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ABSTRACT. Let L be a commutative residuated lattice and let f : Lk → L a function. We give a
necessary and sufficient condition for f to be compatible with respect to every congruence on L.
We use this characterization of compatible functions in order to prove that the variety of commu-
tative residuated lattices is locally affine complete. Then, we find conditions on a not necessarily
polynomial function P (x, y) in L that imply that the function x 7→ min{y ∈ L | P (x, y) ≤ y}
is compatible when defined. In particular, Pn(x, y) = yn → x, for natural number n, defines a
family, Sn, of compatible functions on some commutative residuated lattices. We show through
examples that S1 and S2, defined respectively from P1 and P2, are independent as operations
over this variety; i.e. neither S1 is definable as a polynomial in the language of L enriched with
S2 nor S2 in that enriched with S1.

KEYWORDS: commutative residuated lattices, compatible operations, affine completeness.

DOI:10.3166/JANCL.18.413–425 c© 2008 Lavoisier, Paris

1. Introduction

A commutative residuated lattice (CRL) is a distributive lattice (A,∨,∧) equipped
with a commutative monoid structure (A, ·, e) such that for every x inA, the operation
x · (_) : A → A is monotone (with respect to the partial order induced by the lattice
structure) and has a right adjoint, usually denoted by x → (_). This is the situation,
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414 Journal of Applied Non-Classical Logics. Volume 18 – No. 4/2008

for example, when we consider the Heyting implication on the reduct (A,∧, 1) of a
Heyting algebra. The CRLs form a variety (see section 1, (Hart et al., 2002)).

The intuitionistic logic was introduced as a sequent system by Gentzen in 1934
(see (Gentzen, 1934)). The substructural logics are obtained by dropping from that
system some or all of the structural rules: exchange, weakening and contraction (see
(Ono, 2003)). There is also some axiomatic versions of that systems, thus classical,
intuitionistic, multi-valued, basic, relevant and fragments of linear logic can be con-
sidered as substructural logics. It is well known that, by an adequate definition of
consequence operator, this logics are algebrizable in the sense of Blok-Pigozzi (see
(Ono, 2003), (Blok et al., 1989)). Then, for each substructural logic there is an equiv-
alent algebraic semantics, which happens to be some subvariety of that of residuated
lattices.

The problem of adding connectives to extend a logic in a “natural” way has been
studied for a long time. For intuitionistic calculus the paper (Caicedo et al., 2001)
of Caicedo and Cignoli emphasizes the algebraic aspect of the problem through the
notion of compatible function, that translates to the notion of compatible connective
in intuitionistic logic. In an algebra A an n-ary operation f will be called compatible
if every congruence ofA is a congruence ofA enriched with f as a new operation. We
can say that a connective k is compatible if and only if A ↔ B ` kA ↔ kB, for all
formulasA,B. Results in (Caicedo et al., 2001) are extended to algebrizable logics by
Caicedo in (Caicedo, 2004). But it is not clear what can be considered a natural or good
extension of a substructural logic by means of new connectives. In section 3 of our
paper we give an algebraic approach to bring light to that problem, following basically
the characterization of (Caicedo et al., 2001) of compatible functions by means of the
relationship between congruences and some particular (convex) subalgebras.

In many varieties it is simpler to study subalgebras of some kind instead of congru-
ences. For instance, to characterize a finitely generated subalgebra is in general easier
than to describe principal congruences. This kind of treatment is possible in those vari-
eties in which there is an order-preserving bijection between congruences and convex
normal subalgebras. The commutative residuated lattices form such a variety.

A variety has equationally definable principal congruences, briefly EDPC, if there
is a (finite family of) quaternary V-terms {ui}i, {vi}i such that for any principal
congruence Θ(a,b), xΘ(a,b) y if and only if ui(a, b, x, y) = vi(a, b, x, y) for every
i = 1, ..., n ((Blok et al., 1989), (Blok et al., n.d.)). This property is also of log-
ical interest because a logic has some kind of deduction theorem if and only if the
corresponding variety (obtained by the process of algebraization) has EDPC.

The compatible functions are closely related with finitely generated subalgebras or,
alternatively, to principal congruences. Indeed, if the variety V has EDPC with terms
u, v then we can characterize compatible functions in the following way (see (Caicedo
et al., 2001)): f is compatible if and only if u(x, y, f(x), f(y)) = v(x, y, f(x), f(y))
(for f unary). We show in this paper that in some cases the characterization is still
possible even if we have on V a weaker condition of the type “there exist V-terms
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Compatible operations on CRLs 415

{uin}i∈I,n∈N, {vin}i∈I,n∈N, with I a finite set such that, for any principal congruence
Θ(a,b), xΘ(a,b) y if and only if there is a natural number n such that uin(a, b, x, y) =
vin(a, b, x, y), for every i ∈ I”.

A function obtained by composition of basic operations of the algebra and pa-
rameters (polynomial function) is compatible in every variety. Are there compatible
functions different from polynomials? In the variety B of Boolean algebras the answer
is no (Kaarli et al., 2001). We say that B is an affine complete variety. On the other
hand, the successor S(x) is a compatible Heyting function which is different from
every polynomial. However, the variety of Heyting algebras is locally affine complete
in the sense that any restriction of a compatible function to a finite subalgebra is a
polynomial. We prove in this paper that this is also the case for the variety of CRLs.
We define a notion of successor on CRLs, providing examples in MV-algebras and
`-groups, and we construct a big family of “successors of order n” and more general
compatible functions in a way that generalizes the successor construction of (Caicedo
et al., 2001). Moreover we show that neither the variety of CRLs with successor nor
the variety of CRL with a successor of order two are affine complete.

2. Preliminary results on CRLs

We start by recalling the definition of a commutative residuated lattice (Hart et
al., 2002).

DEFINITION 1. — A commutative residuated lattice (CRL for short) is an algebra
(L,∧,∨, ·,→, e), where (L,∧,∨) is a lattice, (L, ·, e) is a commutative monoid, and
→ is a binary operation (the residual for the monoidal operation) such that for every
x in L, x · (_), x→ (_) : L→ L are monotone and x · (_) is left adjoint to x→ (_).

More explicitely, the adjointess condition says that for any y and z in L,

x · y ≤ z ⇔ y ≤ x→ z

which are also equivalent to x ≤ y → z by commutativity of (L, ·, e).

Put differently, a CRL is a distributive lattice (seen as a category) equipped with
a symmetric monoidal closed structure (Mac Lane, 1971). It is not difficult to check
that the class of commutative residuated lattices is a variety (see (Hart et al., 2002)).

Examples of CRLs are Heyting algebras and abelian `-groups where the monoid
operation is ∧ and + respectively. Other examples are BL-algebras, MV-algebras and
product algebras, among others.

We shall now recall from (Hart et al., 2002) and (Jipsen et al., 2002) many results
concerning the structure of the congruence lattice of any CRL, which we shall need
later.

We say that a subset C of a poset (P,≤) is convex in P if, whenever a, b ∈ C, then
{x ∈ P | a ≤ x}∩{x ∈ P | x ≤ b} ⊆ C. We refer to a subsetH of a CRL L as being
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416 Journal of Applied Non-Classical Logics. Volume 18 – No. 4/2008

a subalgebra of L provided that H is closed with respect to all the operations defined
on L. We write SubCL for the set of all convex subalgebras of L, partially ordered
by set-inclusion. SubCL is a complete lattice with set-intersection as meet. We write
CSL[x] for the convex subalgebra of L generated by {x}.

We let ConL denote the lattice of congruence relations for a CRL L, which is
known to be a distributive lattice (Hart et al., 2002).

For all θ ∈ ConL, let θ(e) be the equivalence class of e. Lemma 2.1 in (Hart et
al., 2002) states that θ(e) is a convex subalgebra of L. On the other hand, for any
convex subalgebra H of L, set

θH := {(x, y) ∈ L× L | x · h ≤ y and y · h ≤ x, for some h ∈ H}

:= {(x, y) ∈ L× L | (x→ y) ∧ e ∈ H and (y → x) ∧ e ∈ H}.

With this notation at hand, we can restate (3.1) in (Jipsen et al., 2002).

LEMMA 2. — Let L be a CRL. For any θ ∈ ConL and x, y ∈ L, we have that xθy if
and only if [(x→ y) ∧ (y → x) ∧ e]θe.

As a consequence of this lemma we have the following result (Theorem 2.3 in
(Hart et al., 2002)).

LEMMA 3. — If L is a CRL, then ConL is order isomorphic to SubCL. The isomor-
phism is established through the assignments θ 7→ θ(e) and H 7→ θH .

Recall that the negative cone of a CRL L is the set L− = {x ∈ L | x ≤ e} and
consider the next result (Corollary 2.8 in (Hart et al., 2002)).

LEMMA 4. — Let L be a CRL. If a ∈ L− then

CSL[a] = {x ∈ L | ∃n an ≤ x ≤ an → e}.

REMARK 5. — Observe that, if x1, x2, ..., xk are in the negative cone L−, then we
have that x1 · x2 · ... · xk ≤ x1 ∧ x2 ∧ ... ∧ xk. In particular, for x ∈ L−, we can
conclude that xn ≤ xn−1 ≤ ... ≤ x2 ≤ x. �

3. Compatible functions

DEFINITION 6. — LetL be a CRL and let f : Ln → L be a function (not necessarily
an homomorphism).

1) We say that f is compatible with a congruence θ of L if (xi, yi) ∈ θ for
i = 1, . . . , n implies (f(x1, . . . , xn), f(y1, ..., yn)) ∈ θ.

2) We say that f is a compatible function of L provided it is compatible with all
the congruences of L (Caicedo et al., 2001).
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Compatible operations on CRLs 417

Let L be a CRL and x ∈ L. Write x− := x ∧ e and take

s(x, y) := (x→ y)− · (y → x)− (1)

LEMMA 7. — For any θ ∈ ConL, and x, y ∈ L,

xθy ⇔ s(x, y) ∈ θ(e)

PROOF. — Suppose that xθy. Then (x→ y)− and (y → x)− belong to θ(e). In
consequence, s(x, y) ∈ θ(e). On the other hand, suppose that s(x, y) ∈ θ(e); then
(x→ y)− · (y → x)−θe. Since

(x→ y)− · (y → x)− ≤ (x→ y) ∧ (y → x) ∧ e ≤ e (2)

and θ(e) is convex, it follows, by Lemma 2, that xθy. �

We can give a general characterization of a compatible function f : Lk → L for
any CRL L as follows:

THEOREM 8. — Let L be a CRL and let f : Lk → L be a function. Then f is com-
patible if and only if for every x̄ = (x1, x2, ..., xk), ȳ = (y1, y2, ..., yk) ∈ Lk there ex-
ists a positive integer n such that

s(x1, y1)n · s(x2, y2)n · ... · s(xk, yk)n ≤ s(f(x̄), f(ȳ)) (3)

PROOF. — Suppose f compatible, x̄, ȳ ∈ Lk. We have, for i = 1, ..., k: xiθiyi, being
θi the principal congruence generated by (xi, yi). So, xiΘyi, for Θ =

∨
θi, from

where s(f(x̄), f(ȳ)) ∈ Θ(e). But Θ(e) =
∨
θi(e) =

∨
CS[si], being si = s(xi, yi)

and we deduce from Theorem 2.9 in (Hart et al., 2002) that Θ(e) = CS(s1 ∧ ...∧ sk).
Then, there exist positive integers n1, ..., nk such that sn1

1 · ... · s
nk

k ≤ s(f(x̄), f(ȳ)).
Take n = max{n1, ..., nk}.

Conversely, suppose that (3) holds and let be, xiφyi, for i = 1, ..., k, for a given
congruence φ. Then, si ∈ φ(e) for every i = 1, ..., k, from where for every n,
sn

1 · ... · sn
k ∈ φ(e). Since the image of s is included in the negative cone of L, we are

done. �

Some particular cases of Theorem 8 are well known results (see (Caicedo et al.,
2001) and (Ertola et al., 2007)). We shall now describe more in detail some other
important cases for one-variable functions.

3.1. BL-algebras

Recall that a residuated lattice (A,∧,∨, ·,→, 0, 1) is a BL-algebra if and only if
the following two identities hold for all x, y ∈ A:
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418 Journal of Applied Non-Classical Logics. Volume 18 – No. 4/2008

1) x ∧ y = x · (x→ y),
2) (x→ y) ∨ (y → x) = 1

COROLLARY 9. — Let A be a BL-algebra. Then, for any function f : A→ A the
following conditions are equivalent:

1) For every x, y of A there exists an n such that (s(x, y))n ≤ s(fx, fy)
2) f is compatible.

3.2. `-groups

A system (G,∧,∨,+,−, 0) is a lattice-ordered group or `-group if (G,∧,∨) is a
distributive lattice and (G,+,−, 0) is a commutative group such that

(a ∨ b) + t = (a+ t) ∨ (b+ t)

holds in G.

Let x be an element of an `-group G. Set x+ = x ∨ 0 and |x| = x+ + (−x)+,
n|x| = |x|+ |x|+ ...+ |x| (n times). Let T (x, y) = |x− y|.

COROLLARY 10. — Let G be an `-group and let f : G −→ G be a function. Then
the following statements are equivalent.

1) For every x, y ∈ A there is an n such that T (fx, fy) ≤ n(T (x, y))
2) f is compatible.

As is customary for ordered groups, Corollary 10 is stated in terms of the positive
cone instead of the negative one. Since s and T are related by s(x, y) = −T (−x,−y),
this result is just another corollary of Theorem 8.

REMARK 11. — Let L be a CRL and x, y ∈ L. Take

t(x, y) := [(x→ y) ∧ (y → x)] ∧ e = (x↔ y)− (4)

It is easy to see that CS(t(x, y)) = CS(s(x, y)). Hence all the results of this section
also hold if we replace s by t. �

3.3. Local affine completeness

We finish this section applying Theorem 8 to the proof of the locally affine com-
pleteness of the category of CRLs.

THEOREM 12. — Let f : Lk → L be a compatible function, B be a finite subset of
Lk and x̄ ∈ B. If we let Tx̄ = {s(b1, x1)nb · ... · s(bk, xk)nb · f(b̄) | b̄ ∈ B}, where
nb := max{n(b̄,x̄) | x̄ ∈ B} and n(b̄,x̄) is the integer associated to the pair (b̄, x̄) in
Theorem 8. Then, f(x̄) =

∨
Tx̄.
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Compatible operations on CRLs 419

PROOF. — Let x̄ ∈ B. For every b̄ ∈ B we have that

s(b1, x1)nb · ... · s(bk, xk)nb ≤ s(f(b̄), f(x̄)) =

(f(b̄)→ f(x̄))− · (f(x̄)→ f(b̄))− ≤ (f(b̄)→ f(x̄))− ≤ f(b̄)→ f(x̄)

Then,
s(b1, x1)nb · ... · s(bk, xk)nb · f(b̄) ≤ f(x̄),

which proves that f(x̄) is an upper bound of Tx̄. On the other hand, since s(xi, xi) =
e, we have that s(x1, x1)nb · ... · s(xk, xk)nb · f(x̄) = f(x̄) ∈ Tx̄, from where the
result follows. �

COROLLARY 13. — Every CRL is locally affine complete.

4. Pre-compatible functions

The notion of succesor is a very natural one and has been treated since the axiom-
atization of positive integers by Peano. In Heyting chains there is a generalization of
that notion arising from the fact that, for x 6= 1,
(*)“y → x less or equal x” is equivalent to “x < y” and so, if the set of those y
fulfilling (*) has a minimum S(x), this minimum will be the succesor of x. It is clear
that in any Heyting algebra there exists S(x) for every x if and only if the function
S(x) satisfies (S1) and (S2):

(S1) S(x)→ x ≤ x,

(S2) S(x) ≤ y ∨ (y → x).

From a logical point of view, it is possible to define implicitly a connective S in
intuitionistic propositional calculus (IPC, for short) by the following axioms:

(1) (S(p)→ p)→ p,

(2) S(p)→ (q ∨ (q → p)).

This connective plays a very important role in some logics. Fixed a positive integer
n, let Ln be the the logic obtained by adding to the IPC the following axioms:

(L1) (p→ q) ∨ (q → p),

(L2) (p1 → p2) ∨ ... ∨ (pn → pn+1).

Then, every implicit connective of Ln is generated by S (Caicedo et al., 2001).

It is an open problem if this is so for entire IPC.

In this section we extend the definition of successor to CRLs and, furthermore, we
explore other functions different from y → x that allow the definition of compatible
functions on CRLs in an analogous way.
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DEFINITION 14. — Let L be a poset. A function f : L× L→ L is called pre-
compatible if the following condition holds:

(PRE) for every a ∈ L, the set {y | f(a, y) ≤ y} has a least element.

We are not assuming that f is monotone.

For each pre-compatible function f : L× L→ L we denote by f : L→ L the
function that to each x in L assigns the least element of {y | f(x, y) ≤ y}.

LEMMA 15. — Let f : L× L→ L be a binary function on a partial order with
binary suprema (L,∨) such that:

(M) for all a, b, c ∈ L, c ≥ b implies f(a, c) ≤ f(a, b).

Then, the following are equivalent.

1) f is pre-compatible
2) there exists a function g : L→ L such that

(S1) f(x, gx) ≤ gx
(S2) gx ≤ y ∨ f(x, y).

Moreover, in this case, g = f .

PROOF. — If f is pre-compatible and satisfies (M), then it is not difficult to check that
f (in the place of g) satisfies conditions (S1) and (S2). Conversely, assume that g sat-
isfies the stated equations. Condition (S1) says that gx is in the set {y | f(x, y) ≤ y}.
On the other hand, let y be such that f(x, y) ≤ y. Then condition (S2) implies that
gx ≤ y ∨ f(x, y) ≤ y ∨ y = y. Then gx is the least element of {y | f(x, y) ≤ y}.
That is, g = f . �

THEOREM 16. — Let L be a CRL and f : L× L→ L be a pre-compatible function.
If, for every x, y ∈ L there exists a positive integer n such that:

f(x, fy) · ((x→ y)−)n ≤ f(y, fy) (5)

then f is compatible.

PROOF. — Suppose that (5) holds in L. We have, by (S2), that

fx ≤ fy ∨ f(x, fy)

and so,
(fx) · ((x→ y)−)n ≤ ((fy) ∨ f(x, fy)) · ((x→ y)−)n

from where we can conclude that

(fx) · ((x→ y)−)n ≤ [(fy) · ((x→ y)−)n] ∨ [f(x, fy) · ((x→ y)−)n]

because · distributes over ∨. Now (fy) · ((x→ y)−)n ≤ (fy) and

f(x, fy) · ((x→ y)−)n ≤ f(y, fy)
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Compatible operations on CRLs 421

by hypothesis. So that

(fx) · ((x→ y)−)n ≤ (fy) ∨ f(y, fy) = fy

by (S1) and then ((x→ y)−)n ≤ (fx)→ (fy) by adjointness, and also:

((x→ y)−)n ≤ ((fx)→ (fy))−.

In the same way:
((y → x)−)n ≤ ((fy)→ (fx))−.

So
((x→ y)−)n · ((y → x)−)n ≤ ((fx)→ (fy))− · ((fy)→ (fx))−,

that is
(s(x, y))n ≤ s(fx, fy)

Compatibility follows from Theorem 8. �

5. Variations on the successor

The term y → x induces a binary function f(x, y) on every CRL. When this func-
tion is pre-compatible we denote f by S and call it the successor. In this case, Theo-
rem 16 is applicable and so S is compatible.

For example, a generalized Heyting algebra (see (Monteiro, 1985)) is an integral
commutative residuated lattice (H,∧,∨, ·,→, 1) such that · = ∧. Heyting algebras
are exactly generalized Heyting algebras with a minimum. The successor operation
in Heyting algebras are studied in (Caicedo et al., 2001). The case of generalized
Heyting algebras is treated in (Ertola et al., 2007).

EXAMPLE 17. — Consider the MV-algebra [0, 1] with its well known structure. It
is easy to prove that for t ∈ [0, 1], {y | y → t ≤ y} is the interval [ 1+t

2 , 1]. Then
S(t) = 1+t

2 . �

EXAMPLE 18. — Let Z be the totally ordered `-group of the integers. Then, for any
n ∈ Z, we have that

S(n) = min{m | m→ n ≤ m} = min{m | (n−m) ≤ m}

and n−m ≤ m iff n ≤ m+m = 2m. Then, we conclude that S(n) = n
2 when n is

even and that S(n) = n+1
2 when n is odd. �

For each n ≥ 0 the term Pn(x, y) = yn → x induces a binary function on any
CRL L. When this function is pre-compatible Theorem 3 is applicable, just as in the
case of the successor, and we denote the resulting compatible function by Sn : L→ L.
Of course, S1 = S.
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EXAMPLE 19. — Take L = ([0, 1],∧,∨, ·,→, 1) the product algebra (Hájek, 1998);
i.e., the real interval [0, 1] with its usual order and product. We have that

a→ b =
{

1, if a ≤ b
b/a, otherwise

and hence, for x 6= 0, we have that

yn → x = x/yn ≤ y iff x ≤ yn+1

Thus, Sn(x) = n+1
√
x, for every x ∈ (0, 1]. �

5.1. Affine completeness of enriched CRLs

It is well known that the category of CRLs is not affine complete (see (Kaarli
et al., 2001)). On the other hand, it is not known whether the category of Heyting
algebras equipped with successor is affine complete. We can ask the same question
but replacing Heyting algebras with CRLs. In this section we prove that the answer is
negative. Indeed, we give an example of a CRL with both S1 and S2 but where S2 is
not definable in terms of S1.

Having done this, we found it natural to ask ourselves if the category of CRLs with
S2 is affine complete. We show that the answer is negative again. The main instrument
in both proofs is the following structure.

EXAMPLE 20. — Let Q be the ordered abelian group (Q,∨,∧,+,−, 0). For this
structure, S1(r) = r

2 and S2(r) = r
3 . �

Denote the structure (Q,∨,∧,+,−, S1, 0) by Q1 and (Q,∨,∧,+,−, S2, 0) by
Q2. Observe that (Q,∨,∧) is distributive, that + distributes over ∨ and ∧ and that
division distributes over ∨,∧ and +. These facts will play an important role in the
main result of this section so let us state the key consequence.

LEMMA 21. — Every polynomial P (x) in the structure Q1 is equivalent (as a func-
tion Q→ Q) to one of the form

(p11 ∧ p12 ∧ . . . ∧ p1n1) ∨ . . . ∨ (pm1 ∧ pm2 ∧ . . . ∧ pmnm
)

with pijx = aij + bij
x

2kij
and aij ∈ Q, bij ∈ Z and kij ∈ N for every i and j.

PROOF. — A straightforward induction. �

We can now state one of the main results of this section.

PROPOSITION 22. — The structure Q1 is not affine complete.

PROOF. — We show that S2 cannot be given by a polynomial. For let P (x) be a
polynomial in Q1. By Lemma 21, for every t ∈ Q, Pt = aij + bij

t

2kij
for some

1 ≤ i, j ≤ n. Then S2(t) = P (t) if and only if t
3 = aij + bij

t

2kij
if and only if
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(2kij − 3bij)t = 3(2kij )aij . Notice that 2kij − 3bij cannot be 0. For if it was then
we would have bij = 2kij

3 which is not an integer (contradicting Lemma 21) since

(2, 3) = 1. We then have that t = 3(2kij )aij

2kij−3bij
. Hence, P (t) = S2(t) has only finite

solutions. So S2 cannot be a polynomial in Q1. �

As a corollary one obtains that the variety of CRLs enriched with S1 is not affine
complete. But notice that since Q1 has a lot more structure than ‘just’ that of a CRL,
we can also conclude that the variety of l-groups enriched with S is not affine com-
plete. There are also variations of these corollaries obtained by considering successor
functions satisfying, for example, preservation of meets or sups.

The second result uses essentially the same idea.

PROPOSITION 23. — The structure Q2 is not affine complete.

PROOF. — First prove a result analogous to Lemma 21 but which says that every
polynomial P (x) in the structure Q2 is equivalent to one of the form

(p11 ∧ p12 ∧ . . . ∧ p1n1) ∨ . . . ∨ (pm1 ∧ pm2 ∧ . . . ∧ pmnm
)

with pijx = aij + bij
x

3kij
for every i and j. Then use the same argument as in Propo-

sition 22 to prove that S1 cannot be given by a polynomial. �

It follows that the variety of CRLs enriched with S2 is not affine complete.

5.2. CRLs with one operation but without the other

The first two examples present CRLs where S1 is defined but where S2 is not.

EXAMPLE 24. — LetX = {r ∈ Z | r = p
q , (p, q) = 1 and 3 - q}. It is clear thatX is

an ordered subgroup of (Z,+, 0). In our present case S1(x) = min{y | x ≤ 2y} and
S2(x) = min{y | x ≤ 3y}. Hence S1(x) = x

2 is well-defined in X but, for example
{y | 1 ≤ 3y} has no minimum in X . So S2(1) is not defined. �

For the second example let E be the set of complex numbers constructible with
straightedge and compass ((Hungerford, 1974), Ch.V).

EXAMPLE 25. — Take A = (0, 1] ∩ E with its inherited operations. Since each
element of A has a square root in A, it follows that the successor S1x =

√
x is

defined for every x ∈ A. On the other hand, consider 1/2 ∈ A. 3
√

1/2 is a root of
the irreducible polynomial 2x3 − 1 ∈ Q(i)[x], and in consequence its characteristic
polynomial is of degree 3, which is not a power of 2. Thus, 3

√
1/2 /∈ A. Consider

now the set E2(1/2) = {y ∈ A | 1/2 ≤ y}. Since Q ⊆ E and Q is dense in R, A is
dense in (0, 1]. Thus, E2(1/2) has no minimum. So we have proved that S2 cannot be
defined on A. �

The next example presents a CRL with S2 but without S1.
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EXAMPLE 26. — Consider the ordered abelian group (and hence CRL) (Q,+, 0).
Write P := {p/2q ∈ Q | p, q ∈ Z− {0}, (p, q) = (p, 2) = 1}. It is clear that 1 /∈ P.
Furthermore, if x, y /∈ P, then there are nonzero integers m,n, r and s, such that
x = m/n, y = r/s, (m,n) = (r, s) = 1 and n and s are odd. Thus,

x+ y =
m

n
+
r

s
=
ms+ rn

ns

Since the denominator can never be even we have that x+ y /∈ P. So we have just
shown that S := Q− P is an ordered subgroup of Q. Let us now see what happens
with the successor and S2 in S. Take E1(1) = {y ∈ S | 1 ≤ 2y}. If we consider the
sequence { n

2n−1 | n ≥ 1} which is contained in S and converges from above to 1/2,
we conclude that E1(1) does not have a minimum in S. Hence we have no successor
on S. On the other hand, for every x ∈ S, E2(x) = {y ∈ S | x ≤ 3y} has always a
minimum in S: S2(x) = x/3. �
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