
An Induction-based Compaction of Sets of

Association Rules among Web Concepts

Mauricio Minuto Espil

LIFIA, Universidad Nacional de La Plata

Argentina

Juan M. Ale

Universidad de Buenos Aires and Universidad Austral

Argentina

Abstract— Association rules are nowadays regarded as robust

vehicles for creating Web recommendations. We present an

induction-based technique for creating a compact representation

of sets of association rules, particularly intended for publishing

the compact representation in the Web. Our technique efficiently

induces a defeasible logic program from a set of association rules,

in a manner that the complete set of the given associations can be

concluded, when integrating the induced compact program

within a defeasible logic reasoning framework.

Keywords- Association Rules Discovery; Web Ontologies; Data

Mining Post-Processing; Defeasible Logic Reasoning

I. INTRODUCTION

E-business and e-commerce portals are mainly intended for
companies that offer the service of on-line transactions to
clients. Since web-services become available to the outside of
owner boundaries, many companies have started the
encapsulation of their facilities in the form of web services.
Companies are progressively adopting public protocols of
wide-spread use in order to allow machine-driven transactions,
in addition to the human-driven transactions available through
their portals. Since business and commerce imply advertising,
it has become evident that some form of "semantic" advertising
added to service description is also needed for potential
"machine" clients to asses the potential of the service provided.

B2B is an area where the knowledge of the state and
evolution of the market is central. Association rules have been
recently considered as robust vehicles for producing
recommendations [27], and mining algorithms has been
developed specially for the issue [20]. In B2B, publishing
association rules on the history of the transactions of some
company may result crucial for gaining markets. That is,
association rules may become data potentially appreciated in
web-service based B2B.

Besides, the reader must notice that an association rule
from an itemset I1 to an itemset I2 implies the existence of a
logical relation among two conceptual classes: the class of
transactions that involve itemset I1 and the class of transactions
that involve both itemsets I1 and I2. More specifically, it implies
a subsumption relation, in the sense that the extension of the
last class is contained in the extension of the first one, with
extra quantitative information provided on the degree of
participation of the subsumed class into the more general one

(confidence) and into the world of analysis (support). As
subsumption relations thence, association rules can be easily
encoded in OWL, RDF and RDFS [32, 33, 34]). Moreover, the
implication is important regarding the fact that the assembling
and filtering of association rules through the use of ontologies
has shown concrete gain in terms of informative power [23]. It
turns out therefore extremely desirable to incorporate
association rules to web service description documents.

EXAMPLE 1: The association rule from class I1 to class I2

can be encoded as follows:

In the fragment above, only a new namespace has been added
(def-ar), and two attributes are added to the property
rdfs:subclassOf: def-ar:support, informing the observed support
threshold, and def-ar:confidence, informing the observed
confidence threshold.

A. Recommendation and Association Rules Mining

Algorithms for association discovery that scale well on
large amounts of transaction data have been developed and are
well-known, as A-Priori [1], DIC [9], FPgrowth [15], and more
recently [5]. Nevertheless, those algorithms are not particularly
intended to be used for creating recommendation in machine-
oriented transactions. The algorithms available for discovering
association rules were devised with a purpose in mind:
analysis. According to the models available for defining
analytical rule interest – statistically or empirically – [16, 18],
interesting association rules are those that exhibit certain
signifying measures (called here generically parameters), such
as high confidence and good support. The actual discovered
values of parameters are thence of extreme importance for

<owl:Class rdf:ID="I1"/>

<owl:Class rdf:ID="I2"/>

<owl:Class rdf:ID="I1andI2">

 <owl:intersectionOf >

<owl:Class rdf:resource="#I1"/>

<owl:Class rdf:resource="#I2" />

 </owl:intersectionOf>

</owl:Class>

<rdf:Description rdf:about="#I1andI2">

 <rdfs:subclassOf rdf:resource="#I1"

 def-ar:support="5.100"

 def-ar:confidence="93.100"/>

</rdf:Description>

978-1-4244-4840-1/10/$25.00 ©2010 IEEE

analysts. Analysts, however, do not need to attend to all the
associations that are present in the data, since some of the
mined rules may show no analytical importance. The analysts
would rather provide thresholds to parameter values to filter
the potential result according to interest criteria, and normally,
the thresholds provided are high and the number of rules
obtained small. Thresholds thus serve as pruning devices for
analysis.

Recommendation is a somewhat different matter. Informing
clients of the applied thresholds instead of the actual parameter
values of each rule seems sufficient for advertising. Moreover,
although the number of exhibited rules should not be very large
(as it was the case of analysis) - low time response in web
interactions is central -, filtering through analytical signifying
thresholds does not seem desirable in this context. It could
imply a drastic reduction in recommendations that clients
would appreciate. Other schemes of reduction are thus needed.
Nonetheless, whenever possible, all rules should be shown,
albeit in compact form.

B. Rule Set Compaction

The compaction problem has received attention from the
data mining community since the very beginning [6, 21].
Several pre, in and post-processing reduction techniques have
been proposed [7, 8, 11, 23, 30]. In those approaches; the rules
exhibited are restricted only to those that match given patterns;
non-matching rules are not shown. Because no reasoning
framework is provided, the user cannot deduce all the pruned
rules from the exhibited set.

From a different perspective, different notions of closures
and minimal covers have also been employed for reducing the
number of rules to show [10, 24, 25, 31]. Those approaches,
based on formal concept analysis, prune redundant rules and
allow the inference of all pruned rules. Nonetheless, they fail in
discovering patterns characterizing the singularities present
within each particular dataset when considering redundancy;
the patterns employed and the deduction mechanism (closure
computation) are fixed in the algorithm code.

More general approaches have also been attempted. A
series of induction mechanisms were introduced in [12, 17, 28],
showing techniques for the induction of “queries” on itemsets
that mine associations from frequent itemsets; the queries
acting as a compact representation of the rules. Those
approaches, however, fail in real compaction. The presence of
all itemsets with their respective frequencies is necessary for
reconstructing the rules from the induced queries.

In this paper, we present a different approach. Since the
relation among defeasible logic [3] and semantic web
applications is closer, from the descriptive side [26], and from
the normative side (particularly when e-commerce is involved
[13]), we believe that the addition of association rules to those
settings is worth exploring. This is the subject of this work.

We present therefore an algorithm that produces a compact
representation of the given set of association rules through a
defeasible logic program [3, 4], a triplet formed upon:

a) a set of associations, i.e. atomic formulae formed

upon association predicates on pairs of terms denoting itemset

classes, which represent, semantically, association rules that

are present in the given set;

b) a set of assumptions, i.e. Horn clauses of associations

with itemset variables, that represent particular inference

rules that characterise the given set;

c) a set of defeaters, i.e. counter-arguments to asso-

ciations that can be wrongly implied from associations and

assumptions, and semantically represent a set of association

rules that are not present in the given set.

A linear-time framework for non-monotonically reasoning
with programs is defined, in a manner that the set of all derived
ground instances (associations) can be computed from the
triplet, and a PTIME induction algorithm is then presented for
inducing a compaction from a given set of associations, used as
“positive examples” in a machine-learning manner. All and
only all the given associations can be inferred from the induced
program; the program showing therefore a compaction
principle, in the sense that assumptions entail implicit
associations.

Our approach is closer to the spirit of [14, 19]. The
difference relies in scope. While the cited works have the
identification of legal (meta-)defeasible rules for reasoning on
legal argumentation as a goal, our approach only aims at
producing a compaction. The difference is significant, because
in the cited approaches an association is regarded as a
defeasible sentence, thus turning the approach more oriented to
discover nested defeasible rules [29]. Moreover, an optimal is
searched there, thus leading to intractability and the consequent
use of heuristics, in that case on the legal domain which is not
ours.

C. Compaction by Induction

EXAMPLE 2: Let us have the association rules shown in Table
1, mined from a real set provided by the branch of a major

banking institution, with ≥ 0.6 as threshold for confidence and

≥ 0.05 as threshold for support. We observe a frequent pattern
to hold on the rule-set that tells us the following: if this is the
case that the antecedent (the left side of the association) of
some rule r (the pattern body to match) is the union of two
disjoint itemsets i1 and i2, then it is likely to find within the set
a rule r' (the pattern head to conclude) with its antecedent equal
to one of the itemsets i1 or i2 and the consequent (the right side
of the association) equal to the consequent of rule r.

TABLE I. SET EXAMPLE

1-A⇒B 11-BC⇒G 21-G⇒BC

2-A⇒C 12-BG⇒C 22-H⇒C

3-A⇒I 13-C⇒A 23-H⇒I

4-A⇒CI 14-C⇒I 24-H⇒CI

5-AB⇒H 15-CG⇒B 25-I⇒A

6-AC⇒I 16-CI⇒A 26-I⇒C

7-AI⇒C 17-CI⇒H 27-I⇒AC

8-B⇒C 18-CH⇒I 28-I⇒H

9-B⇒G 19-G⇒B 29-I⇒CH

10-B⇒CG 20-G⇒C 30-IH⇒C

We notice that 12 rules in the set can be concluded from the
pattern head once the pattern body has matched another rule in
the set, and also notice 5 counter-examples. Henceforth the
pattern can be used here for safely pruning the rules concluded
from the head; provided a deductive mechanism exists that
allows the pruned rules to be deduced through the application
of the pattern to the appropriate remaining rules, with account
of the discovered counter-examples. On this basis, we can
safely prune, in the order that follows, rules 3(6), 14(6), 2(7),
26(7), 9(11), 8(12), 20(12), 19(15), 13(16), 25(16), 28(17),
23(18) (the rule number in parenthesis denoting the rule
matching the pattern body). On the other hand, we notice that

rules: A⇒H, B⇒H, C⇒G, C⇒B and C⇒H are not members
of the set of rules and are although deduced from the pattern.
The reconstruction mechanism must account for them as
counter-examples, in order to avoid deduction inaccuracies.

According to Example 2, if we could induce, with an
appropriate induction mechanism, the meta-rule: “For any 3

ary
-

tuple of itemsets X, Y, and Z, whenever a rule from X union Y
(X and Y disjoint) to Z holds with a confidence ≥ 0.6 and a
support ≥ 0.05, conclude that a rule from X to Z also holds
with the same confidence and support thresholds” we could
safely prune rules from the set of rules, with no information
loss; the pruned rules could always be inferred, in the classical
sense, from the meta-rule and the associations remaining in the

pruned set. Since rules A⇒H, B⇒H, C⇒G, C⇒B and C⇒H
would be also classically – and wrongly – inferred, our
induction mechanism should produce counter-arguments of the
form “do not conclude rule r with a confidence ≥ 0.6 and a
support ≥ 0.05”, for each wrongly inferable rule r, in order to
defeat its classical derivation. The inference mechanism needed
should thus produce defeasible conclusions; they must be
abandoned whenever a stronger counterargument is present. In
addition, the example shows that, if we count non-pruned rules,
meta-rules and defeaters as plain rules, the information
presented to the client is smaller in number than the whole set
of the given associations. We have just produced a compaction
of the set.

EXAMPLE 3: The meta-rule encountered in Example 2 can be
encoded in an rdf-style, and added to a descriptive document as
follows:

EXAMPLE 4: The first counter-example can also be added as
follows:

Meta-classes in Example 3 are class variables, names

denoting classes generically. Intersection of meta-classes
corresponds to intersection among the classes substituting the
variables. The counter-example in Example 4 is encoded as
defeating a potential subsumption with appropriate values for
support and confidence. It is rather a general claim than a
particular one.

The fragment shown in Example 3 together with all
counter-examples found on Example 2 encoded as shown in
Example 4, plus the non-pruned rules from Example 2 coded as
shown in Example 1 constitute a document that results a
compaction of the set of all rules exhibited in Table 1,
providing that there exists a closure notion from a reasoning
device capable of reconstruct the entire given set if needed.

If the induction mechanism is sufficiently aware in
detecting non-straightforward meta-rules, as the meta-rule
encoded in Example 3, the pruning mechanism could be
applied as a complement of the reduction mechanism based on
cover computation defined in [24, 25], and the reduction
mechanism of redundant rules in the sense of [31], producing
more reduction. Our reduction mechanism is able to identify
general inference rules (as those of [24, 25, 31]) and prune all
general redundant rules in consequence, and may also identify
patterns present only within the given particular set, as the
meta-rule identified in Example 3, not considered in any of the
reduction schemes from [24, 25, 31], showing therefore a
stronger compaction power.

D. Paper Organization

The rest of the paper proceeds as follows. In section 2, we
present formally the logic for reasoning on association rules. In
Section 3, we present an algorithm for inducing a program - in
the presented logic - from a set of association rules mined from
data. In Section 4, we show experimental results that assess the
effectiveness of our framework with respect to the compaction
goal. In Section 5, we discuss our approach from an
implementation perspective, and in Section 6 we conclude.

<def-ar:metaClass rdf:ID="X"/>

<def-ar:metaClass rdf:ID="Y"/>

< def-ar:metaClass rdf:ID="Z"/>

< def-ar:metaClass rdf:ID="XandY">

< def-ar:intersectionOf >

 < def-ar:metaClass rdf:resource="#X"/>

 < def-ar:metaClass rdf:resource="#Y"/>

 </def-ar:intersectionOf>

</def-ar:metaClass>

< def-ar:metaRule def-ar:support="5.100"

 def-ar:confidence="60.100">

 < def-ar:antecedentRule>

 <rdf:Description rdf:about="#XandY">

 <def-ar:subclassOf rdf:resource="#Z" >

 </rdf:Description>

 </def-ar:antecedentRule>

 < def-ar:consequentRule>

 <rdf:Description rdf:about="#X">

 <def-ar:subclassOf rdf:resource="#Z" >

 </rdf:Description>

 </def-ar:consequentRule>

< def-ar:metaRule>

<owl:Class rdf:ID="A"/>

<owl:Class rdf:ID="H"/>

<def-ar:Defeats def-ar:support="5.100"

 def-ar:confidence="60.100">

 <rdf:Description rdf:about="#H">

 <def-ar:subclassOf rdf:resource="#A"/ >

 </rdf:Description>

</def-ar:Defeats>

II. FORMAL FRAMEWORK

We have explained in the introduction that our approach
relies on inducing a theory in some logic of formulae with an
interpretation on association rules. For a formal definition of
the semantics of association rules, the reader is referred to [1].

A family of non-monotonic logic formalisms for defeasible
reasoning on incomplete knowledge with a well defined
sceptical reasoning process has been defined [3]. A defeasible
logic theory is a collection of rules, formed upon a set of atoms
as a body and an atom as a head, that allows the reasoning on
sets of given facts. In defeasible logic, the rules constituting a
theory represent assertions whose truth is indisputable, and
assertions whose truth is problematic. As a consequence, two
sorts of conclusions are obtained from the reasoning process:
indisputable or defeasible.

More formally, a defeasible logic theory is composed of a
set of strict rules (rules that are indisputably true), defeasible
rules (rules whose application is considered problematic),
defeaters (counter-arguments to defeasible conclusions), and a
superiority relation among rules (as a disambiguation
mechanism).

It was shown that the problem of deciding if an atom is a
member of the extension of a defeasible theory can be
efficiently implemented since it demands linear time and space
[22]. Besides, it has been shown that the absence of a
superiority relation does not compromise the expressive power
of defeasible logic [4]. Within our approach, thus, we are
interested in defeasible rules and defeaters only, and, since our
targets for reasoning are association rules, we incorporate a
notion of threshold covering to the reasoning process; if an
association rule is concluded with some threshold values for
support and confidence, the same association is concluded for
any smaller value down to 0, provided there is no defeater for
the rule with a value in-between.

In the example above, the association rule 3 (A ⇒ I) is

concluded upon the association rule 6 (AC ⇒ I) with ≥ 0.6 as

confidence and ≥ 0.05 as support, according to the "defeasible

rule" pattern encountered in the example. Thus, A ⇒ I is also

(implicitly) concluded with ≥ 0.5 as confidence and ≥ 0.03 as

support. However, if a defeater for rule A ⇒ I is

simultaneously asserted with ≥ 0.04 the A ⇒ I would not be

concluded with ≥ 0.5 as confidence and ≥ 0.03 as support. This
choice is important for a better understanding of the theories
obtained. Within our approach, we consider defeasible rules
that allow us to conclude that an association rule defeasibly
holds, with independence of the conformance with given
support and confidence thresholds, provided that other
association rules also hold conforming the thresholds.
Defeaters are included here to prevent the erroneous conclusion
of an association not conforming the given thresholds.

A. Logic for Associations

We want to represent the set of all given association rules
among itemsets through a defeasible theory. Thus, the domain
on which formulae in our logic are built is founded structurally
on the set of all itemsets formed upon the set of items involved,
with exception of the null itemset. This way, terms in our logic

(constants and variables) represent itemsets with a certain
number of items.

DEFINITION 1: (Itemset Term) Within our logic, an itemset
term is a construct of any of the forms:

• i1… in, a ground itemset term, where i1…in is a non-
empty list of items.

• Vm,M, a variable itemset term, where Vm,M is an itemset

variable, 0 ≤ m ≤ M. The pair m, M indicates the class of
itemsets involved – with size between m and M –.When

the pair is absent, the pair (0, ω) is assumed.

• t1 ∪ … ∪ tn, a itemset union term, where t1 ,…, tm is a

non-empty list of itemset terms, and ∪ is an itemset
infix function name with set union as fixed

interpretation. t1 ∪ … ∪ tn implies that all ti, i=1..n, are
mutually disjoint.

DEFINITION 2: (Association) Within our logic, an association
a is an atom of the form:

a: S ⇒(σ,δ.)T,

where (_ ⇒(σ,δ) _) is an association predicate on two
itemset terms (that fill the _ positions): S, or alternatively
Ant(a), the antecedent of a, and T, or alternatively Cons(a), the
consequent of a.

Association predicates are parametric. The pair

(σ, δ), which is a part of the predicate signature, is a pair of
parameters: σ the support threshold, and δ the confidence
threshold. Both parameters must be rational numbers. This
way, there would be as many association predicates (countable

infinite) as pairs of (σ, δ) of parameters could be formed in the

logic. An association S ⇒(σ,δ)T in our logic always implies that

the atom S ∩ T ∅ holds.

Finally, we call a schema an association with at least one
itemset variable.

DEFINITION 3: (Assumption) An assumption α is a clause of
the form:

α: B(α) ⊢H(α) where:
• B(α) (the body of assumption α) is a non-empty list of
association schemas with no arithmetic operators used in
thresholds.

• H(α) (the head of the assumption α) is a non empty list of

association schema, such that every variable appearing in H(α)
also appears in B(α).

An assumption is head-relevant if each atom in the body
shares at least one non-ground term with the head or has a
ground itemset term with a non-empty intersection with a
ground itemset term in the head.

EXAMPLE 5: The following assumption α1 corresponds to the

meta-rule induced in Example 2:

α1: X1,1 ∪ Y1,1 ⇒(0.05, 0.6) Z1,1 ⊢X1,1 ⇒(0.05, 0.6) Z1,1

where X1,1, Y1,1and Z1,1are itemset variables of item-size = 1.

Assumption α1 is head-relevant.

DEFINITION 4: (Defeater) A defeater d is a construct of the

form:

d: X ⇏(s, p) Y

where X ⇒ (s,p) Y is an association. A defeater asserts that the

association X ⇒(s, p) Y cannot be concluded in the logic. In the
context of a proof system, a defeater has priority over
conclusions obtained from the application of assumptions.

EXAMPLE 6: The defeater d1: A ⇏(0.05,0.6) H corresponds to the
first counter-argument introduced in relation with Example 2.

B. The Reasoning Framework

In order to reason appropriately with programs made of
associations, assumptions and defeaters, a non-monotone
inference mechanism is presented, and theories are defined on
it. Programs in this framework are inspired from [3], and can
be translated in linear-time on the number of their ground
instances into definite programs of clausal logic [4], with a
linear-time ground inference procedure [15] on the same basis.

DEFINITION 5: (Compaction Program) A compaction

program ρ is a 3ary-tuple (AR, Das, Dft), where AR is a set of
associations, Das is a set of assumptions, and Dft is a set of
defeaters.

DEFINITION 6: (Closure) We say that an association a: S

⇒(σ,δ)T is derivable from a compaction program ρ: (AR, Das,
Dft), if and only if there exists a sequence of ground

associations π, recursively satisfying the following:

and there exists an index k ≥ 1, such that π [k] = S ⇒(σ,δ.)T. A

closure Cl(ρ) for a compaction program ρ: (AR, Das, Dft) is a
set AR+, where AR+ is the set of all ground associations

derivable from program ρ.

III. INDUCTIVE DEFEASIBLE COMPACTION

In this section we present the main result of our paper: we
present the notion of inductive defeasible compaction of a set
of association rules and an algorithm for finding such
compaction of a given set of discovered associations. The input
is assumed a complete set of associations, with maximum
values for confidence and support thresholds; no holding

association rule should miss to be interpreted by an association
atom in the input set, and, for all association atom in the input
set, no association rule holds with support and confidence
greater that the thresholds given in the atom.

DEFINITION 7: (Inductive Defeasible Compaction) Given a
constant k > 0 and a set of ground associations AR, complete

for a given database D, a pair (σ, δ) of support-confidence
parameters, an inductive defeasible compaction of the set AR is

a program ρ: (ARmin, Das, Dftmin), with a set Das of head-
relevant assumptions, with no more than k atoms in the bodies,
that satisfies that:

i. Cl(ρ) = AR;

ii. #ARmin + #Dftmin + #{atoms(α) | α ∈ Das} < #AR;

iii. there not exists a program ρ’: (AR’, Das, Dft’) such

that Cl(ρ’) = AR, and AR’ ⊂ AR or Dft’ ⊂ Dft. (2)

A. The Induction Algorithm

A PTIME algorithm that computes a compaction of a
complete set of ground associations by inducing a set Das, and
producing appropriate sets ARmin and Dftmin for the induced set
Das is presented in Fig. 1. We discuss here the underlying
ideas, and details related with its correctness and time
complexity.

The algorithm begins with a procedure, detailed in Fig. 2,
that greedily tries to produce all ground head-relevant
assumptions, increasing the possible body size, variable j in the
algorithm, from 1 to k. Each association in AR is considered
there the head of a potential ground assumption, and all groups
with a body size that equals j are considered as potentially
bodies, provided the union of the itemsets that appear in the
antecedent and the consequent of all members of the group
covers the union of the itemsets of the antecedent and the
consequent of the selected head rule.

Figure 1. Induction Algorithm

For all 0 ≤ i ≤ k - 1

if π [i + 1] = X ⇒(σ,δ)Y then

1) X⇒(σ',δ'.)Y ∈ AR, for some σ’≥ σ, δ’≥ δ

 and ∄ X ⇏ (s,p)Y ∈ Dft,

 for any p, s | 1 – s ≤ σ, 1 – p ≤ δ; or

 2) ∃∃∃∃ some ground instance β of α ∈ Das

. | H(α) = X ⇒(σ',δ')Y,

for some σ’≥ σ, δ’≥ δ

and ∄ X ⇏ (s,p)Y ∈ Dft,

for any p, s | 1 – s ≤ σ, 1 – p ≤ δ

and for each V⇒(σ",δ'")W in B(α),

 ∃∃∃∃j, 1 ≤ j ≤ i, π [j] = V⇒(σ",δ'")W,

 for some σ’≥ σ”, δ’≥ δ. (1)

For 1 ≤ i ≤ k
Derive forests from all head-relevant ground assumptions with

body size not > k, forming a dependency graph from body rules
into head rules of each assumption:

Find all clases of isomorphic forests generalising isomorphic

forests into classes of candidate assumptions Das, generating a
fresh variable per leaf in each forest class and a substitution per

leaf in each instance of the forest class;

Loop
Search for a set Dftmin of defeaters for assumptions in Das,

attaching all substitutions and candidate – conflict-ting –

assumptions used for inferring each defeater;
Loop

adjusting the classes by variable sizes and confidence and

support, reducing the number of defeaters in Dftmin;
Choose a maximal elimination order for the rule depen-dency

graph;
Prune rules in the order produced;

If the compaction criterion is fulfilled

exit the algorithm returning Das, ARmin and Dftmin;
If there is no conflicting assumptions

exit the algorithm returning failure;

Choose a conflicting assumption to prune from and delete it from

Figure 2. Forests Derivation

Next, the procedure proceeds to build, for each ground
assumption, a set of forests of trees of itemset terms, with 1)
one forest for the head, with one tree for the antecedent and one
tree for the consequent; and 2) one forest for each potential
body, with a tree for the antecedent and consequent of each
atom in the body. The leaves of the trees in the forests contain
the subsets that are produced from the complete intersection of
the prospective head of the assumption and the prospective
bodies, considering the antecedent and the consequent of each
rule separately.

Then, fresh variables are assigned to leaves; the forest
becoming a structural representation of an assumption,
candidate for the set Das.

It is simple to see that the time complexity of the procedure
detailed in Fig. 2 is O(n

k
), n the number of the given rules.

The next step consists in finding isomorphisms among the
forests, with the linear time algorithm of [2], leaving one
assumption per isomorphic class in the set Das; the step
demanding O(m

2
) tests, m the number of forests. We preserve

all ground instances of each class on a list attached to the class,
in a manner that the substitutions applied to each variable can
be deduced from them easily.

The algorithm proceeds next to find defeaters, the set Dftmin,
from the set of assumptions – forest classes -, applying them
greedily to the given associations, according to the condition

established in equation (1). The assumptions used in inferring
an atom to be defeated are then attached to the defeater with
the substitutions applied. The method employed works
satisfying the property iii in equation (2) for set Dftmin because
a minimal set of defeaters can always be obtained using the
assumptions and the complete given set AR; the defeaters
inferred from Das is independent of the level of pruning
applied to AR, provided no information loss occurs in that
pruning. This step takes O(n

k
), n the number of associations.

An optimisation is attempted for set Das, with the reduction of
the number of defeaters in Dftmin as a goal. The algorithm
loops, trying to find the better set of assumptions, by
successive adjustments. The substitutions applied to form
ground assumptions are contrasted with the substitutions
applied to form defeaters. Adjustments in variables’ sizes –
hitherto unlimited – and in thresholds of the assumptions are
operated, producing if possible: 1) intervals of sizes of
variables that exclude the size of variables of defeaters; 2) a
maximum of confidence and support thresholds for bodies in
the assumptions that prevent the formation of one or more
defeaters. It is easy to see that the step is polynomial in the size
of set AR.

 The pruning of AR is then accomplished. A candidate for
pruning results any association that appears as head of a ground
instance of an assumption in Das (recall they were attached to
assumptions in step one). Since the rule dependency graph may
have cycles, cycles are identified and broken by eliminating
one node of each cycle. An elimination order is therefore
produced, by a systematic remove of ears in the graph,
considering only nodes candidate for pruning. Associations are
then pruned from AR in the elimination order, forming the set
ARmin. Note that this technique ensures properties i and iii to
hold for set ARmin. Finding cycles in a graph, the hard part of
this step is known to have a polynomial time complexity in the
number of nodes, so it is this step in the number of given
associations, since the nodes in the graph are the associations
themselves.

Finally, the test: #ARmin + #Dftmin + #{atoms(α) | α ∈ Das} <
#AR is made. If the answer is positive the algorithm ends
successfully – the program returned satisfying property ii (in
addition to i and iii). If the answer is negative, an assumption
among those contributing in producing a defeater is chosen for
elimination (the most employed when producing defeaters is
chosen first), and the process loops finding defeaters for the
new set Das. If there are no assumptions to prune, the
algorithm ends with failure. This step has constant time,
provided the sizes has been stored, and the number of loops, if
they resulted necessary, cannot exceed O(n

k
) iterations.

IV. EXPERIMENTAL RESULTS

Our approach has been experimented on three different
highly correlated transaction database cases: case 1: (PtC), case
2: (DSP) and case 3: (Arry), each from a different domain of e-
commerce companies respectively, with a total of 2.9, 3.2 and
0.22 millions of records each, a number of 10502, 4135, and
1550 items. The experiments were developed running the
algorithm A-Priori on each of the sets, varying the support
down from 0.25 to 0.1, and confidence down from 0.7 to 0.99.

Form a graph G with one vertex for each rule a in AR and

 an edge (a, b) for each pair of vertices a and b of G, such that

itemsets(a) intersects itemsets(b).
Form an ordered list L of all items in vertices of G;

For each vertex a of G

Create a pair of indices pointing to the first and the last items of
vertex a in list L;

For j=1..k

 For each vertex a of G
For each group g of j vertices of G adjacent to a

s.t. there exist a sequence of vertices b1,…,bj

 s.t. last(bi, L) ≥ first(bi+1, L), for 1≤i≤j-1, and

 first(b1, L) ≤ first(a, L) and

 last(a, L) ≤ last(bj, L)
Form a disjoint partition P(a, g, j) of the union of all
 itemsets in a and all itemsets in each rule b in g

Form a forest head(a, g, j) with two trees,

 headAnt(a, g, j) and headCons(a, g, j),
 with itemsets Ant(a) and Cons(a) as roots

 and each subset of itemsets Ant(a) and Cons(a)

 in P(a, g, j) as their respective sons
For each vertex b in g,

form j forests body(a, g, i), 1≤ i ≤j, with two trees,
 s.t. bodyAnt(a, g, i) and bodyCons(a, g, i),
 with itemsets Ant(b) and Cons(b) as roots

 and each subset of itemsets Ant(b) and Cons(b)

 in P(a, g, j) as their respective sons
Assign to each leaf l of trees bodyAnt(a, g, i) and

bodyCons(a, g, i), 1≤ i ≤j,
a fresh variable Vm,M, m, M = size(itemset(l)).

Assign to each leaf l of tree headAnt(a, g, j)

the variable assigned to itemset l

in some leaf of some tree bodyCons(a, g, i), labelled before.

TABLE II. EXPERIMENTAL DATA

Conf. #rules #pruned #dftrs

 PtC

0.5 6604 2985 1114

0.6 2697 2081 25

0.75 1867 1606 10

0.8 1266 1176 0

0.95 892 866 1

0.98 705 699 1

 DSP

0.5 2473 1168 268

0.6 1696 869 64

0.75 1509 844 89

0.8 1290 1030 29

0.95 1032 889 15

0.98 759 723 1

 Arry

0.5 770 492 82

0.6 520 353 60

0.75 472 327 39

0.8 408 287 22

0.95 361 255 25

0.98 314 243 30

Our induction algorithm has been launched for each
combination of thresholds. Our scheme eliminates all
redundant rules in the sense of [25, 31], i.e. those association
rules that are not in the covers. All the meta-rule deductive
schemes implicitly included in [25] and [31] are induced by our
method. The percentage of pruning, thus, outperforms [25].
The results produced for k=3, support 0.25 and confidences
between 0.7 and 0.99 are shown in Fig. 3, in terms of pruning
percentage (vertical axis). The effectiveness of our method
when applied to low confidences (from 0.7 to 0.9) are evident.
The percentage of pruning achieved diminishes as the
confidence is superior to 0.9. Nevertheless, the pruning is
effective with confidence of 0.99 in the majority of cases.

Pruning at Support = 0.25

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

0,7 0,8 0,9 0,95 0,99

Confidence

P
ru
n
in
g
 L
e
v
e
l

Case 1

Case 2

Case 3

Figure 3. Pruning experiences at support 0.25

V. DISCUSSION AND CHALLENGES

It is important to discuss the technique presented here with
focus on the purpose the technique pursues: to produce
semantic recommendation.

The reader should have noticed that the algorithm presented
relies strongly on "choice". For instance, the algorithm chooses
ears in the graph to form an order for elimination, and the
choice is arbitrary. This strategy is essential to maintain low
complexity (polynomial), and to turn our approach feasible and
practical. Nevertheless, a warned reader may conclude that this
arbitrary choice implies that there are many compactions to
produce and therefore the approach as a whole does not show
to produce an optimal solution. And the reader is right in this
conclusion. Since the goal is compaction, the search for an
optimal solution can be bypassed provided a substantial level
of pruning is achieved.

To complete the whole view, we describe how web service
descriptions are complemented with the association rules as
recommendations. In effect, under our scheme, the document
describing the web service is augmented with a set of
OWL/RDF/S triples that only incorporate the non-pruned rules
with the format of Example 1, that is, the set ARmin of the
compaction program obtained by our algorithm, together with
the thresholds applied to the mining process and a registered
URI of a registered description service. The assumptions and
defeaters are not added to the web service description. If the
associations encoded in the triples are not sufficient for the
client (a search engine, for instance), the client may request a
widening of the response to the description service identified
by the given URI, and then the assumptions and defeaters are
produced. The reasoning task required for deriving all the
implicitly published rules is client responsibility.

Notice that, under this scheme, the actual rules that appear as
members of the set initial ARmin set are irrelevant; the only
important issue is the size of the set.

The developed scheme also supports an extension of the
algorithm that admits the assignment of priorities to rules and
to itemsets, in order to allow the user to produce a more
controlled program as output. Nonetheless, the importance of
the extension has not been already tested, and therefore it is
beyond the subject of the present paper.

It would be also interesting to design a scheme that supports
queries where the client provides an itemset class and values
for support and confidence and the engine produces a maximal
class of inferred associated itemsets as a response. This scheme
is also under development, so we have not discussed this aspect
here.

VI. CONCLUSION

In this paper, we have presented a defeasible logic
framework for managing associations that helps in reducing the
number of rules found in a set of discovered associations. We
have presented an induction algorithm for inducing programs
in our logic, made of assumption schemas, a reduced set of

association rules and a set of counter-arguments to conclusions
called defeaters, guaranteeing that every pruned rule can be
effectively inferred from the output. Our approach outperform
those of [17], because all reduction compactions presented
there can be expressed and induced in our framework, and
several other patterns, particular to the given datasets, can also
be found. In addition, since a set of definite clauses can be
obtained from the induced programs, the knowledge obtained
can be modularly inserted in a richer inference engine.
Abduction can be also attempted, asking for justifications that
explain the presence of certain association in the dataset.

The framework presented can be extended in several ways:

• Admitting defeaters to appear in the head of as-
sumption, to define user interest.

• Admitting arithmetic expressions within assumptions,
for adjustment in pruning.

• Admitting set formation patterns as itemset constants.

• Extending the scope, to cover temporal association
rules.

REFERENCES

[1] R. Agrawal, and R. Srikant: Fast algorithms for mining association rules.
In Proc. Int’l Conf. Very Large Databases. (1994).

[2] A. V. Aho, J. E. Hopcroft, J. Ullman. The design and analysis of

computer algorithms, Addison-Wesley, 1974.

[3] G. Antoniou, D. Billington, G. Governatori, M. J. Maher, A. Rock: A

Family of Defeasible Reasoning Logics and its Implementation. ECAI

2000: 459-463.

[4] G. Antoniou, D. Billington, G. Governatori, M. J. Maher: Representation

results for defeasible logic. ACM Trans. Comput. Log. 2(2): 255-287
(2001).

[5] A. Basel, A. Mahafzah, M. Al-Badarneh: A new sampling technique for

association rule mining, Journal of Information Science, Vol. 35, No. 3,

358-376 (2009).

[6] R. Bayardo and R. Agrawal: Mining the Most Interesting Rules. In Proc.

of the Fifth ACMSIGKDD Int’l Conf. on Knowledge Discovery and Data

Mining, 145-154, (1999).

[7] R. Bayardo, R. Agrawal, and D. Gunopulos: Constraint-based Rule
Mining in Large, Dense Databases. Data Mining and Knowledge
Discovery Journal, Vol. 4, Num-bers 2/3, 217-240. (2000).

[8] A. Berrado, G. Runger: Using metarules to organize and group

discovered association rules. Data Mining and Knowledge Discovery.

Vol 14, Issue 3. (2007).

[9] S. Brin, R. Motwani, J. Ullman, and S. Tsur: Dynamic itemset counting

and implication rules for market basket analysis. In Proc. ACM-
SIGMOD Int’l Conf. Management of Data. (1997).

[10] L. Cristofor and D.Simovici: Generating an nformative Cover for

Association Rules. In ICDM 2002, Maebashi City, Japan. (2002).

[11] Y. Fu and J. Han: Meta-rule Guided Mining of association rules in

relational databases. In Proc. Int’l Workshop on Knowledge Discovery
and Deductive and Object-Oriented Databases. (1995).

[12] B. Goethals, E. Hoekx, J. Van den Bussche: Mining tree queries in a

graph. KDD: 61-69. (2005).

[13] G. Governatori, D. H. Pham, S. Raboczi, A. Newman and S. Takur: On

Extending RuleML for Modal Defeasible Logic. RuleML, LNCS 5321,

89-103. (2008).

[14] G. Governatori and A. Stranieri. Towards the application of association
rules for defeasible rules discovery In Legal Knowledge and Information
Systems, JURIX, IOS Press, 63-75. (2001).

[15] J. Han, J. Pei and Y. Yin: Mining frequent patterns without candidate

generation. In Proc. ACM-SIGMOD Int’l Conf. Management of Data.

(2000).

[16] C. Hébert, B. Crémilleux: Optimized Rule Mining Through a Unified

Framework for Interestingness Measures. DaWaK: LNCS 4081, 238-
247. (2006).

[17] E. Hoekx, J. Van den Bussche: Mining for Tree-Query Associations in a

Graph. ICDM 2006: 254-264.

[18] R. Huebner: Diversity-Based Interestingness Measures For Association

Rule Mining. Proceedings of ASBBS Volume 16 Number 1, (2009).

[19] B. Johnston, Guido Governatori: An algorithm for the induction of

defeasible logic theories from databases. Proceedings of the 14th
Australasian Database Conference, 75-83. (2003).

[20] P. Kazienko: Mining Indirect Association Rules For Web

Recommendation. Int. J. Appl. Math. Comput. Sci., Vol. 19, No. 1, 165–

186. (2009).

[21] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.

Verkamo: Finding interesting rules from large sets of discovered

association rules. In Proc. 3rd Int’l Conf. on Information and Knowledge

Management. (1994).

[22] M. J. Maher, A. Rock, G. Antoniou, D. Billington, T. Miller: Efficient

Defeasible Reasoning Systems. International Journal on Artificial

Intelligence Tools 10(4): 483-501 (2001).

[23] C. Marinica, F. Guillet, and H. Briand: Post-Processing of Discovered

Association Rules Using Ontologies. The Second International
Workshop on Domain Driven Data Mining, Pisa, Italy (2008).

[24] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal: Closed sets based
discovery of small covers for association rules. In Proc. BDA'99

Conference, 361-381 (1999).

[25] N. Pasquier, R. Taouil, I. Bastide, G. Stume, and L. Lakhal: Generating

a Condensed Representation for Association Rules. In Journal of
Intelligent Information Systems, 24:1, 29-60 (2005).

[26] P. Pothipruk, G. Governatori: ALE Defeasible Description Logic.
Australian Conference on Artificial Intelligence. 110-119 (2006).

[27] J. Sandvig, B. Mobasher Robustness of collaborative recommendation

based on association rule mining, Proceedings of the ACM Conference
on Recommender Systems (2007).

[28] W. Shen, K. Ong, B. Mitbander, and C. Zaniolo: Metaqueries for data

mining. In Fayaad, U. et al. Eds. Advances in Knowledge Discovery and

Data Mining. (1996).

[29] I. Song, G. Governatori: Nested Rules in Defeasible Logic. RuleML,

LNCS 3791, 204-208 (2005).

[30] H. Toivonen, M. Klemettinen, P. Ronkainer, K. Hatonen, and H.

Mannila: Pruning and grouping discovered association rules. In ECML
Workshop on Statistics, Machine Learning and KDD. (1995).

[31] M. Zaki: Generating Non-Redundant Association Rules. In Proc. of the

Sixth ACMSIGKDD Int’l Conf. on Knowledge Discovery and Data

Mining, 34-43, (2000).

[32] w3c. OWL Ontology Web Language Reference. In:

http://www.w3.org/TR/2004/REC-owl-ref-20040210.

[33] w3c. RDF/XML Syntax Specification. In: http://www.w3.org/TR/rdf-

syntax-grammar/.

[34] w3c. RDF Schema. In: http://www.w3.org/TR/rdf-schema/.

