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Abstract— Association rules are nowadays regarded as robust 

vehicles for creating Web recommendations. We present an 

induction-based technique for creating a compact representation 

of sets of association rules, particularly intended for publishing 

the compact representation in the Web. Our technique efficiently 

induces a defeasible logic program from a set of association rules, 

in a manner that the complete set of the given associations can be 

concluded, when integrating the induced compact program 

within a defeasible logic reasoning framework.  
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I.  INTRODUCTION 

E-business and e-commerce portals are mainly intended for 
companies that offer the service of on-line transactions to 
clients. Since web-services become available to the outside of 
owner boundaries, many companies have started the 
encapsulation of their facilities in the form of web services. 
Companies are progressively adopting public protocols of 
wide-spread use in order to allow machine-driven transactions, 
in addition to the human-driven transactions available through 
their portals. Since business and commerce imply advertising, 
it has become evident that some form of "semantic" advertising 
added to service description is also needed for potential 
"machine" clients to asses the potential of the service provided. 

B2B is an area where the knowledge of the state and 
evolution of the market is central. Association rules have been 
recently considered as robust vehicles for producing 
recommendations [27], and mining algorithms has been 
developed specially for the issue [20]. In B2B, publishing 
association rules on the history of the transactions of some 
company may result crucial for gaining markets. That is, 
association rules may become data potentially appreciated in 
web-service based B2B. 

Besides, the reader must notice that an association rule 
from an itemset I1 to an itemset I2 implies the existence of a 
logical relation among two conceptual classes: the class of 
transactions that involve itemset I1 and the class of transactions 
that involve both itemsets I1 and I2. More specifically, it implies 
a subsumption relation, in the sense that the extension of the 
last class is contained in the extension of the first one, with 
extra quantitative information provided on the degree of 
participation of the subsumed class into the more general one 

(confidence) and into the world of analysis (support). As 
subsumption relations thence, association rules can be easily 
encoded in OWL, RDF and RDFS [32, 33, 34]). Moreover, the 
implication is important regarding the fact that the assembling 
and filtering of association rules through the use of ontologies 
has shown concrete gain in terms of informative power [23]. It 
turns out therefore extremely desirable to incorporate 
association rules to web service description documents. 

EXAMPLE 1: The association rule from class I1 to class I2 

can be encoded as follows: 

 
 

 

 

 

 

 

 

 

In the fragment above, only a new namespace has been added 
(def-ar), and two attributes are added to the property 
rdfs:subclassOf: def-ar:support, informing the observed support 
threshold, and def-ar:confidence, informing the observed 
confidence threshold. 

A. Recommendation and Association Rules Mining 

Algorithms for association discovery that scale well on 
large amounts of transaction data have been developed and are 
well-known, as A-Priori [1], DIC [9], FPgrowth [15], and more 
recently [5]. Nevertheless, those algorithms are not particularly 
intended to be used for creating recommendation in machine-
oriented transactions. The algorithms available for discovering 
association rules were devised with a purpose in mind: 
analysis. According to the models available for defining 
analytical rule interest – statistically or empirically – [16, 18], 
interesting association rules are those that exhibit certain 
signifying measures (called here generically parameters), such 
as high confidence and good support. The actual discovered 
values of parameters are thence of extreme importance for 

<owl:Class rdf:ID="I1"/> 

<owl:Class rdf:ID="I2"/> 

<owl:Class rdf:ID="I1andI2"> 

    <owl:intersectionOf > 

<owl:Class rdf:resource="#I1"/> 

<owl:Class rdf:resource="#I2" /> 

    </owl:intersectionOf> 

</owl:Class> 

<rdf:Description rdf:about="#I1andI2"> 

   <rdfs:subclassOf  rdf:resource="#I1" 

                               def-ar:support="5.100" 

                               def-ar:confidence="93.100"/> 

</rdf:Description> 
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analysts. Analysts, however, do not need to attend to all the 
associations that are present in the data, since some of the 
mined rules may show no analytical importance. The analysts 
would rather provide thresholds to parameter values to filter 
the potential result according to interest criteria, and normally, 
the thresholds provided are high and the number of rules 
obtained small. Thresholds thus serve as pruning devices for 
analysis. 

Recommendation is a somewhat different matter. Informing 
clients of the applied thresholds instead of the actual parameter 
values of each rule seems sufficient for advertising. Moreover, 
although the number of exhibited rules should not be very large 
(as it was the case of analysis) - low time response in web 
interactions is central -, filtering through analytical signifying 
thresholds does not seem desirable in this context. It could 
imply a drastic reduction in recommendations that clients 
would appreciate. Other schemes of reduction are thus needed. 
Nonetheless, whenever possible, all rules should be shown, 
albeit in compact form. 

B. Rule Set Compaction 

The compaction problem has received attention from the 
data mining community since the very beginning [6, 21]. 
Several pre, in and post-processing reduction techniques have 
been proposed [7, 8, 11, 23, 30]. In those approaches; the rules 
exhibited are restricted only to those that match given patterns; 
non-matching rules are not shown. Because no reasoning 
framework is provided, the user cannot deduce all the pruned 
rules from the exhibited set. 

From a different perspective, different notions of closures 
and minimal covers have also been employed for reducing the 
number of rules to show [10, 24, 25, 31]. Those approaches, 
based on formal concept analysis, prune redundant rules and 
allow the inference of all pruned rules. Nonetheless, they fail in 
discovering patterns characterizing the singularities present 
within each particular dataset when considering redundancy; 
the patterns employed and the deduction mechanism (closure 
computation) are fixed in the algorithm code.  

More general approaches have also been attempted. A 
series of induction mechanisms were introduced in [12, 17, 28], 
showing techniques for the induction of “queries” on itemsets 
that mine associations from frequent itemsets; the queries 
acting as a compact representation of the rules. Those 
approaches, however, fail in real compaction. The presence of 
all itemsets with their respective frequencies is necessary for 
reconstructing the rules from the induced queries.  

In this paper, we present a different approach. Since the 
relation among defeasible logic [3] and semantic web 
applications is closer, from the descriptive side [26], and from 
the normative side (particularly when e-commerce is involved 
[13]), we believe that the addition of association rules to those 
settings is worth exploring. This is the subject of this work.  

We present therefore an algorithm that produces a compact 
representation of the given set of association rules through a 
defeasible logic program [3, 4], a triplet formed upon: 

a) a set of associations, i.e. atomic formulae formed 

upon association predicates on pairs of terms denoting itemset 

classes, which represent, semantically, association rules that 

are present in the given set;  

b) a set of assumptions, i.e. Horn clauses of associations 

with itemset variables, that represent particular inference 

rules that characterise the given set;  

c) a set of defeaters, i.e. counter-arguments to asso-

ciations that can be wrongly implied from associations and 

assumptions, and semantically represent a set of association 

rules that are not present in the given set.  

A linear-time framework for non-monotonically reasoning 
with programs is defined, in a manner that the set of all derived 
ground instances (associations) can be computed from the 
triplet, and a PTIME induction algorithm is then presented for 
inducing a compaction from a given set of associations, used as 
“positive examples” in a machine-learning manner. All and 
only all the given associations can be inferred from the induced 
program; the program showing therefore a compaction 
principle, in the sense that assumptions entail implicit 
associations. 

Our approach is closer to the spirit of [14, 19]. The 
difference relies in scope. While the cited works have the 
identification of legal (meta-)defeasible rules for reasoning on 
legal argumentation as a goal, our approach only aims at 
producing a compaction. The difference is significant, because 
in the cited approaches an association is regarded as a 
defeasible sentence, thus turning the approach more oriented to 
discover nested defeasible rules [29]. Moreover, an optimal is 
searched there, thus leading to intractability and the consequent 
use of heuristics, in that case on the legal domain which is not 
ours. 

C. Compaction by Induction 

EXAMPLE 2: Let us have the association rules shown in Table 
1, mined from a real set provided by the branch of a major 

banking institution, with ≥ 0.6 as threshold for confidence and 

≥ 0.05 as threshold for support. We observe a frequent pattern 
to hold on the rule-set that tells us the following: if this is the 
case that the antecedent (the left side of the association) of 
some rule r (the pattern body to match) is the union of two 
disjoint itemsets i1 and i2, then it is likely to find within the set 
a rule r' (the pattern head to conclude) with its antecedent equal 
to one of the itemsets i1 or i2 and the consequent (the right side 
of the association) equal to the consequent of rule r. 

TABLE I.  SET EXAMPLE 

1-A⇒B 11-BC⇒G 21-G⇒BC 

2-A⇒C 12-BG⇒C 22-H⇒C 

3-A⇒I 13-C⇒A 23-H⇒I 

4-A⇒CI 14-C⇒I 24-H⇒CI 

5-AB⇒H 15-CG⇒B 25-I⇒A 

6-AC⇒I 16-CI⇒A 26-I⇒C 

7-AI⇒C 17-CI⇒H 27-I⇒AC 

8-B⇒C 18-CH⇒I 28-I⇒H 

9-B⇒G 19-G⇒B 29-I⇒CH 

10-B⇒CG 20-G⇒C 30-IH⇒C 

 



We notice that 12 rules in the set can be concluded from the 
pattern head once the pattern body has matched another rule in 
the set, and also notice 5 counter-examples. Henceforth the 
pattern can be used here for safely pruning the rules concluded 
from the head; provided a deductive mechanism exists that 
allows the pruned rules to be deduced through the application 
of the pattern to the appropriate remaining rules, with account 
of the discovered counter-examples. On this basis, we can 
safely prune, in the order that follows, rules 3(6), 14(6), 2(7), 
26(7), 9(11), 8(12), 20(12), 19(15), 13(16), 25(16), 28(17), 
23(18) (the rule number in parenthesis denoting the rule 
matching the pattern body). On the other hand, we notice that 

rules: A⇒H, B⇒H, C⇒G, C⇒B and C⇒H are not members 
of the set of rules and are although deduced from the pattern. 
The reconstruction mechanism must account for them as 
counter-examples, in order to avoid deduction inaccuracies.  

According to Example 2, if we could induce, with an 
appropriate induction mechanism, the meta-rule: “For any 3

ary
-

tuple of itemsets X, Y, and Z, whenever a rule from X union Y 
(X and Y disjoint) to Z holds with a confidence ≥ 0.6 and a 
support ≥ 0.05, conclude that a rule from X to Z also holds 
with the same confidence and support thresholds” we could 
safely prune rules from the set of rules, with no information 
loss; the pruned rules could always be inferred, in the classical 
sense, from the meta-rule and the associations remaining in the 

pruned set. Since rules A⇒H, B⇒H, C⇒G, C⇒B and C⇒H 
would be also classically – and wrongly – inferred, our 
induction mechanism should produce counter-arguments of the 
form “do not conclude rule r with a confidence ≥ 0.6 and a 
support ≥ 0.05”, for each wrongly inferable rule r, in order to 
defeat its classical derivation. The inference mechanism needed 
should thus produce defeasible conclusions; they must be 
abandoned whenever a stronger counterargument is present. In 
addition, the example shows that, if we count non-pruned rules, 
meta-rules and defeaters as plain rules, the information 
presented to the client is smaller in number than the whole set 
of the given associations. We have just produced a compaction 
of the set. 

EXAMPLE 3: The meta-rule encountered in Example 2 can be 
encoded in an rdf-style, and added to a descriptive document as 
follows: 

 

 

 

 

 

 

 
EXAMPLE 4: The first counter-example can also be added as 
follows: 

 

 

 

 

 

 

 

 

 
Meta-classes in Example 3 are class variables, names 

denoting classes generically. Intersection of meta-classes 
corresponds to intersection among the classes substituting the 
variables. The counter-example in Example 4 is encoded as 
defeating a potential subsumption with appropriate values for 
support and confidence. It is rather a general claim than a 
particular one. 

The fragment shown in Example 3 together with all 
counter-examples found on Example 2 encoded as shown in 
Example 4, plus the non-pruned rules from Example 2 coded as 
shown in Example 1 constitute a document that results a 
compaction of the set of all rules exhibited in Table 1, 
providing that there exists a closure notion from a reasoning 
device capable of reconstruct the entire given set if needed.  

If the induction mechanism is sufficiently aware in 
detecting non-straightforward meta-rules, as the meta-rule 
encoded in Example 3, the pruning mechanism could be 
applied as a complement of the reduction mechanism based on 
cover computation defined in [24, 25], and the reduction 
mechanism of redundant rules in the sense of [31], producing 
more reduction. Our reduction mechanism is able to identify 
general inference rules (as those of [24, 25, 31]) and prune all 
general redundant rules in consequence, and may also identify 
patterns present only within the given particular set, as the 
meta-rule identified in Example 3, not considered in any of the 
reduction schemes from [24, 25, 31], showing therefore a 
stronger compaction power. 

D. Paper Organization 

The rest of the paper proceeds as follows. In section 2, we 
present formally the logic for reasoning on association rules. In 
Section 3, we present an algorithm for inducing a program - in 
the presented logic - from a set of association rules mined from 
data. In Section 4, we show experimental results that assess the 
effectiveness of our framework with respect to the compaction 
goal. In Section 5, we discuss our approach from an 
implementation perspective, and in Section 6 we conclude. 

<def-ar:metaClass rdf:ID="X"/> 

<def-ar:metaClass rdf:ID="Y"/> 

< def-ar:metaClass rdf:ID="Z"/> 

< def-ar:metaClass rdf:ID="XandY"> 

< def-ar:intersectionOf > 

  < def-ar:metaClass rdf:resource="#X"/> 

  < def-ar:metaClass rdf:resource="#Y"/> 

    </def-ar:intersectionOf> 

</def-ar:metaClass> 

< def-ar:metaRule  def-ar:support="5.100" 

                                 def-ar:confidence="60.100"> 

     < def-ar:antecedentRule> 

            <rdf:Description rdf:about="#XandY"> 

             <def-ar:subclassOf rdf:resource="#Z" > 

            </rdf:Description> 

     </def-ar:antecedentRule> 

         < def-ar:consequentRule> 

              <rdf:Description rdf:about="#X"> 

               <def-ar:subclassOf rdf:resource="#Z" > 

              </rdf:Description> 

         </def-ar:consequentRule> 

< def-ar:metaRule> 

<owl:Class rdf:ID="A"/> 

<owl:Class rdf:ID="H"/> 

<def-ar:Defeats  def-ar:support="5.100" 

                            def-ar:confidence="60.100"> 

      <rdf:Description rdf:about="#H"> 

            <def-ar:subclassOf rdf:resource="#A"/ > 

      </rdf:Description> 

</def-ar:Defeats> 



II. FORMAL FRAMEWORK 

We have explained in the introduction that our approach 
relies on inducing a theory in some logic of formulae with an 
interpretation on association rules. For a formal definition of 
the semantics of association rules, the reader is referred to [1].  

A family of non-monotonic logic formalisms for defeasible 
reasoning on incomplete knowledge with a well defined 
sceptical reasoning process has been defined [3]. A defeasible 
logic theory is a collection of rules, formed upon a set of atoms 
as a body and an atom as a head, that allows the reasoning on 
sets of given facts. In defeasible logic, the rules constituting a 
theory represent assertions whose truth is indisputable, and 
assertions whose truth is problematic. As a consequence, two 
sorts of conclusions are obtained from the reasoning process: 
indisputable or defeasible.  

More formally, a defeasible logic theory is composed of a 
set of strict rules (rules that are indisputably true), defeasible 
rules (rules whose application is considered problematic), 
defeaters (counter-arguments to defeasible conclusions), and a 
superiority relation among rules (as a disambiguation 
mechanism).  

It was shown that the problem of deciding if an atom is a 
member of the extension of a defeasible theory can be 
efficiently implemented since it demands linear time and space 
[22]. Besides, it has been shown that the absence of a 
superiority relation does not compromise the expressive power 
of defeasible logic [4]. Within our approach, thus, we are 
interested in defeasible rules and defeaters only, and, since our 
targets for reasoning are association rules, we incorporate a 
notion of threshold covering to the reasoning process; if an 
association rule is concluded with some threshold values for 
support and confidence, the same association is concluded for 
any smaller value down to 0, provided there is no defeater for 
the rule with a value in-between.  

In the example above, the association rule 3 (A ⇒ I) is 

concluded upon the association rule 6 (AC ⇒ I) with ≥ 0.6 as 

confidence and ≥ 0.05 as support, according to the "defeasible 

rule" pattern encountered in the example. Thus, A ⇒ I is also 

(implicitly) concluded with ≥ 0.5 as confidence and ≥ 0.03 as 

support. However, if a defeater for rule A ⇒ I is 

simultaneously asserted with ≥ 0.04 the A ⇒ I would not be 

concluded with ≥ 0.5 as confidence and ≥ 0.03 as support. This 
choice is important for a better understanding of the theories 
obtained. Within our approach, we consider defeasible rules 
that allow us to conclude that an association rule defeasibly 
holds, with independence of the conformance with given 
support and confidence thresholds, provided that other 
association rules also hold conforming the thresholds. 
Defeaters are included here to prevent the erroneous conclusion 
of an association not conforming the given thresholds. 

A. Logic for Associations 

We want to represent the set of all given association rules 
among itemsets through a defeasible theory. Thus, the domain 
on which formulae in our logic are built is founded structurally 
on the set of all itemsets formed upon the set of items involved, 
with exception of the null itemset. This way, terms in our logic 

(constants and variables) represent itemsets with a certain 
number of items. 

DEFINITION 1: (Itemset Term) Within our logic, an itemset 
term is a construct of any of the forms: 

• i1… in, a ground itemset term, where i1…in is a non-
empty list of items. 

• Vm,M, a variable itemset term, where Vm,M is an itemset 

variable, 0 ≤ m ≤ M. The pair m, M indicates the class of 
itemsets involved – with size between m and M –.When 

the pair is absent, the pair (0, ω) is assumed. 

• t1 ∪ … ∪ tn, a itemset union term, where t1 ,…, tm is a 

non-empty list of itemset terms, and ∪ is an itemset 
infix function name with set union as fixed 

interpretation. t1 ∪ … ∪ tn implies that all ti, i=1..n, are 
mutually disjoint. 

DEFINITION 2: (Association) Within our logic, an association 
a is an atom of the form: 

a: S ⇒(σ,δ.)T, 

where ( _ ⇒(σ,δ) _ ) is an association predicate on two 
itemset terms (that fill the _ positions): S, or alternatively 
Ant(a), the antecedent of a, and T, or alternatively Cons(a), the 
consequent of a.  

Association predicates are parametric. The pair 

(σ, δ), which is a part of the predicate signature, is a pair of 
parameters: σ the support threshold, and δ the confidence 
threshold. Both parameters must be rational numbers. This 
way, there would be as many association predicates (countable 

infinite) as pairs of (σ, δ) of parameters could be formed in the 

logic. An association S ⇒(σ,δ)T in our logic always implies that 

the atom S ∩ T ∅ holds. 

Finally, we call a schema an association with at least one 
itemset variable. 

DEFINITION 3: (Assumption) An assumption α is a clause of 
the form: 

α:  B(α) ⊢H(α)        where: 
• B(α) ( the body of assumption α ) is a non-empty list of 
association schemas with no arithmetic operators used in 
thresholds. 

• H(α) ( the head of the assumption α ) is a non empty list of 

association schema, such that every variable appearing in H(α) 
also appears in B(α). 

An assumption is head-relevant if each atom in the body 
shares at least one non-ground term with the head or has a 
ground itemset term with a non-empty intersection with a 
ground itemset term in the head. 

EXAMPLE 5: The following assumption α1 corresponds to the 

meta-rule induced in Example 2: 

α1:  X1,1 ∪ Y1,1 ⇒(0.05, 0.6) Z1,1 ⊢X1,1 ⇒(0.05, 0.6) Z1,1  

where X1,1, Y1,1and Z1,1are itemset variables of item-size = 1.  



Assumption α1 is head-relevant. 

DEFINITION 4: (Defeater) A defeater d is a construct of the 

form: 

d:  X ⇏(s, p) Y  

where X ⇒ (s,p) Y is an association. A defeater asserts that the 

association X ⇒(s, p) Y cannot be concluded in the logic. In the 
context of a proof system, a defeater has priority over 
conclusions obtained from the application of assumptions. 

EXAMPLE 6: The defeater d1: A ⇏(0.05,0.6) H corresponds to the 
first counter-argument introduced in relation with Example 2. 

B. The Reasoning Framework 

In order to reason appropriately with programs made of 
associations, assumptions and defeaters, a non-monotone 
inference mechanism is presented, and theories are defined on 
it. Programs in this framework are inspired from [3], and can 
be translated in linear-time on the number of their ground 
instances into definite programs of clausal logic [4], with a 
linear-time ground inference procedure [15] on the same basis. 

DEFINITION 5: (Compaction Program) A compaction 

program ρ is a 3ary-tuple (AR, Das, Dft), where AR is a set of 
associations, Das is a set of assumptions, and Dft is a set of 
defeaters. 

DEFINITION 6: (Closure) We say that an association a: S 

⇒(σ,δ)T is derivable from a compaction program ρ: (AR, Das, 
Dft), if and only if there exists a sequence of ground 

associations π, recursively satisfying the following: 

 

 

 

 

 

 

 

 

 

 

and there exists an index k ≥ 1, such that π [k] = S ⇒(σ,δ.)T. A 

closure Cl(ρ) for a compaction program ρ: (AR, Das, Dft) is a 
set AR+, where AR+ is the set of all ground associations 

derivable from program ρ. 

III. INDUCTIVE DEFEASIBLE COMPACTION 

In this section we present the main result of our paper: we 
present the notion of inductive defeasible compaction of a set 
of association rules and an algorithm for finding such 
compaction of a given set of discovered associations. The input 
is assumed a complete set of associations, with maximum 
values for confidence and support thresholds; no holding 

association rule should miss to be interpreted by an association 
atom in the input set, and, for all association atom in the input 
set, no association rule holds with support and confidence 
greater that the thresholds given in the atom. 

DEFINITION 7: (Inductive Defeasible Compaction) Given a 
constant k > 0 and a set of ground associations AR, complete 

for a given database D, a pair (σ, δ) of support-confidence 
parameters, an inductive defeasible compaction of the set AR is 

a program ρ: (ARmin, Das, Dftmin), with a set Das of head-
relevant assumptions, with no more than k atoms in the bodies, 
that  satisfies that:  

i. Cl(ρ) = AR;  

ii. #ARmin + #Dftmin + #{atoms(α) | α ∈ Das} < #AR;  

iii. there not exists a program ρ’: (AR’, Das, Dft’) such 

that Cl(ρ’) = AR, and AR’ ⊂ AR or Dft’ ⊂ Dft.        (2) 

A. The Induction Algorithm 

A PTIME algorithm that computes a compaction of a 
complete set of ground associations by inducing a set Das, and 
producing appropriate sets ARmin and Dftmin for the induced set 
Das is presented in Fig. 1. We discuss here the underlying 
ideas, and details related with its correctness and time 
complexity.  

The algorithm begins with a procedure, detailed in Fig. 2, 
that greedily tries to produce all ground head-relevant 
assumptions, increasing the possible body size, variable j in the 
algorithm, from 1 to k. Each association in AR is considered 
there the head of a potential ground assumption, and all groups 
with a body size that equals j are considered as potentially 
bodies, provided the union of the itemsets that appear in the 
antecedent and the consequent of all members of the group 
covers the union of the itemsets of the antecedent and the 
consequent of the selected head rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Induction Algorithm 

 

For all 0 ≤ i ≤ k - 1 

if π [i + 1] = X ⇒(σ,δ)Y then 

1) X⇒(σ',δ'.)Y ∈ AR, for some σ’≥ σ, δ’≥ δ 

 and ∄ X ⇏ (s,p)Y ∈ Dft,  

          for any p, s | 1 – s ≤ σ, 1 – p ≤ δ;     or 

    2) ∃∃∃∃ some ground instance β of α ∈ Das 

. | H(α) = X ⇒(σ',δ')Y, 

for some σ’≥ σ, δ’≥ δ  

and ∄ X ⇏ (s,p)Y ∈ Dft,  

for any p, s | 1 – s ≤ σ, 1 – p ≤ δ 

and for each V⇒(σ",δ'")W in B(α), 

            ∃∃∃∃j, 1 ≤ j ≤ i, π [j] = V⇒(σ",δ'")W,  

  for some σ’≥ σ”, δ’≥ δ.            (1) 

For 1 ≤ i ≤ k 
Derive forests from all head-relevant ground assumptions with 

body size not > k, forming a dependency graph from body rules 
into head rules of each assumption: 

Find all clases of isomorphic forests generalising isomorphic 

forests into classes of candidate assumptions Das, generating a 
fresh variable per leaf in each forest class and a substitution per 

leaf in each instance of the forest class; 

Loop 
Search for a set Dftmin of defeaters for assumptions in Das, 

attaching all substitutions and candidate – conflict-ting – 

assumptions used for inferring each defeater; 
Loop  

adjusting the classes by variable sizes and confidence and 

support, reducing the number of defeaters in Dftmin; 
Choose a maximal elimination order for the rule depen-dency 

graph; 
Prune rules in the order produced; 

If the compaction criterion is fulfilled  

exit the algorithm returning Das, ARmin and Dftmin; 
If there is no conflicting assumptions  

exit the algorithm returning failure; 

Choose a conflicting assumption to prune from and delete it from 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Forests Derivation 

Next, the procedure proceeds to build, for each ground 
assumption, a set of forests of trees of itemset terms, with 1) 
one forest for the head, with one tree for the antecedent and one 
tree for the consequent; and 2) one forest for each potential 
body, with a tree for the antecedent and consequent of each 
atom in the body. The leaves of the trees in the forests contain 
the subsets that are produced from the complete intersection of 
the prospective head of the assumption and the prospective 
bodies, considering the antecedent and the consequent of each 
rule separately.  

Then, fresh variables are assigned to leaves; the forest 
becoming a structural representation of an assumption, 
candidate for the set Das.  

It is simple to see that the time complexity of the procedure 
detailed in Fig. 2 is O(n

k
), n the number of the given rules. 

The next step consists in finding isomorphisms among the 
forests, with the linear time algorithm of [2], leaving one 
assumption per isomorphic class in the set Das; the step 
demanding O(m

2
) tests, m the number of forests. We preserve 

all ground instances of each class on a list attached to the class, 
in a manner that the substitutions applied to each variable can 
be deduced from them easily. 

The algorithm proceeds next to find defeaters, the set Dftmin, 
from the set of assumptions – forest classes -, applying them 
greedily to the given associations, according to the condition 

established in equation (1). The assumptions used in inferring 
an atom to be defeated are then attached to the defeater with 
the substitutions applied. The method employed works 
satisfying the property iii in equation (2) for set Dftmin because 
a minimal set of defeaters can always be obtained using the 
assumptions and the complete given set AR; the defeaters 
inferred from Das is independent of the level of pruning 
applied to AR, provided no information loss occurs in that 
pruning. This step takes O(n

k
), n the number of associations. 

An optimisation is attempted for set Das, with the reduction of 
the number of defeaters in Dftmin as a goal. The algorithm 
loops, trying to find the better set of assumptions, by 
successive adjustments. The substitutions applied to form 
ground assumptions are contrasted with the substitutions 
applied to form defeaters. Adjustments in variables’ sizes – 
hitherto unlimited – and in thresholds of the assumptions are 
operated, producing if possible: 1) intervals of sizes of 
variables that exclude the size of variables of defeaters; 2) a 
maximum of confidence and support thresholds for bodies in 
the assumptions that prevent the formation of one or more 
defeaters. It is easy to see that the step is polynomial in the size 
of set AR. 

 The pruning of AR is then accomplished. A candidate for 
pruning results any association that appears as head of a ground 
instance of an assumption in Das (recall they were attached to 
assumptions in step one). Since the rule dependency graph may 
have cycles, cycles are identified and broken by eliminating 
one node of each cycle. An elimination order is therefore 
produced, by a systematic remove of ears in the graph, 
considering only nodes candidate for pruning. Associations are 
then pruned from AR in the elimination order, forming the set 
ARmin. Note that this technique ensures properties i and iii to 
hold for set ARmin. Finding cycles in a graph, the hard part of 
this step is known to have a polynomial time complexity in the 
number of nodes, so it is this step in the number of given 
associations, since the nodes in the graph are the associations 
themselves. 

Finally, the test: #ARmin + #Dftmin + #{atoms(α) | α ∈ Das} < 
#AR is made. If the answer is positive the algorithm ends 
successfully – the program returned satisfying property ii (in 
addition to i and iii). If the answer is negative, an assumption 
among those contributing in producing a defeater is chosen for 
elimination (the most employed when producing defeaters is 
chosen first), and the process loops finding defeaters for the 
new set Das. If there are no assumptions to prune, the 
algorithm ends with failure. This step has constant time, 
provided the sizes has been stored, and the number of loops, if 
they resulted necessary, cannot exceed O(n

k
) iterations. 

IV. EXPERIMENTAL RESULTS 

Our approach has been experimented on three different 
highly correlated transaction database cases: case 1: (PtC), case 
2: (DSP) and case 3: (Arry), each from a different domain of e-
commerce companies respectively, with a total of 2.9, 3.2 and 
0.22 millions of records each, a number of 10502, 4135, and 
1550 items. The experiments were developed running the 
algorithm A-Priori on each of the sets, varying the support 
down from 0.25 to 0.1, and confidence down from 0.7 to 0.99.  

Form a graph G with one vertex for each rule a in AR and 

 an edge (a, b) for each pair of vertices  a and b of G, such that 

itemsets(a) intersects itemsets(b). 
Form an ordered list L of all items in vertices of G; 

For each vertex a of G 

Create a pair of indices pointing to the first and the last items of 
vertex a in list L; 

For j=1..k 

  For each vertex a of G 
For each group g of j vertices of G adjacent to a  

s.t. there exist a sequence of vertices b1,…,bj   

 s.t. last(bi, L) ≥ first(bi+1, L), for 1≤i≤j-1, and  

 first(b1, L) ≤ first(a, L) and  

 last(a, L) ≤ last(bj, L) 
Form a disjoint partition P(a, g, j) of the union of all 
 itemsets in a and all itemsets in each rule b in g 

Form a forest head(a, g, j) with two trees,  

 headAnt(a, g, j) and headCons(a, g, j),  
   with itemsets Ant(a) and Cons(a) as roots 

 and each subset of itemsets Ant(a) and Cons(a) 

        in P(a, g, j) as their respective sons 
For each vertex b in g,  

form j forests body(a, g, i), 1≤ i ≤j, with two trees, 
  s.t. bodyAnt(a, g, i) and bodyCons(a, g, i),  
 with itemsets Ant(b) and Cons(b) as roots 

 and each subset of itemsets Ant(b) and Cons(b) 

        in P(a, g, j) as their respective sons 
Assign to each leaf l of trees bodyAnt(a, g, i) and 

bodyCons(a, g, i), 1≤ i ≤j,  
a fresh variable Vm,M, m, M = size(itemset(l)). 

Assign to each leaf l of tree headAnt(a, g, j)  

the variable assigned to itemset l 

in some leaf of some tree bodyCons(a, g, i), labelled before. 



TABLE II.  EXPERIMENTAL DATA 

Conf. #rules #pruned #dftrs 

 PtC   

0.5 6604 2985 1114 

0.6 2697 2081 25 

0.75 1867 1606 10 

0.8 1266 1176 0 

0.95 892 866 1 

0.98 705 699 1 

  DSP     

0.5 2473 1168 268 

0.6 1696 869 64 

0.75 1509 844 89 

0.8 1290 1030 29 

0.95 1032 889 15 

0.98 759 723 1 

  Arry     

0.5 770 492 82 

0.6 520 353 60 

0.75 472 327 39 

0.8 408 287 22 

0.95 361 255 25 

0.98 314 243 30 

 

Our induction algorithm has been launched for each 
combination of thresholds. Our scheme eliminates all 
redundant rules in the sense of [25, 31], i.e. those association 
rules that are not in the covers. All the meta-rule deductive 
schemes implicitly included in [25] and [31] are induced by our 
method. The percentage of pruning, thus, outperforms [25]. 
The results produced for k=3, support 0.25 and confidences 
between 0.7 and 0.99 are shown in Fig. 3, in terms of pruning 
percentage (vertical axis). The effectiveness of our method 
when applied to low confidences (from 0.7 to 0.9) are evident. 
The percentage of pruning achieved diminishes as the 
confidence is superior to 0.9. Nevertheless, the pruning is 
effective with confidence of 0.99 in the majority of cases.  
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Figure 3.  Pruning experiences at support 0.25 

 

V. DISCUSSION AND CHALLENGES  

It is important to discuss the technique presented here with 
focus on the purpose the technique pursues:  to produce 
semantic recommendation. 

The reader should have noticed that the algorithm presented 
relies strongly on "choice". For instance, the algorithm chooses 
ears in the graph to form an order for elimination, and the 
choice is arbitrary. This strategy is essential to maintain low 
complexity (polynomial), and to turn our approach feasible and 
practical. Nevertheless, a warned reader may conclude that this 
arbitrary choice implies that there are many compactions to 
produce and therefore the approach as a whole does not show 
to produce an optimal solution. And the reader is right in this 
conclusion. Since the goal is compaction, the search for an 
optimal solution can be bypassed provided a substantial level 
of pruning is achieved. 

To complete the whole view, we describe how web service 
descriptions are complemented with the association rules as 
recommendations. In effect, under our scheme, the document 
describing the web service is augmented with a set of 
OWL/RDF/S triples that only incorporate the non-pruned rules 
with the format of Example 1, that is, the set ARmin of the 
compaction program obtained by our algorithm, together with 
the thresholds applied to the mining process and a registered 
URI of a registered description service. The assumptions and 
defeaters are not added to the web service description. If the 
associations encoded in the triples are not sufficient for the 
client (a search engine, for instance), the client may request a 
widening of the response to the description service identified 
by the given URI, and then the assumptions and defeaters are 
produced. The reasoning task required for deriving all the 
implicitly published rules is client responsibility.  

Notice that, under this scheme, the actual rules that appear as 
members of the set initial ARmin set are irrelevant; the only 
important issue is the size of the set.  

The developed scheme also supports an extension of the 
algorithm that admits the assignment of priorities to rules and 
to itemsets, in order to allow the user to produce a more 
controlled program as output. Nonetheless, the importance of 
the extension has not been already tested, and therefore it is 
beyond the subject of the present paper.  

It would be also interesting to design a scheme that supports 
queries where the client provides an itemset class and values 
for support and confidence and the engine produces a maximal 
class of inferred associated itemsets as a response. This scheme 
is also under development, so we have not discussed this aspect 
here.  

VI. CONCLUSION 

In this paper, we have presented a defeasible logic 
framework for managing associations that helps in reducing the 
number of rules found in a set of discovered associations. We 
have presented an induction algorithm for inducing programs 
in our logic, made of assumption schemas, a reduced set of 



association rules and a set of counter-arguments to conclusions 
called defeaters, guaranteeing that every pruned rule can be 
effectively inferred from the output. Our approach outperform 
those of [17], because all reduction compactions presented 
there can be expressed and induced in our framework, and 
several other patterns, particular to the given datasets, can also 
be found. In addition, since a set of definite clauses can be 
obtained from the induced programs, the knowledge obtained 
can be modularly inserted in a richer inference engine. 
Abduction can be also attempted, asking for justifications that 
explain the presence of certain association in the dataset. 

The framework presented can be extended in several ways: 

• Admitting defeaters to appear in the head of as-
sumption, to define user interest.   

• Admitting arithmetic expressions within assumptions, 
for adjustment in pruning. 

• Admitting set formation patterns as itemset constants. 

• Extending the scope, to cover temporal association 
rules. 
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