
Accessibility at Early Stages: Insights from the Designer
Perspective

Adriana Martín1,2 Alejandra Cechich1 Gustavo Rossi
1GIISCo, Dpto. de Ciencias de la Computación, Universidad Nacional del

Comahue, Neuquén, Argentina
Tel: (+54) 299 4490 312

2Unidad Académica Caleta Olivia, Universidad Nacional de la Patagonia
Austral, Caleta Olivia, Santa Cruz, Argentina

{adrianaelba.martin};{acechich}@gmail.com

LIFIA Research Group, Facultad
de Informática, Universidad

Nacional de La Plata and Conicet,
Calle 115 e/ 49 y 50, (1900)

La Plata, Argentina
Tel: (+54) 0221 4228 252

gustavo@sol.info.unlp.edu.ar

ABSTRACT
Usually, a huge number of tools and proposals help developers
assess Accessibility of Web applications; however, looking from
the designer perspective, there is no such a similar situation. It
seems that creating accessible Web sites is more expensive and
complicated than creating Web sites and then assessing/modifying
them. Although this feeling may be largely true, the benefits of
modeling Accessibility at early design stages outweigh the needs
of a developer to implement that Accessibility. A designer can
learn the basics of Web Accessibility and then he/she should be
able to incorporate this knowledge into his/her software
architecture. The point is to have an idea of how to do so from the
beginning. In this paper, we briefly introduce our proposal to
model Web Accessibility by moving from abstract to concrete
architectural views using aspect-orientation. Our approach takes
advantages of modeling Accessibility as an aspect-oriented
concern, which is independently treated but related to
architectural pieces. We illustrate the approach with a case study
and elaborate some insights from the designer perspective.

Keywords
User Interface Models; Web Engineering; Aspect-Oriented
design; Accessibility early design.

1. INTRODUCTION
The Word Wide Web Consortium (W3C) is one of the main
referents of Web Accessibility and has worked for more than ten
years in the development of a standard called Web Content
Accessibility Guidelines (WCAG) [27], which is considered a
benchmark for most of the laws on Information Technology and
Communication worldwide. Based on these recommendations, a
number of tools and approaches have emerged in recent years and
are available to support Web developers evaluating Accessibility
of existing Web applications. However, as we shall see next in the
related work section, there are not so many similar efforts for
early design with the principles of Accessibility in mind [17]. In
most cases Accessibility is considered as a programming issue or

dealt with when the Web application is already fully developed,
and in consequence the process of making this application
accessible involves significant redesign and recoding, which may
be considered outside the project’s scope and budget [12].
Although, Accessibility is a vital quality attribute for people with
disabilities, it has not yet gained enough recognition as a crucial
non-functional requirement and success factor for Web
applications such as security, performance, accuracy and usability.

Figure 1. A Student’s Login Web Page.

Our modeling approach [18] proposes to include Accessibility
concerns systematically within a methodology for Web
applications development. Firstly, to find out how Accessibility
concerns should be introduced in the development life cycle, we
analyzed how mature model-driven1 Web Engineering (WE2)

1 Model-driven (MD) engineering is a software development
methodology which focuses on creating and exploiting domain
models –i.e. abstract representations of the knowledge and
activities that govern a particular application domain, rather than
on the computing (or algorithmic) concepts.
2 Web Engineering (WE) is the application of systematic and
quantifiable approaches, such as concepts, methods, techniques,
tools, to cost-effective requirements analysis, design,
implementation, testing, operation, and maintenance of high-
quality Web applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or fee. a
W4A2011 – Submission Type Technical, March 28-29, 2011,
Hyderabad, India. Co-Located with the 20th
International World Wide Web Conference.
Copyright 2011 ACM 978-1-4503-0476-4 ...$5.00.

methods such as UWE [14], OOHDM [24], OOWS [10] or
WSDM [9] face this cycle. We realized that all of them comprise
several activities to focus on some specific design concerns;
however, since OOHDM fulfill many of our expectations, we
decided to join our modeling approach to this particular WE
method. As an example of the rational of choosing OOHDM as
our host WE approach, we have to mention the different views
provided by OOHDM at the user interface (UI) model. This fine-
grained treatment allows us to move from abstract interface
elements, which are from the widget ontology [24], to concrete
interface elements --e.g. HTML elements, and link both levels of
abstraction from a UI design perspective [15] to WCAG
checkpoints. Secondly, since designing accessible Web
applications involves the analysis of different interests, we
proposed to use Aspect-Oriented Software Development (AOSD)
design principles and WCAG to support the construction of
accessible user interfaces. The fact that we choose aspect
orientation to develop our proposal ensures handling naturally the
non-functional, generic and crosscutting3 characteristics of the
Accessibility concern.

As a motivating example and to introduce properly the ideas
behind our modeling approach, let us suppose a typical Web page
whose purpose is a student’s login aiming at his/her identification
at his/her Argentine university system. Figure 1shows the page for
the student’s login which provides a user interface composed of
HyperText Markup Language (HTML) elements, such as labels
and textfFields. To help to an accessible interaction experience
these HTML elements must fulfill some Accessibility
requirements, which crosscut the same software artifact (the Web
page for student’s login). For example, and as we will see in detail
later, at the presentation level an HTML label element is a basic
layout Accessibility requirement for many other HTML elements.
Since a Web page for student’s login requires at least two
textField elements (for student’s ID and password respectively),
the presence of their respective label elements must be tested. So,
to propitiate an accessible interaction experience on behalf of the
student, this layout requirement must crosscut the same software
artifact (the Web page) more than once, according to the number
of textField elements included in the presentation. Additionally, it
is highly important to consider the positioning of the label element
with respect to a textField element; this technological requirement
for “until user agents” [28] --i.e. earlier “user agents” [30], also
crosscuts the Web page. Clearly this kind of behavior perfectly
fits the “scattering” and “tangling” problems4 which motivate the
main AOSD principles.

3 “Croscutting” is a term used for certain type of functionality

whose behavior causes code spreading and intermixing through
layer and tiers of an application which is affected in a loss of
modularity in their classes. Quality requirements (such as
Accessibility), exception handling, validation and login
managements are all examples of this common functionality
which is usually described as “crosscutting concerns” and
should be centralized in one location in the code where possible.

4 “Scattering” and “Tangling” symptoms are typical cases of
“crosscutting concerns” and they often go together, even though
they are different concepts. A concern is “scattered” over a class
if it is spread out rather than localized while a concern is

We have developed a supporting tool [19] to assist our proposal
for developing accessible user interfaces (UI) for Web
applications. Thus, based on our modeling approach [18] assisted
by a supporting tool and using the case study bellow, this work is
focalized on providing insights from the designer perspective
when developing with the Accessibility concern in mind.

Since Accessibility is a critical quality factor to the success of
Web applications, this paper is focused at the following:

 We briefly introduce our aspect-oriented approach, whose
evolution can be tracked through [16][18][19], to show the
advantages of modeling Accessibility concerns from the
beginning and within a systematic development.

 We convey the experience gathered during the study and
comparative application of ours and other approaches in the
field of Accessibility design.

 We provide some insights trying to be critical enough to
encourage towards the adoption of design principles and to call
for Accessibility awareness within the developer community.

The rest of the paper is structured as follows: in Section 2, we
briefly introduce five related work. In Section, 3 we discuss some
background issues needed to understand our approach. In Section
4, we offer an overview of our approach using a real application
example as a case study to illustrate our ideas. Section 5 continues
with the case study and discusses some insights from the
Accessibility design field. Finally, in Section 6, we conclude and
present future work.

2. RELATED WORK
Our approach makes possible to treat Accessibility as an
independent AOSD concern at early stages of the development’s
life cycle, therefore eliminating crosscutting and as a consequence
allowing more modular system development, and the reuse of
Accessibility aspects. Following, we briefly introduce five similar
approaches that consider modeling the Accessibility concerns in at
least, some of the stages of the development life-cycle.
For example, the main goal in Plessers et al. [23] is to produce
annotations for visually impaired users automatically from the
explicit conceptual knowledge existing during the design process.
The approach integrates the Dante [31] annotation process into the
Web Site Design Method (WSDM) [9] that allows Web
applications to be developed in a systematic way.
The work by Centeno et al. [6] presents a set of rules which a
design tool must follow in order to create accessible Web pages in
a Web composition process. These rules are formalized with W3C
standards like XPath5 and XQuery6 expressions, defining
conditions to be met in order to guarantee that Accessible chunks
of Web pages are safely compound into a page that also results
Accessible. The authors also propose using the “Web
Composition Service Linking System” (WSLS) [11] as
Accessibility enabled authoring tool that makes this task feasible.

“tangled” when there is code pertaining to the two concerns
intermixed in the same class (usually in a same method).

5 W3C XML Path Language at www.w3.org/TR/xpath
6 W3C XML Query Language at www.w3.org/TR/xquery

The accessible design proposed by Zimmermann & Vanderheiden
[33] is based on existing "best practices of software engineering"
as uses cases and scenarios, which were designed from its
conception to meet functional requirements. The approach defines
a new way of using proven tools of software engineering, such as
use cases, scenarios, test cases, guidelines and checkpoints, for
Accessibility purposes; and to relate them to each other to provide
with a process model for accessible design and testing.
The work by Casteleyn et al. [3], focuses on how to extend a
Hera-based Web application [13] with new functionality without
having to redesign the entire application. To add new
functionality, the authors propose to separate additional design
concerns and describe them independently. Casteleyn et al. latest
implementation [4][5] proposes a Semantic-based Aspect-oriented
adaptation approach materialized in the form of a domain specific
language, which the authors baptized Semantic-based Aspect-
oriented Adaptation Language (SEAL)7. To demonstrate the
practicality of their proposal, they apply and integrate SEAL in
HydraGen engine8 (an implementation generation tool for Hera-S
developed externally by the University of Eindhoven).
Finally, the work by Moreno et al. [20] proposes a domain
methodological framework for the development of accessible
Web applications, which is called Accessibility for Web
Applications (AWA). AWA proposes an Accessibility process
and support for modeling by using techniques provided by model-
driven development (MDD). The strategy in AWA is based on a
Computational Independent Model (CIM), called domain specific
AWA-Metamodel, which can be used to build Platform
Independent Models (PIMs) and Platform Specific Models
(PSMs) for accessible applications within WE methods.

3. UI DESIGN: INTERACTION
DIAGRAMS AND SOFTGOAL
INTERDEPENDENCY GRAPHS
In this section we introduce briefly two conceptual tools that
working together allow to record Accessibility concerns early and
as a reminder for design. They are: (2.1) User Interaction
Diagrams (UIDs) with integration points, and (2.2) Softgoal
Interdependency Graphs (SIGs) template for Accessibility.

3.1 Gathering Accessibility through UIDs
with Integration Points

A User Interaction Diagram (UID) [26] is a diagrammatic
modeling technique focusing exclusively on the information
exchange between the application and the user. UIDs can be used
to enrich the use cases models but they are also key graphical
tools for linking requirements at later stages of a WE development
process to obtain conceptual, navigational and user interface
diagrams. With the traditional perspective given by techniques
like [7][8] in mind, we introduce the concept of UIDs’s
integration points [16] to model the Accessibility concerns of a
user-system interaction. Particularly, we define two kinds of UIDs
integration points as follows:

 User-UID Interaction (U-UI) integration point. This is an
integration point for Accessibility at UID interaction level --i.e.,

7 http://wise.vub.ac.be/downloads/research/seal/SEALBNF.pdf
8 http://wwwis.win.tue.nl/~ksluijs/material/Singh-Master-Thesis-

2007.pdf

to propitiate an accessible communication and information
exchange between the user and a particular interaction of a UID
interaction diagram.

 User-UID Interaction’s component (U-UIc) integration point.
This is an integration point for Accessibility at UID
interaction’s component level --i.e., to propitiate an accessible
communication and information exchange between the user and
a particular UID interaction’s component of an UID interaction.

These integration points with different granularity provide two
alternatives for evaluating Accessibility during the interaction
between the user and the system. Figure 2 shows the resultant
UID, corresponding to the use case “Login a student given the
student’s ID and password” (introduced in Section 1 by Figure 1),
by applying our integration points technique. Notice that all the
students (including those with disabilities) will need to interact
with this online login Web page. As we can see in the example
shown in Figure 2, we define two integration points at UID
interaction <1> representing the student’s login user-system
interaction to consider, from the beginning, the Accessibility
requirements that make easy the access for all the students.

Figure 2. UID with Accessibility Integration Points: Login a

Student given the Student’s ID and Password.

Basically, the UID with integration points notation prescribes the
inclusion of a cloud for every UID interaction or UID
interaction’s component, where Accessibility is essential to the
user’s task completeness. The first cloud establishes the <1.1>
integration point to help convey the right semantics of the logo
image; while the second cloud establishes the <1.2> integration
point to propitiate an accessible form for user identification.

Figure 3. SIG Template for Accessibility.

3.2 Applying SIG Template for Accessibility
After specifying the Accessibility integration points of the UIDs
diagrams, we propose to develop a SIG diagram for WCAG 1.0
Accessibility requirements [16]. Figure 3 shows our SIG template
conceptual tool which we introduced taking into consideration
proposals from the user interface design literature [15].

Figure 3 shows our SIG template where the Accessibility
softgoal9 denoted with the nomenclature Accessibility [UID
integration point] is the root of the tree. The kind of the UID
integration point is highlighted into the root light cloud and
related to a particular UID interaction or UID interaction’s
component number. From the root node we identify two initial
branches: (i) the user technology support, and (ii) the user layout
support. The user technology support represents the Accessibility
softgoal concerns helping to help user’s browsing and interaction
by improving the Accessibility of user’s current and earlier
assistive devices and technologies (PDAs, telephones, screen
readers, etc.); meanwhile, the user layout support represents the
Accessibility softgoal concerns explicitly improving user’s
browsing and interaction focus on user’s interface issues. The
Accessibility softgoal concerns supply to their respective
supports, prescribing on how to present and/or to logically
organize the content we wish to convey to the user. They also
warn about the Accessibility barriers as a consequence of an
inappropriate choice of presentation and/or structural objects to
user’s interaction with the content. Now, with this statement in
mind, in order to associate the three design decision classes
related to user interaction from Larson’s user interface design
decision framework [15] --i.e., dialogue, presentation and
pragmatic, with the Accessibility softgoal concerns at some of the
SIG’s branches, we take into account the following considerations
(Rationale behind this decision can be found in [18]):

 The concerns at the user layout support are associated with the
dialogue and/or the presentation classes.

 The concerns at the user technology support are associated with
the dialogue and/or the presentation classes if they help
achieving device independence, especially focused on
supporting the constraints of earlier assistive devices --i.e.,
“until user agents” as defined by the W3C’s WCAG 1.0 [28];
meanwhile, they are associated with the three classes (dialogue,
presentation and pragmatic) if they are hardware-dependent.

For example, returning to Figure 2, we establish the Accessibility
softgoal for the interaction’s components <1.1> LogoImage and
<1.2> IDForm to guarantee accessible image and text input fields
for all the students by defining two User-UID Interaction’s
components (U-UIc) integration points for the login process at
UID interaction <1>. Finally, to instantiate the SIG template for
ensuring Accessibility concerns (shown in Figure 3) we work with
the W3C-WAI WCAG 1.0 guidelines [28]10. To facilitate the

9 We use the “softgoal” concept as described in [7][8]; from this

point of view a “softgoal” is the representation of a non-
functional requirement (NFR) that must be satisfied to improve
some quality factor, which in our case is Accessibility, of a
software under development.

10 We must note that although in this work we apply WCAG 1.0,
we are almost ready to migrate to WCAG 2.0 [23]; we turn to
this issue in Section 4.1

instantiation process of the SIG template we establish an
association table for groups of related HTML elements. Basically,
these association tables have the tasks of linking each abstract
interface element present at a user interface model (ontology
concepts from an Abstract Widget Ontology [24]) with their
respective concrete HTML elements, and with the Accessibility
concerns prescribed for those elements by the WCAG 1.0
checkpoints.

It is important to highlight that our approach provides five
association tables for groups of related HTML elements: (i) the
HTML control group; (ii) the HTML link and button group; (iii)
the HTML text and non-text group; (iv) the HTML structural
group; and (v) the HTML frame and style sheet group. We called
them association tables because of two strong reasons. On one
hand, they bind the WACG 1.0 checkpoints required for ensuring
Accessibility of the interface widgets present at each HTML
group --i.e. they identify the required checkpoint for interface
widgets present in a given Web page. On the other hand, they help
to classify these WCAG 1.0 checkpoints into the two initial
branches of our SIG template for Accessibility --i.e. they provide
for each HTML element present in a group, two generic aspects
working for the user’s layout and technology Accessibility
supports respectively.
Before proceeding, we must clarify that the Abstract Widget
Ontology [24] provides the vocabulary used to define the abstract
interface model specifying that an abstract widget can be any of
the following: (i) SimpleActivator, (ii) ElementExhibitor, or (iii)
VariableCapture. We refer the reader to [24] for further details of
the ontology. Returning to the explanation, the first step to obtain
these association tables comes from a mapping between abstract
interface widgets (ontology concepts from Abstract Widget
Ontology [24]) and concrete interface widgets (HTML elements).
While the reason for HTML elements at the concrete interface
model is completely clear, the purpose of the widget ontology is
to provide an abstract interface vocabulary to represent the
various types of functionality that can be played by interface
widgets with respect to the activity carried out, or the information
exchanged between the user and the application. Thus, the
ontology can be thought of as a set of classes whose instances will
comprise a given interface. Given these conceptual tools, the
instantiation process of the SIG template is conducted as a
refinement process over the SIG tree using the abstract interface
model and the association tables as a reference.

4. AN ASPECT-ORIENTED APPROACH
TO DEVELOP ACCESSIBLE UI FOR WEB
APPLICATIONS
We propose an iterative and incremental process, which uses, as
input, a set of Web application’s requirements as provided by any
WE approach (e.g., a set of use cases, goals, etc). The model we
envisage to deal with Accessibility concerns within a Web
engineering approach is illustrated in Figure 4, whose columns
indicate: (i) the overall process with their main activities (in the
middle), (ii) the conceptual tools and languages used (on the right)
along with relations to the stage of the process where they are
required, and (iii) the artifacts provided as input by the WE
approach and / or delivered as output by our process (on the left).
In order to ease reading, we need to recall here some previous
explanations. In Figure 4, most arrows indicate an input or output,
except for the UID and SIG diagrams as shown in Figure 4(2.1)
and 4(2.2), where the arrows are input/output. This is because

there are situations in which these artifacts could be developed
once and then reused in different Web projects.

Figure 4. Overview of Our Approach.

For example, Accessibility requirements of an image or a basic
data entry form can be modeled once, and later reuse in new
projects which require these interface elements. It is important to
highlight, that almost all WE approaches have an explicit
development activity for user interface design and, normally, a
user interface is specified by the abstract interface and the
concrete interface models, providing respectively the type of
functionality offered to the user by the interface elements and the
actual implementation of those elements in a given runtime
environment. So, given a user’s task, the SIG model provides the
WCAG 1.0 Accessibility checkpoints that crosscut the interface
widgets (both, abstract and concrete ones, as shown in Figure
4(3.1) and 4(4.1) respectively), to propitiate an accessible user
experience.

At stage 3 and as shown by Figure 4(3), our supporting tool
assists developers to discover and apply crosscutting concerns and
aspects from knowledge about Accessibility. Figure 5 shows the
class diagram of the tool’s architecture which has three main
components or layers: (1) Object Storage, (2) Core, and (3)
Presentation. Particularly, in Figure 5, we focus on the
Presentation layer which is isolated from the other layers and it is
only related to the Core layer by a dotted line, meaning that there
is no straight interaction between these two layers. Thus, the
interaction between these two layers, which includes reading and
analyzing the abstract interface model under treatment, takes
place in a transparent manner due to the proposed tool which
implements the typical behavior of aspect-orientation and fulfills
conformance to Accessibility Aspects I and II. As shown by
Figure 6(a) and we explain in Section 5, Aspect I and Aspect II
are specified for avoiding “scattering” and “tangling” symptoms
at the user layout and user technology supports for Accessibility.

To reproduce this behavior, the tool uses the Observer pattern and
their classes Subject and Observer; each instance of the Subject
class maintains a list of instances of the Observer class which are
notified of the changes that occur in their respective instance of
the Subject class. Applying these design concepts, at the
Presentation layer in Figure 5, the AccessibilityTool class is of the
class Subject, while at the Core layer in Figure 5, the
InterfaceAnalizer class is of the class Observer. Then, the list and
updates notification is implemented by the aspects environment
(AspectJ).

Figure 5. Class Diagram of Our Supporting Tool’s

Architecture.

Thus, when the developer saves the document edited for the
abstract interface model, this automatically triggers this aspect-
oriented functionality which is not explicitly invoked by some
element of the Presentation layer. Then, as shown in Figure 4(4)
and Figure 5(b), Aspects I and II can be seamless injected by the
“weaving” mechanism into the core --i.e., user interface models,
to achieve the Accessibility softgoal. As shown in Figure 4(4.1),
the consequence is an HTML code with the desired conformance
to the WCAG 1.0.

We refer the reader to [18][19] for a detailed description of our
method and supporting tool.

5. A MOTIVATING CASE
 As shown in Figure 4(2.1) and (2.2), we propose an early capture
of Accessibility concrete concerns by developing two kinds of
diagrams: the UID with Accessibility integration points and the
Softgoal Interdependency Graph (SIG) template for WCAG 1.0
Accessibility requirements. As we explained previously in
Sections 2 and 3, we propose these conceptual tools basically to
allow the representation of Accessibility requirements while
executing a user’s task.

For example, Figure 6(a) shows the SIG diagram, as a result of an
instantiation process of the SIG’s template, for the Accessibility
integration points outlined by the UID in Figure 2 to identify
WCAG 1.0 Accessibility requirements. For brevity reasons, we
develop in this diagram only the branch for the UID interaction’s
component <1.2> IDForm to guarantee accessible text input fields
for all the students, including those with disabilities. Applying the
SIG’s template and using the SIG’s notation and vocabulary, the
HTML form in the concrete interface model, corresponding to a

SUPPORTING TOOL

CompositeInterfaceElement of the abstract interface model, is the
focus of the Accessibility softgoal highlighted into the root light
cloud. As shown in Figure 6(a), the user technology support and
the user layout support branches are specified into light clouds
and dark clouds respectively. The light clouds represent the
refined Accessibility softgoal, --i.e., the required WCAG 1.0
guidelines; while the dark clouds represent operationalizing goals
--i.e., the required checkpoints to be satisfied. In this case, we use
for SIG’s instantiation the association table for the HTML control
elements, since the Accessibility softgoal is defined for an
IDForm.

Figure 6. Managing Crosscutting Symptoms in an Aspect-

Oriented Manner.

Returning to Figure 4(3), the Accessibility knowledge captured
and organized by SIG diagrams at early stages aids designers
making decisions through the abstract interface model, as shown
in Figure 4(3.1). The purpose here is to find out how WCAG 1.0
Accessibility requirements “crosscut” interface widgets required
for an IDForm. Since applying the required WCAG 1.0
checkpoints to be satisfied at the user interface causes typical
crosscutting symptoms --i.e., “scattering” and “tangling”
problems as shown by Figure 6(b), it is clear that aspect-
orientation is the natural approach to solve these crosscutting
symptoms. As we already explained above in the previous
paragraph and Figure 6(a) shows, the SIG diagrams provide
through the instantiation of their two branches, Accessibility
technology and layout support respectively for any of the HTML
form components at the user interface. Also, and as Figure 6(b)
shows, the SIG diagrams branches allow Aspects I and II to be
modeled and instantiated appropriately to avoid “scattering” and
“tangling” problems.

Finally, Figure 7 shows the HTML document delivered by our
supporting tool according to the concrete interface model. Figure
7 shows three boxes to highlight an example where HTML code is
improved with Accessibility properties as follow:

 A label with the text “Identification” is inserted and explicitly
associated with the texField "idNumber" to make clear what
kind of data is expected to be introduced in this textField.

 A keyboard shortcut is defined using the HTML accesskey
attribute for the textField “idNumber” to provide direct access
through the keyboard key “I”.

 A logical tab order “1” is provided using the HTML tabindex
attribute for the textField “idNumber” to support a logical
page design.

Figure7. Accessible and Well-Formed HTML Document.

5.1 Discussion from the Accessibility Design
Field
We have been working for a while on Accessibility [16][17] and
particularly on Accessibility design at early stages of Web
applications development process [18] [2] [19]. Particularly, we
have been applying aspect-orientation associated with the WCAG
1.0 as the reference guideline, and in this Section we present an
outline of the experience gathered on the field. Since the WCAG
has two documents (1.0 and 2.0), it is important to make clear at
this point that we based our work on the WCAG 1.0, which since
1999 is keeping its value as the benchmark for other valuable
Accessibility standards [22][25], while the ongoing migration
process to WCAG 2.0 [29] is completed worldwide.

However, as we are concerned with Web Accessibility and the
W3C as their main reference, we have already finished the
migration of our design approach from WCAG 1.0 to WCAG 2.0
and we are currently working on the migration of our supporting
tool as well. We highlight that to realize this upgrade we use the
comparison provided by W3C-WAI in [31], since there are still
some discrepancies at the Accessibility community11 when

11 See http://www.w3.org/WAI/WCAG20/from10/comparison/;

http://wipa.org.au/papers/wcag-migration;
http://www.usability.com.au/resources/wcag2./

<label for=“idNumber”>Identification:</label>
 accesskey=”I”>

 tabindex=”1”/></p>

providing mappings between the WCAG 1.0 [28] checkpoints
onto the WCAG 2.0 [29]success criteria. A complete analysis of
this upgrade is outside the scope of the paper.

In order to share Accessibility experience gathered at early stages
of the development process for the Web, we indicate some issues
which give us the basis for the discussion from a designer
perspective. Firstly, we consider that Accessibility concern
requires a special treatment during Web development and as a
consequence must be handled independently from the rest of the
quality concerns. We believe that this is a hot-spot to the success
of a proposal which seeks for the prioritization of Accessibility as
a main quality concern in Web development. In this sense, our
approach shows a high degree of commitment to the Accessibility
concern by providing specific techniques developed to “isolate”
Accessibility requirements and to ensure their separately
treatment from the beginning in the Web development process.

Secondly, it is not just a coincidence that during this work we
refer to Accessibility as a “concern”. Besides the fact that
Accessibility has become a basic quality attribute to any Web
application and to improve the evolution of the Web in general,
the term "concern" from the AOSD perspective describes
accurately the Accessibility features related to its nature. Taking
into account this fact and supported by our experience gathered
from the design field, we are convinced that the AOSD paradigm
is the most appropriated to deal with the nature of Accessibility in
Web development. Our approach fully applies the AOSD
paradigm to deal properly with the non-functional, generic and
crosscutting features of Accessibility concern and to ensure its
treatment as a first-class citizen early since requirement elicitation
are weaved together using specialized techniques (for a thorough
discussion on AOSD principles see [1]).

Thirdly, we are interested in considering as additional issues the
significance to a design approach of having background and
supporting tool. On one hand, the background underlying a design
proposal is relevant to its strength. In this sense, our approach
goes further because its background includes not only our
previous work but also is supported by other’s mature and
recognized work concerned to field of the approach’s purpose. On
the other hand, the supporting tool and the kind of support given
and features covered by the tool is also relevant, and especially to
a design proposal. Related to this issue, our approach provides a
supporting tool to assist developers in the implementation of
cases, and on the creation of their corresponding models by using
reusable components. Currently, our tool provides assistance for
applying the Accessibility aspects (prescribed by the SIGs
diagrams) to user interface models (abstract and concrete).

Finally, at this point, we would like to reflect on the
advantages/disadvantages of model-driven approaches and how
this issue benefits/affects our proposal. It is a fact that applying
"unified", model-driven approaches brings the benefit of having
full documentation and automatic application generation at the
expense of introducing some bureaucracy into the development
process. Since our proposal suggests the early treatment of the
Accessibility concerns through models, we may still be influenced
by this reality and its disadvantages --i.e., time and cost
consuming, complexity, learning effort, etc.

Related to the project team and development environment, we
believe it is important to highlight the following issues: (i)
although our approach is completely documented and self-
contained within a well-kwon Web engineering approach, its
application requires a prior knowledge of the WCAG 1.0 (or 2.0)
guidelines and their specific terminology; (ii) although our
approach helps to transfer Accessibility requirements, the
engineering staff members should not be ruled by ad hoc
practices, or used to apply approaches, which have not
incorporated the design and documentation of the application
under development as an standard discipline. These two issues
demand changes in the development process that must be
supported by the organizations. In this sense, for Web
development, quality is often considered as higher priority than
time-to-market with the mantra later-and-better [21] even though
they mean extra time and cost consuming. However, since the
Accessibility guidelines are quite independent from the Web
application under development, there are many cases to which the
same Accessibility solution can be applied. Then, recording such
recurrent situations (e.g., using patterns) might contribute to reuse
them, which supplies to reduce the development effort when
implementing our proposal. This is possible because aspects, as
we have already explained, could be developed once and be
reused in different Web projects. We refer the reader to [18] for a
complete case study and evaluation.

6. CONCLUSIONS AND FUTURE WORK
A main factor for the lack of Accessibility at the Web is the major
knowledge gap that normally exists between developers and
Accessibility specialists. On one hand, most Web programmers do
not have the knowledge and experience required to ensure that its
code meets the Accessibility requirements. On the order hand,
Accessibility specialists have little experience in development and
normally even less in programming, not being able to provide
examples of pieces of code that can be used by developers to
make “accessible” their Web applications. Moreover, it is a
common practice to consider Accessibility at the very last stages
of the development process, or when applications are already
coded. At this point "make these applications accessible" can
mean a great deal of redesign and reprogramming effort usually
outside the scope of the project --i.e not previously planned and/or
budgeted from the beginning.

In this paper, we briefly introduce our proposal to model Web
Accessibility by moving from abstract to concrete architectural
views using aspect-orientation. Our approach takes advantages of
modeling Accessibility as an aspect-oriented concern, which is
independently treated as a first-class citizen to avoid barriers from
the beginning of the design. We used a case study to illustrate our
ideas and point out the advantages of a clear separation of
concerns throughout the development life-cycle. Then, based on
our experience from the Accessibility field, we aim to provide
some insights that Web developers can apply when designing for
the Web with the Accessibility concern in mind.

Since we are aware that the new W3C-WAI guidelines and the
move to technological neutrality are undoubtedly good, we are
almost ready to migrate from WCAG 1.0 [28] to WCAG 2.0 [29];
we have already finished the migration of our aspect-oriented
design approach and we are currently working on the migration of
our supporting tool as well. We didn’t find major inconveniences
to upgrade our approach to WCAG 2.0 because as we discussed
before, our approach is based on the use of UIDs with integration

points and the SIG template for Accessibility linked by
association tables. These association tables are the key conceptual
tools which enable the migration and support the success criteria
from WCAG 2.0 instead of checkpoints from WCAG 1.0
applying some straightforward redefinitions and adjustments. We
highlight that to realize this upgrade we use the comparison
provided by W3C-WAI, since there are still some discrepancies at
the Accessibility community12 when providing mappings between
the WCAG 1.0 checkpoints onto the WCAG 2.0 success criteria.

Finally, we will further validate our proposal working with
WCAG 2.0 beyond the example used to illustrate our work and
make some comparisons between case studies that we have been
applied during the validating process.

ACKNOWLEDGMENTS
This work is partially supported by UNPA-UACO project
21/B107 (Mejora del Proceso de Selección de Componentes para
Sistemas de Información Geográficos). Also it is supported by
UNComa project 04E/072 (Identificación, Evaluación y Uso de
Composiciones Software).

REFERENCES
[1] Baniassad, E. L. A., Clements, P. C., Araújo, J., Moreira, A.,

Rashid, A., Tekinerdoga, B.: Discovering Early Aspects.
IEEE Software 23(1), 2006, 61-70
doi.ieeecomputersociety.org/10.1109/MS.2006.8

[2] Bustos, B., Martín, A. and Cechich, A. Diseño de Interfaces
Guiado por Restricciones de Accesibilidad Web. in XIII
Congreso Americano en “Software Engineering”, (Cuenca,
Ecuador, 2010), Universidad del Azuay, 229-242

[3] Casteleyn, S., Fiala, Z., Houben, G-J., and van der Sluijs, K.
Considering Additional Adaptation Concerns in the Design
of Web Applications. in 4th International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems,
(Dublin, Ireland, 2006), Springer, 254-258
doi:10.1007/11768012_28

[4] Casteleyn, S., Van Woensel, W., and Houben, G-J. A
Semantics-based Aspect-Oriented Approach to Adaptation in
Web Engineering. in 18th ACM Conference on Hypertext and
Hypermedia, (Manchester, UK, 2007), ACM, 2007, 189-198
doi.acm.org/10.1145/1286240.1286297

[5] Casteleyn, S., Van Woensel, W., van der Sluijs, K., and
Houben, G.J. Aspect-Oriented Adaptation Specification in
Web Information Systems: a Semantics-based Approach. The
New Review of Hypermedia and Multimedia, 15(1), 2009,
39-91 10.1080/13614560902818297

[6] Centeno, V., Kloos, C., Gaedke, M., and Nussbaumer, M.
Web Composition with WCAG in Mind. in 5th International
Conference on Cross-Disciplinary Workshop on Web
Accessibility,(Sydney, Australia, 2005), Springer, 615-617
doi:10.1145/1061811.1061819

[7] Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishers, Boston, 2000

12 See http://www.w3.org/WAI/WCAG20/from10/comparison/;

http://wipa.org.au/papers/wcag-migration.htm;
http://www.usability.com.au/resources/wcag2./

[8] Chung, L. and Supakkul, S. Representing NFRs and FRs: A
Goal-oriented and Use Case Driven Approach. in 2nd
International Conference on Software Engineering Research,
(Los Angeles, USA, 2004), Springer, 29-41
doi:10.1007/11668855_3

[9] De Troyer O., Casteleyn, S., and Plessers, P. WSDM: Web
Semantics Design Method. in: Rossi, G., Pastor, O.,
Schwabe, D., Olsina, L. (eds.) Web Engineering: Modeling
and Implementing Web Applications. Springer-Verlag,
London, 2008, 303-351

[10] Fons, J., Pelechena, V., Pastor, O., Valderas, P., and Torres,
V. Applying the OOWS Model-Driven Approach for
Developing Web Applications. The Internet Movie Database
Case Study. in: Rossi, G., Pastor, O., Schwabe, D., Olsina, L.
(eds.) Web Engineering: Modeling and Implementing Web
Applications. Springer-Verlag, London, 2008, 65-108

[11] Gaedke M., Nussbaumer, M., and Meinecke, J.: WSLS: A
Service-Based System for Reuse-Oriented Web Engineering.
in: Matera, M., Comai, S. (eds.) Engineering Advanced Web
Applications, Rinton Press, NJ, 2004, 26-37

[12] Hoffman, D., Grivel, E., and Battle, L.: Designing Software
Architectures to Facilitate Accessible Web Applications.
IBM Systems Journal, 44(3), 2005, 467-484 doi
10.1147/sj.443.0467

[13] Houben, G-J., van der Sluijs, K., Barna, P., Broekstra, J.,
Casteleyn, S., Fiala, Z., and Fransincar, F. Hera. in: Rossi,
G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web
Engineering: Modeling and Implementing Web Applications.
Springer-Verlag, London, 2008, 163-302

[14] Koch, N., Knapp, A., Zhang, G., and Baumeister, H. UML-
Based Web Engineering: An Approach Based on Standards.
in: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web
Engineering: Modeling and Implementing Web Applications.
Springer-Verlag, London, 2008, 157-191

[15] Larson, J. Interactive Software: Tools for Building
Interactive User Interfaces. Prentice Hall, NJ, 1992

[16] Martín, A., Cechich, A., Gordillo, S., and Rossi, G. A Three-
Layered Approach to Model Web Accessibility for Blind
Users. in 5th Latin American Web Congress, (Santiago de
Chile, Chile, 2007), IEEE Computer Society, 2007, 76-83
doi:10.1109/LA-WEB.2007.56

[17] Martín, A., Cechich, A., and Rossi, G.: Comparing
Approaches to Web Accessibility Assessment. in: Calero, C.,
Moraga, Mª Á., Piattini, M. (eds.) Handbook of Research on
Web Information Systems Quality, IGI Global Information
Science Reference, Hershey NY, 2008, 181-205

[18] Martín, A., Rossi, G., Cechich, A., and Gordillo, S.
Engineering Accessible Web Applications. An Aspect-
Oriented Approach. World Wide Web Journal, 13(4), 2010,
419-440 doi:10.1007/s11280-010-0091-3

[19] Martín, A., Mazalú, R., and Cechich, A. Supporting an
Aspect-Oriented Approach to Web Accessibility Design. in
5th International Conference on Software Engineering
Advances, (Nice, France, 2010), IEEE, 20-25
doi:10.1109/ICSEA.2010.10

[20] Moreno, L., Martinez, P., Ruiz, B. A MDD Approach for
Modeling Web Accessibility. in 7th Int. Workshop on Web-

Oriented Software Technologies, (New York, USA, 2008),
CEUR Workshop Proceedings, 1-6 doi:10.1.1.163.9478

[21] Offutt, J. Quality Attributtes of Web Software Applications.
IEEE Software, 19(2), 2002, 25-32 doi:10.1002/stvr.425

[22] PAS 78. Publicly Available Specification: A Guide to Good
Practice in Commissioning Accessible Websites. Retrieved
January 1, 2011 from: http://www.hobo-web.co.uk/seo-
blog/pas-78/

[23] Plessers, P., Casteleyn, S., Yesilada, Y., De Troyer, O.,
Stevens, R., Harper, S., and Goble, C. Accessibility: A Web
Engineering Approach. in 14th International Conference on
World Wide Web, (Chiba, Japan, 2005), ACM, 353-362
doi:10.1145/1060745.1060799

[24] Rossi, G. and Schwabe, D. Modeling and Implementing Web
Applications with OOHDM. in: Rossi, G., Pastor, O.,
Schwabe, D., Olsina, L. (eds.) Web Engineering: Modeling
and Implementing Web Applications. Springer-Verlag,
London, 2008, 109-155

[25] Section 508. Electronic and Information Technology
Accessibility Standards. Retrieved January 1, 2011 from:
http://www.section508.gov/

[26] Vilain, P., Schwabe, D., and Sieckenius de Souza, C. A
Diagrammatic Tool for Representing User Interaction in
UML. in 3rd International Conference on UML (York, UK,
2000), Springer, 133-147 doi:10.1007/3-540-40011-7_10

[27] W3C: Web Content Accessibility Guidelines (WCAG)
Overview. Retrieved December, 15, 2010, from:
http://www.w3.org/WAI/intro/wcag.php

[28] W3C: Web Content Accessibility Guidelines 1.0. (WCAG
1.0). Retrieved December, 15, 2010, from:
http://www.w3.org/WAI/intro/wcag.php

[29] W3C: Web Content Accessibility Guidelines 2.0 (WCAG
2.0). Retrieved December, 15, 2010, from:
http://www.w3.org/TR/WCAG20/

[30] W3C: User Agent Accessibility Guidelines 1.0 (UAAG 1.0).
Retrieved December 15, 2010 from:
05.24.2010http://www.w3.org/TR/WAI-USERAGENT/

[31] W3C-WAI: Comparison of WCAG 1.0 Checkpoints to
WCAG 2.0. Retrieved December 15, 2010 from:
http://www.w3.org/WAI/WCAG20/from10/comparison/

[32] Yesilada, Y., Harper, S., Goble, G., and Stevens, R. DANTE:
Annotation and Transformation of Web Pages for Visually
Impaired Users. in 13th International Conference on World
Wide Web, (New York, USA, 2004), ACM, 490-491
doi.acm.org/10.1145/1013367.1013540

[33] Zimmermann, G. and Vanderheiden, G. Accessible Design
and Testing in the Application Development Process:
Considerations for an Integrated Approach. Universal Access
in the Information Society, 7(1-2), 2008, 117-128
doi.org/10.1007/s10209-007-0108-6

