possible ways of representing these elements as a
web-application (the formatting and layout could be specified separately with CSSs).
We are currently designing a web-based hypertextual editor generation application for
XML Schema-defined languages.

The development environments discussed on this paper are mainly web-
applications. Other forms of hypertext should also be considered.

References

1. Martin, J.: An Information Systems Manifesto. Prentice-Hall, Englewood Cliffs (1984)
2. Cypher, A. (ed.): Watch What I Do: Programming by Demonstration. MIT Press, Cam-

bridge (1993)
3. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-User Development: An Emerging

Paradigm. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, pp. 1–8.
Springer, Netherlands (2006)

4. Jess, the Rule Engine for the Java Platform, http://herzberg.ca.sandia.gov/
5. Burnett, M.M., Baker, M.J., Bohus, C., Carlson, P., Yang, S., van Zee, P.: Scaling up Vis-

ual Programming Languages. IEEE Computer 28(3), 45–54 (1995)
6. Conklin, J.: Hypertext: an introduction and survey. Computer 20(9), 17–41 (1987)
7. Murugesan, S., Desphande, Y.: Web Engineering. Software Engineering and Web Appli-

cation Development. LNCS-Hot Topics. Springer, New York (2001)
8. Schwabe, D., Rossi, G.: An Object Oriented Approach to Web-Based Application Design.

Theory and Practice of Object Systems 4(4) (1998)

 Hypertextual Programming for Domain-Specific End-User Development 241

9. Fons, J., Pelechano, V., Albert, M., Pastor, O.: Development of Web applications from
Web enhanced conceptual schemas. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuer-
mann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 232–245. Springer, Heidelberg (2003)

10. Ceri, S., Fraternali, P., Matera, M.: Conceptual modeling of data-intensive Web applica-
tions. IEEE Internet Computing 6(4), 20–30 (2002)

11. Knapp, A., Koch, N., Zhang, G., Hassler, H.M.: Modeling business processes in Web ap-
plications with ArgoUWE. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.)
UML 2004. LNCS, vol. 3273, pp. 69–83. Springer, Heidelberg (2004)

12. De Troyer, O.: Audience-driven Web design. In: Rossi, M., Siau, K. (eds.) Information
Modeling in the New Millennium. IDEA Group Publishing, Hershey (2001)

13. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup
Language (XML) 1.0., 3rd edn. W3C Recommendation (2004)

14. Ortiz-Chamorro, S.: Cytera. Rules Language Specification. Technical Report, CyteraSys-
tems (2001)

15. Ortiz-Chamorro, S., Aquino, N., Rubin, R., Cernuzzi, L.: AtOOmix: un Lenguaje Extensi-
ble de Reglas de Negocios. In: Proceedings of CLEI 2008 (to appear) (2008)

16. Eclipse Home, http://www.eclipse.org/
17. Thompson, H.S., et al.: XML Schema Part 1: Structures, 2nd edn. W3C Recommendation

(2004)
18. Biron, P.V., Malhotra, A.: XML Schema Part 2: Datatypes, 2nd edn. W3C Recommenda-

tion (2004)
19. Nielsen, J.: Designing Web Usability: The Practice of Simplicity. New Riders Publishing,

Indianapolis (1999)
20. Hypermedia Design Patterns Repository,

http://www.designpattern.lu.unisi.ch/index.htm
21. Rossi, G., Schwabe, D., Garrido, A.: Design reuse in hypermedia applications develop-

ment. In: Proceedings of Hypertext 1997, pp. 57–66 (1997)
22. Østerbye, K.: Literate Smalltalk Programming Using Hypertext. IEEE Transactions on

Software Engineering 21(2), 138–145 (1995)
23. Anderson, K.M., Taylor, R.N., Whitehead, E.J.: Chimera: hypermedia for heterogeneous

software development enviroments. ACM Transactions on Information Systems 18(3),
211–245 (2000)

24. Garg, P.K., Scacchi, W.: ISHYS: Designing an Intelligent Software Hypertext System.
IEEE Expert: Intelligent Systems and Their Applications 4(3), 52–63 (1989)

25. Shu, N.: Visual Programming. Van Nostrand Reinhold, New York (1988)

	Hypertextual Programming for Domain-Specific End-User Development
	Introduction
	Benefit Catalog and Benefit Configurator
	Product Template Language
	Benefit Catalog Hypertextual Programming Environment

	Hypertextual Programming
	Expressing Language Syntax through Hypertext
	Navigating beyond Syntax

	Related Work
	Hypertext CASE Tools
	Visual and Textual Programming

	Conclusions and Future Research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

