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Abstract. Motivated by an old construction due to J. Kalman that relates distributive

lattices and centered Kleene algebras we define the functor K
• relating integral residuated

lattices with 0 (IRL0) with certain involutive residuated lattices. Our work is also based on

the results obtained by Cignoli about an adjunction between Heyting and Nelson algebras,

which is an enrichment of the basic adjunction between lattices and Kleene algebras.

The lifting of the functor to the category of residuated lattices leads us to study other

adjunctions and equivalences. For example, we treat the functor C whose domain is cuRL,

the category of involutive residuated lattices M whose unit is fixed by the involution and

has a Boolean complement c (the underlying set of CM is the set of elements greater or

equal than c). If we restrict to the full subcategory NRL of cuRL of those objects that

have a nilpotent c, then C is an equivalence. In fact, CM is isomorphic to CeM , and Ce

is adjoint to (̂ ), where (̂ ) assigns to an object A of IRL0 the product A×A0 which is an

object of NRL.

Keywords: residuated lattices, involution, Kalman functor.

1. Introduction

Much of the present work is motivated by results due to Kalman relating
lattices and Kleene algebras [8] and the conviction that these can be lifted
to the level of residuated lattices.

In [3], Cignoli shows that one of the key constructions in [8] induces a
functor from the category of bounded distributive lattices into the category
of Kleene algebras and that it has a left adjoint. Cignoli also shows that
this adjunction restricts to one between the categories of Heyting algebras
and of Nelson algebras and observes that this restriction is essentially a
result obtained independently by Vakarelov [10] and Fidel [4]. Moreover,
it is proved in [3], that Kalman’s adjunction can be further restricted to
an adjunction between the category of Boolean algebras and that of three
valued Lukasiewicz algebras and also to an adjunction between the category
of Stone algebras and that of regular α-De Morgan algebras. Cignoli uses
the properties of the Kalman adjunction in order to provide natural proofs

Special Issue: Many-Valued Logic and Cognition
Edited by Shier Ju and Daniele Mundici



94 J. L. Castiglioni, M. Menni and M. Sagastume

of results involving these categories of algebras. Of particular relevance is
the fact that the left adjoints to the diferent restrictions of the functor K

preserve lattices of congruences.
These applications of Kalman’s construction to different varieties of Hey-

ting algebras, together with the recent interest on residuated lattices, suggest
that it is potentially fruitful to understand Kalman’s work in the context of
residuated lattices. We do this in the present paper.

Our work will involve different functors into the category of residuated
lattices with involution. Some of the more interesting results involve the
discovery of ‘good’ subcategories of residuated lattices with involution. Our
constructions will factor through these subcategories and the resulting fac-
torizations will have better properties than the original ones.

In many cases, the process of finding such subcategories was inspired by
a result at the level of distributive lattices and Kleene algebras. So we recall
this in Section 3.

In Sections 2 and 3 we present a new approach to the old construction due
to Kalman. In fact, we show that given a distributive lattice A the functor
M, that assigns to A the De Morgan algebra A0

⊕
A can be factored through

the category of centered Kleene algebras. Moreover, M has a right adjoint
L, which has a further adjoint K. This one is Kalman functor. When K is
restricted to Heyting algebras and L to the Nelson algebras the adjunction
L � K becomes an equivalence, as Cignoli proved in [3]. This fact (mentioned
in 3.1) motivates the lifting of the construction to residuated lattices in
general, as we remark in 3.2. In the original setting we begin with a functor

(̂ ) that goes from distributive lattices to De Morgan algebras. In section 4

we lift (̂ ) to a functor from the category IRL0 (integral residuated lattices
with 0) to iRLb (involutive residuated bounded lattices).

We introduce cones in section 5. The objects of the category ciRL are
those of iRL that have a distinguished element that is a “center”, i.e., is fixed
for the involution. We call eiRL the full subcategory of ciRL determined by
the residuated lattices whose center is precisely the identity e.

An interesting subcategory of ciRLb is PRL (proto-integral residuated
lattices). For an algebra A of ciRLb we ask for the following additional
condition: the greatest element 1 behaves as neutral for elements greater
than the center c.

A complemented-unit bounded involutive residuated lattice is an object
of eiRL with two distinguished elements e and c, being e the unit and
c its Boolean complement. We call this category cuRL. If the condition
c ∗ c = 0 holds in an algebra A we say that A is a nil-complement-unit
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residuated lattice. We prove (Lemma 5.6) that the functor (̂ ) factors through
NRL −→ IRLb.

In section 6 we show that this embedding is the largest “convenient”

subcategory (see Section 2) and moreover that (̂ ) : IRL0 −→ NRL is actually
an equivalence. Also, the right adjoint associated to the largest convenient
subcategory has a further right adjoint.

The original Kalman construction applied to a lattice A gives the Kleene
algebra KA = {(x, y) ∈ Â | x ∧ y = 0}. Motivated by [9] we replace “∧” by
“·” and define in section 7, for a residuated lattice A:

K
•A := {(x, y) ∈ Â | x · y = 0}

The assignment K• extends to a functor (see Lemma 7.1).

The unit (1, 1) of Â does not belong to K•A, but K•A is closed by the
operations →̇ and ∗ and has the unit (1, 0) (is integral).

A c-differential lattice is an integral involutive residuated lattice with
a center c which satisfies the “Leibniz condition”(see Definition 7.2). We
denote this category by DRL.

In Theorem 7.6 we prove that K• has a left adjoint C. As in Theorem
3.2, C has a further left adjoint. As a corollary (see 7.8) we prove that when
condition (CK•) holds then the adjunction C � K• restricts to an equivalence.
The rest of section 7 is devoted to give an interesting factorization of K•

through (̂ ) and to give an explicit description of the isomorphisms between
congruence lattices associated to the equivalence C � K•.

In the section 8 we define functors M• and M• adjoint to the cone func-
tors C and Ce.

In section 9 we go back to the motivation: the adjunction that relates
Heyting algebras to Nelson algebras. We show our point of view after pre-
vious results. As a particular case we consider Heyting chains.

Apendix A contains a categorical construction of some of the left adjoints
considered in this paper. Appendix B shows that some of the preservation
of congruences results follow from purely categorical properties of adjoint
situations of Kalman type.

2. A useful categorical guide

In the process of our research on this topic we have found it useful to place
our problems in the following general context.

Let F : C → D a functor. (In practice this will be a functor between
varieties. But for the moment let us forget about that.)
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Definition 2.1. We say that a subcategory D′ → D is convenient (with
respect to F : C → D) if F factors through D′ → D and moreover, the fac-
torization F : C → D′ has a right adjoint.

So a convenient subcategory induces a diagram as below

C
F

���
��

��
��

�
F �� D

D′
G

����������

��

with the triangle starting on C commuting and F � G.

With a fixed functor F : C → D at hand, one can then ask what is the
largest convenient subcategory of D. This has proved to have interesting
answers among the categories of lattices we have studied and, perhaps curi-
ously, the way to find the answers can be explained in very simple abstract
terms as follows.

If a factorization F : C → D′ is to have a right adjoint then, letting 0
be the initial object of C, F0 must be initial in D′. We can consider the
subcategory of D determined by those objects that have a unique map from
F0. If this subcategory was convenient then it would clearly be the largest
one. This is exactly what happens in the examples that Kalman’s work has
motivated us to study.

3. Distributive lattices and Kleene algebras

We assume the reader is familiar with bounded distributive lattices. A DeMor-
gan algebra is an algebra (A,∨,∧,∼, 0, 1) of type (2, 2, 1, 0, 0) such that
(A,∨,∧, 0, 1) is a bounded distributive lattice and ∼ fulfills the equations

M1 ∼∼ x = x

M2 ∼ (x ∨ y) =∼ x∧ ∼ y, ∼ (x ∧ y) =∼ x∨ ∼ y.

We denote by DL and DM the categories of distributive lattices and of
De Morgan algebras respectively. Now let X be a distributive lattice X, the
poset X × Xop is a lattice. Its meet and join operations can be given explicit-
ly by (x, x′) ∨ (y, y′) = (x ∨ y, x′ ∧ y′) and (x, x′) ∧ (y, y′) = (x ∧ y, x′ ∨ y′)
and the resulting lattice is distributive. Moreover, it is a De Morgan algebra
when equipped with ∼ (x, x′) = (x′, x). In this way we obtain a functor

(̂ ) : DL → DM. This functor will play a very important role in later sections.
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We will also need to consider the subalgebra of X̂ determined by the set
MX = {(x, x′) ∈ X × X | x = 0 or x′ = 0}. It is easy to see that this set is
closed under the operations ∨, ∧ and ∼. The following is then not difficult
to prove.

Lemma 3.1. For any distributive lattice X, MX is a De Morgan alge-
bra. Moreover, the assignment X �→ MX can be extended to a functor
M : DL → DM.

It is useful to picture MX as the lattice X together with an up-side-down
copy of itself glued together through the bottom element of X.

Theorem 3.2. There is a largest convenient subcategory E of DM with re-
spect to M : DL → DM. Moreover:

1. E is the category of algebras for a finitary algebraic theory. Indeed, it
can be described as the category Klc of centered Kleene algebras,

2. the right adjoint L : Klc → DL is faithful and

3. it has a further right adjoint K : DL → E.

In order to prove Theorem 3.2 we will give an explicit definition of E .

Definition 3.3. A Kleene algebra is a De Morgan algebra in which the
axiom

(K) x∧ ∼ x ≤ y∨ ∼ y.

holds.

A Kleene algebra is called centered if it has a center. That is, an element
c such that ∼ c = c. We denote the category of centered Kleene algebras
by Klc.

Following the suggestion made at the end of Section 2 we can start by
looking at the De Morgan algebras that have a unique morphism from M0.
But M0 is the total order with three elements. So, for a De Morgan alge-
bra X, there exists a unique M0 → X if and only X has a unique center.
Theorem 3.2 would be then proved if we could show that the category of
De Morgan algebras with a unique center satisfies the properties in the
statement.

Proposition 3.4 (See [8]). If A is a De Morgan algebra then the following
are equivalent:
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1. A is a centered Kleene algebra,

2. A has a unique center,

3. there exists a center c such that for every x ∈ A, x ≤∼ x implies x ≤ c.

Proof. The first item trivially implies the second. To prove that the second
implies the third, assume that A has a unique center c and suppose that there
exists an x ∈ A such that x ≤∼ x. Now, let d = (c∧ ∼ x) ∨ x. Then we have

∼ d =∼ (c∧ ∼ x)∧ ∼ x = (c ∨ x)∧ ∼ x =

= (c∧ ∼ x) ∨ (x∧ ∼ x) = (c∧ ∼ x) ∨ x = d

so that d is a center. Then d = c and in particular (c∧ ∼ x) ∨ x ≤ c. But
this implies that x ≤ c.

Finally, to prove that the third item implies the first, let a =∼ x ∧ x and
b =∼ y ∨ y. Then a ≤∼ a and ∼ b ≤∼∼ b = b. By hypothesis, a ≤ c ≤ b.
Then, (K) holds.

Morphisms of De Morgan algebras trivially preserve centers so it is clear
that the full subcategory of DM determined by those which have a unique
center is exactly the category of Klc of centered Kleene algebras. Now,
Proposition 3.4 implies that M : DL → DM factors through the category Klc
of centered Kleene algebras. We denote the factorization by M : DL → Klc.

Lemma 3.5. The functor M : DL → Klc has a right adjoint denoted by
L : Klc → DL which assigns to each centered Kleene algebra A with center c,
the lattice LA determined by {a ∈ A | c ≤ a}.

Proof. Consider the natural transformation η : Id → LM given by the ob-
vious iso. Now let f : A → LX be a morphism of distributive lattices.
It is straightforward to check that the extension f : MA → X given by
f(x, 0) = fx and f(0, y) =∼ (fy) is a morphism of De Morgan algebras (and
so of Kleene algebras). Moreover, it is the unique one such that fη = f .
So the result follows.

To finish the proof of Theorem 3.2 we have to prove that L : Klc → DL
has a right adjoint. But this is Cignoli’s result. For each bounded distribu-
tive lattice D, define the centered Kleene algebra KD with underlying set
{(x, y) ∈ D × D | x ∧ y = 0} and lattice operations inherited from D̂.

Theorem 3.6. (See Theorem 1.7 in [3].) For each bounded distributive lat-
tice D, KD is a centered Kleene algebra (with center (0, 0)). Moreover,
the construction extends to a functor K : DL → Klc that is right adjoint to
L : Klc → DL.

The proof of Theorem 3.2 is finished.
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3.1. Lifting the adjunction L � K : DL → Klc

It is clear from [3] that some of the results loc. cit. are applications of the fact
that the adjunction L � K : DL → Klc lifts to other varieties. For example,
consider the case of Heyting algebras. (We assume that the reader is familiar
with Heyting algebras and we denote the category of these by Hey.)

A quasi-Nelson algebra is a Kleene algebra A such that for each a, b ∈ A,
the relative pseudocomplement a ⇒ (∼ a ∨ b) = a → b exists. It is well-
known (see [2]) that the class of quasi-Nelson algebras is a variety of algebras
(A,∨,∧,→,∼, 0, 1) of type (2, 2, 2, 1, 0, 0). A quasi-Nelson algebra satisfying

(N) (a ∧ b) → c = a → (b → c)

is called a Nelson algebra. We denote the category of centered Nelson alge-
bras by Nelc.

Proposition 3.7 (Theorem 3.14(ii) in [3]). Kalman’s adjunction restricts
to an adjoint equivalence L � K : Hey → Nelc.

Further examples of liftings of the adjunction L � K : DL → Klc are given
by Boolean algebras vs Three-valued Lukasiewicz algebras and Stone alge-
bras vs regular α-De Morgan algebras but we refer to [3] for these.

3.2. Lifting to the case of residuated lattices

The fact that Kalman’s construction can be extended consistently to Heyt-
ing algebras led us to believe that some of this picture could be lifted to
residuated lattices in general. The rest of the paper deals with this level of
generality.

Let IRL0 be the category of integral residuated distributive lattices with
initial object 0. The first step into our investigations is to isolate a reasonable
category which completes the following diagram

IRL0

��

�� ?

��
DL

(̂ )

�� DM

where IRL0 → DL is the obvious forgetful functor and (̂ ) : DL → DM is the
functor introduced at the beginning of Section 3. The category completing
this square should be a De Morgan algebra equipped with a residuated lattice
structure in such a way that the two structures interact in a reasonable way.
In Section 4 we introduce such a category.
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4. Involutive residuated lattices

In this section we shall recall those definitions and properties of involutive
residuated lattices we shall use in this work. For a more detailed exposition
on this subject we refer the reader to [5] and [9].

An involutive residuated lattice is an algebra L = 〈L,∧,∨, ·,∼, e〉 such
that

1. (L,∧,∨) is a lattice

2. (L, ·, e) is a monoid

3. ∼ is an involution of the lattice that is a dual automorphism; i.e.,
∼ (∼ x) = x for all x ∈ L, and

4. x · y ≤ z iff y ≤ ∼ ((∼ z) · x) iff x ≤ ∼ (y · (∼ z)).

We shall write x\y = ∼ ((∼ y) · x) and y/x = ∼ (x · (∼ y)). We shall
write iRL for the category of involutive residuated lattices. There are two
term-equivalent descriptions of iRL. An algebra L = 〈L,∧,∨, ·, \, /, e, d〉 is
said to be a dualizing residuated lattice provided it satisfies the following
conditions:

1. 〈L,∧,∨, ·, \, /, e〉 is a residuated lattice (RL); and

2. d is a cyclic dualizing element. That is, for all x ∈ L,
d/x = x\d (d is cyclic) and
d/(x\d) = (d/x)\d = x (d is dualizing).

Remark 4.1. If 〈L,∧,∨, ·, \, /, e, d〉 is a dualizing RL and we define
∼ x = d/x, then 〈L,∧,∨, ·, e,∼〉 is an involutive RL. On the other hand,
if 〈L,∧,∨, ·, e,∼〉 is an iRL, then by defining

1. d =∼ e and

2. x\z = ∼ ((∼ z) · x) z/x = ∼ (x · (∼ z))

we have that 〈L,∧,∨, ·, \, /, e, d〉 is a dualizing RL.

Let us write 1 and 0 for the greatest and least elements of a RL, L, if
they exist. Then we have in L that x · 0 = 0 = 0 · x; in particular, 1 · 0 = 0.
We also have that x\1 = 1 and 0\x = 1. Hence, x\1 = 1 = 1/x and
0\x = 1 = x/0.

We shall now list some immediate useful properties that holds in any
involutive distributive residuated lattice:



On Some Categories of Involutive Centered Residuated Lattices 101

Lemma 4.2. For any L ∈ iRL and any x, y ∈ L, we have that,

a. e ≤ x/x and e ≤ x \ x

b. x/y = (∼ x) \ (∼ y) and x \ y = (∼ x)/(∼ y)

c. e ≤ y/x if and only if x ≤ y if and only if e ≤ x \ y

d. ∼ (x ∨ y) = (∼ x) ∧ (∼ y)

Proof. Properties a., b. and c. follow easily from the properties of the
involution and the right and left residue. Item d. follows from the fact that
( ) → (∼ e) has an adjoint.

As an immediate consequence of d. in previous Lemma and the fact that
∼ is an involution, we have the following. (Recall that we are assuming that
all our lattices are distributive.)

Lemma 4.3. Let L ∈ iRL. Then, (L,∧,∨,∼,0,1) is a De Morgan Algebra.

From now on let iRLb be the category of involutive residuated lattices
whose underlying lattice is bounded distributive. Lemma 4.3 implies that the
underlying lattice is actually a De Morgan algebra, so we have a forgetful
functor iRLb → DM. Moreover, the (cyclic) involution of L̂ is given by
∼ (x0, x1) = (x1, x0).

Theorem 4.4 (See [9]). Let (L, ·, e, \, /) be a residuated lattice with greatest
element 1. Then the De Morgan algebra L̂ can be equipped with a residuated
structure as follows:

the identity element is given by (e, 1)

(x0, x1) ∗ (y0, y1) = (x0 · y0, y1/x0 ∧ y0\x1)

(x0, x1)\(y0, y1) = (x0\y0 ∧ x1/y1, y1 · x0)

(x0, x1)/(y0, y1) = (x0/y0 ∧ x1\y1, y0 · x1)

Furthermore, we have the following facts:

i. d = (1, e) is a cyclic dualizing element of L̂. Recall that this means
that (x0, x1)\(1, e) = (x1, x0) = (1, e)/(x0, x1).

ii. L̃ = 〈L × Lop,∧,∨, ·, \, /, e,d〉 with e = (e, 1) and d = (1, e) is
a dualizing residuated lattice.

iii. If we consider the structure L∗ = 〈L × {1},∧,∨, ·, \∗, /∗, e〉, where:
B/∗A = B/A ∧ (1, 1)
A\∗B = A\B ∧ (1, 1)

then, the map ε : L −→ L̂∗, defined by ε(a) = (a, 1), for all a ∈ L is
a residuated lattice isomorphism.
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Lemma 4.5. The functor IRL0 → DL followed by (̂ ) : DL → DM factors
through the forgetful iRLb → DM.

Proof. Let f : L → L′ be in IRL0. We need to check that f̂ = f × f op is
a morphism of residuated lattices. But this is a straightforward computation.

So we have obtained a commutative diagram

IRL0

��

(̂ ) �� iRLb

��
DL

(̂ )

�� DM

with the properties discussed at the end of Section 3.

5. Centered residuated lattices

It is well known (see, for example [7]) that for any residuated lattice L, the
negative cone of L, L− := {x ∈ M : x ≤ e}, is again a residuated lattice,
with

a/−b = (a/b) ∧ e and a \− b = (a \ b) ∧ e

and it induces a functor from the category of residuated lattices to that of
integral residuated lattices. Let us denote by Ce the functor from RL to IRL
induced by L �→ L−. By item (iii.) of Theorem 4.4, we see that there is
an isomorphism of residuated lattices between the negative cone of L̂ and
L itself.

“Cones” of residuated lattices will play an important role in the present
paper. Given a fixed element c of a residuated lattice L, it seems difficult
to have a natural picture of how the original residuated structure restricts
to the cones {x ∈ L | x ≤ c} or {x ∈ L | x ≥ c}. So we will usually consider
cones relative to fixed elements with different properties that will allow us
to obtain a nice residuated structure in the associated cone.

Let ciRL be the category of involutive residuated lattices L together with
a distinguished element c such that ∼ c = c. Morphisms are morphisms of
involutive residuated lattices that preserve the distinguished element. We
will usually refer to the objects of this category as centered residuated lat-
tices. Let us write ciRLb for the subcategory of ciRL whose objects are
bounded lattices.
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5.1. Residuated lattices with centered unit

We can immeditatly consider the full subcategory of ciRL determined by
those residuated lattices such that the distinguished center happens to be
the identity e of the underlying residuated lattice. Let us denote the resulting
subcategory by eiRL. We also call Ce the composition : eiRL → RL → IRL;
in particular, this functor restricts to one between eiRLb and IRL0.

5.2. Proto-integral residuated lattices

Now let us consider upper cones. We again want a functor towards IRL0 so
let us consider the full subcategory of ciRLb determined by those objects L
with a distinguished center c that satisfy the identities

1 ∗ (c ∨ y) = c ∨ y = (c ∨ y) ∗ 1

for every y in L. Call such objects proto-integral. Denote the resulting
category by PRL. (It is clear that in any proto-integral L, 1 ∗ c = c = c ∗ 1.)

For M ∈ PRL we write CM := {x ∈ M | x ≥ c}. If we introduce
the notation xc = x ∨ c, we can also write CM = {xc | x ∈ M}. From the
next result it follows that the assignment M �→ CM extends to a functor
PRL → IRL0

Lemma 5.1. Let M be a proto-integral residuated lattice. If we endow CM
with the product given by

xc ∗c yc = (x ∗ y)c (1)

and the operations /, \,∧ and ∧ inherited from M , then
(CM,∧,∨, ∗c, /, \,1, c) is a bounded integral residuated lattice with unit 1
and bottom c.

Proof. It is clear that CM is a sublattice of M , with least element c and
that this set is closed by ∗c and the residuals of ∗. Let us now check ∗c is
an associative operation on CM . Let x, y and z be elements of CM ; that is
to say, x, y, z ≥ c. Then,

(x ∗c y) ∗c z = ((x ∗ y) ∨ c) ∗c z = [((x ∗ y) ∨ c) ∗ z] ∨ c =

= ((x ∗ y) ∗ z) ∨ (c ∗ z)) ∨ c =

= ((x ∗ y) ∗ z) ∨ c

since c ∗ z ≤ c ∗ 1 = c. On the other hand,

x ∗c (y ∗c z) = (x ∗c ((y ∗ z) ∨ c) = [(x ∗ ((y ∗ z) ∨ c)] ∨ c

= [(x ∗ (y ∗ z)) ∨ (x ∗ c)] ∨ c =

= (x ∗ (y ∗ z)) ∨ c
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Since ∗ is an associative operation, it follows the associativity of ∗c.
The fact that 1 is the unit of ∗c is immediate from the axioms defining

proto-integral lattices.
The monotony of ∗c is straightforward. Let us finally see that the residues

of ∗ are those of ∗c. On one hand, we have that

(x ∗c y) ≤ z ⇒ ((x ∗ y) ∨ c) ≤ z ⇒ (x ∗ y) ≤ z

On the other, since z = z ∨ c, we have that

(x ∗ y) ≤ z ⇒ (x ∗ y) ∨ c ≤ z ∨ c = z ⇒ (x ∗c y) ≤ z

5.3. Complemented-unit involutive rl’s

In this section we start the work towards finding the largest convenient

subcategory of iRLb with respect to (̂ ) : IRL0 → iRLb. Again following the
idea suggested in Section 2 we look at the initial object 2 in IRL0. That is,
the chain with two elements seen as a residuated lattice with · = ∧.

Example 5.2. The involutive 2̂ is the residuated lattice:

1

c

�������
e

�������

0

�������

�������

with e = (1, 1), c = (0, 0) and the product and involution completely de-
termined by the conditions that e is the unit of the monoid, ∼ e = e,
c2 = c ∗ c = 0 and the fact of having a De Morgan algebra reduct.

Now, what are the objects X in iRLb for which there exists a unique
morphism 2̂ → X? This question leads us to define the following.

Definition 5.3. A complemented-unit involutive residuated lattice is an al-
gebra (L,∧,∨, ∗, /, \,∼, e, c,0,1), such that,

1. (L,∧,∨, ∗, /, \,∼, e) is a (cyclic) involutive residuated lattice,

2. L is bounded as a distributive lattice,

3. ∼ e = e and

4. e has a complement c in L
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We shall write cuRL for the full subcategory of iRLb whose objects are
complemented-unit iRL′s. This category is mainly a useful intermediate step
where some axioms and their relations can be clearly stated.

Lemma 5.4. In any cuRL, we have that,

a. ∼ c = c,

b. c ∗ c ≤ e and

c. There are equivalent,

i. c ∗ c = 0 and

ii. c ∗ 1 = c = 1 ∗ c.

Proof. We have that in any L ∈ cuRL, ∼ e = e. Then 0 =∼ (e ∨ c) =∼
e ∧ ∼ c = e ∧ ∼ c and 1 =∼ (e ∧ c) =∼ e ∨ ∼ c = e ∨ ∼ c. Hence ∼ c is
a complement of e, and since L is distributive, ∼ c = c.

Since in any L ∈ cuRL it holds that ∼ c = e/c, it follows that
c ∗ (∼ c) ≤ e. Then, by (a.), we get that c2 ≤ e.

On one hand, suppose that c2 = 0. Then c∗1 = c∗(c∨e) = c2∨(c∗e) =
c; and similarly for the left side multiplication by 1. On the other hand, if
c ∗ 1 = c, then c2 ∨ c = c, and hence, c2 ≤ c. Since c2 ≤ e, we have that
c2 ≤ c ∧ e = 0.

5.4. The axiom c ∗ c = 0

Clearly, the objects X in iRLb for which there exists a unique 2̂ → X are
exactly the complemented-unit involutive irls such that c ∗ c = 0. But it is
fair to ask if this condition follows from the axioms defining complemented-
unit involutive irls. The answer is negative as the following example shows.

Example 5.5. Consider the De Morgan lattice of Example 5.2, but with
the product given in the table,

∗ 0 c e 1

0 0 0 0 0
c 0 e c 1
e 0 c e 1
1 0 1 1 1

It can be seen that this is a complemented-unit iRL where c ∗ c �= 0.
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Let NRL be the full subcategory of cuRL whose objects satisfy the equa-
tion c ∗ c = 0. The objects of this category may be called nil-complemented-
unit residuated lattices. Pictorially, we have introduced the following sub-
categories of centered residuated lattices of iRLb:

NRL

��
�≡

�� PRL

�����������

cuRL �� eiRLb
�� ciRLb

�� iRLb

where the the functors cuRL → eiRLb and NRL → PRL are the obvious
functors distinguishing the identity and its complement respectively. Post-
composing the two full subcategories NRL → ciRLb with the forgetful func-
tor produces a full subcategory NRL → iRLb.

Lemma 5.6. The functor (̂ ) : IRL0 → iRLb factors through the embedding
NRL → iRLb.

Proof. Much as in Example 5.2, one has for every L in IRL0 that, in L̂,
e = (1, 1) has a complement c = (0, 0).

We are now facing a commutative diagram

IRL0

��

(̂ )

����
��

��
��

�

NRL �� iRLb

and in Section 6 we show that NRL → iRLb is the largest convenient subcat-

egory (with respect to (̂ ) : IRL0 → iRLb) and moreover, that the adjunction

(̂ ) : IRL0 → NRL is actually an equivalence. So, much as in the case of the
original Kalman situation, the right adjoint associated to the largest conve-
nient subcategory has a further right adjoint. In the present case, though,
the largest convenient subcategory is, in the precise sense stated above, also
the smallest one.

5.5. The cones of an object in NRL

In this section we show that for an object L in NRL, the cones CL and CeL
are essentially the same. First notice that NRL appears as an evident full
subcategory of eiRLb. Slightly less evidently, it appears as a full subcategory
of PRL.
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Lemma 5.7. Let M ∈ NRL and CM as above. If we distinguish the comple-
ment c of the identity e then we obtain a proto-integral residuated lattice.

Proof. Now let x ≥ c. We can calculate as follows

x ∗ 1 = x ∗ (c ∨ e) = (x ∗ c) ∨ (x ∗ e) = (x ∗ c) ∨ x =

= (x ∗ c) ∨ (c ∨ x) = ((x ∗ c) ∨ c) ∨ x = c ∨ x = x

using that c ∗ 1 = c in order to have (x ∗ c) ∨ c = c. Hence, x ∗c 1 =
(x ∗ 1) ∨ c = x ∨ c = x. Similarly we can check that 1 ∗c x = x. So the result
follows.

Remark 5.8. Observe that when c2 = 0 holds in the algebra, we get,

CE. For any x, y ∈ L, (x ∗ y) ∧ e = (x ∧ e) ∗ (y ∧ e).

CC. For any x, y ∈ L, (x ∗ y) ∧ c = ((x ∧ c) ∗ y) ∨ (x ∗ (y ∧ c)).

Lemma 5.9. Let M ∈ NRL. Then there is an isomorphism of residuated
lattices α : CM → CeM .

Proof. Let M ∈ NRL. For any xc ∈ M , define α(xc) := xc ∧ e. It is clear
that α is a map from CM to CeM . Since M is a distributive lattice, it is
also immediate that α is an isomorphism of lattices between CM and CeM .
Let us see that it is also a residuated lattices morphism.

Let x, y ∈ M . We have that

α(xc ∗c yc) = [((x ∨ c) ∗ (y ∨ c)) ∨ c] ∧ e = ((x ∨ c) ∗ (y ∨ c)) ∧ e =

= ((x ∨ c) ∧ e) ∗ ((y ∨ c) ∧ e) = α(xc) ∗ α(yc)

Then, α preserves the product.
On the other hand, We have that

α(yc/xc) = [∼ ((x ∨ c)∗ ∼ (y ∨ c))] ∧ e =

= [∼ ((x ∨ c) ∗ (∼ y ∧ c))] ∧ e = [∼ ((x ∧ e) ∗ (∼ y ∧ c))] ∧ e

and that

α(yc)/
eα(xc) = (y ∧ e)/e(x ∧ e) = [(y ∧ e)/(x ∧ e)] ∧ e =

= [∼ ((x ∧ e)∗ ∼ (y ∧ e))] ∧ e =

= [∼ ((x ∧ e) ∗ (∼ y ∧ c) ∨ (x ∧ e) ∗ (∼ y ∧ e) ∨ (x ∧ e))] ∧ e =

= ∼ ((x ∧ e) ∗ (∼ y ∧ c))∧ ∼ ((x ∧ e) ∗ (∼ y ∧ e) ∨ (x ∧ e)) ∧ e =

= ∼ ((x ∧ e) ∗ (∼ y ∧ c)) ∧ e

where we have used that (x∨c) = [(x∧c)∨ (x∧e)]∨c = c∨ (x∧e) and that
(x∧e)∗(∼ y∧e)∨(x∧e) ≤ e respectively. Hence α(yc/xc) = α(yc)/

eα(xc).
Similarly, we obtain that α(yc \ xc) = α(yc) \

e α(xc).
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6. The equivalence (̂ ) : IRL0 → NRL

The main point of this section is to show that functor (̂ ) : IRL0 → NRL is
actually an equivalence.

Recall that we are assuming that all lattices that appear are distributive.
When we write x for an element of L × Lop we shall mean that x = (x0, x1)
without explicitly mention it.

Lemma 6.1. Let L ∈ cuRL. It holds that,

CE’. For any x, y ∈ L, (x ∗ y) ∧ e = ((x ∧ e) ∗ (y ∧ e)) ∨ ((x ∧ c) ∗ (y ∧ c)).

CC’. For any x, y ∈ L, (x ∗ y) ∧ c = ((x ∧ c) ∗ (y ∧ e)) ∨ ((x ∧ e) ∗ (y ∧ c)).

Proof. Let us first observe that for any x ∈ L, we can write x = x ∧ 1 =
x ∧ (e ∨ c) = (x ∧ e) ∨ (x ∧ c). For brevity we shall write x0 := x ∧ c and
x1 := x ∧ e.

Let us now take x, y ∈ L. We have that

x ∗ y = (x0 ∨ x1) ∗ (y0 ∨ y1) = (x0 ∗ y0) ∨ (x0 ∗ y1) ∨ (x1 ∗ y0) ∨ (x1 ∗ y1)

Since x0 ∗ y0 ≤ c ∗ c ≤ e, x0 ∗ y1 ∨ x1 ∗ y0 ≤ (c ∗ e) ∨ (e ∗ c) = c and
x1 ∗ y1 ≤ e ∗ e = e, we conclude that

(x ∗ y)0 = (x0 ∗ y1) ∨ (x1 ∗ y0) (2)

and

(x ∗ y)1 = (x0 ∗ y0) ∨ (x1 ∗ y1) (3)

Equation (2) is exactly that in (CC’) and equation (3) that in (CE’).

Remark 6.2. Condition (CE) of Remark 5.8 is an immediate consequence
of (CE’). On the other hand, let us note that x ∗ y0 = (x0 ∨ x1) ∗ y0 =
x0 ∗ y0 ∨ x1 ∗ y0 = 0 ∨ x1 ∗ y0 = x1 ∗ y0 and x0 ∗ y = x0 ∗ y1. Thus, after
replacing in (2) we get

(x ∗ y)0 = x0 ∗ y ∨ x ∗ y0

which is the equation in (CC) of Remark 5.8.

Theorem 6.3. Functor (̂ ) : IRL0 → NRL is left adjoint to Ce : NRL →
IRL0. Furthermore, they are an equivalence pair.



On Some Categories of Involutive Centered Residuated Lattices 109

Proof. For each M ∈ NRL, let us take the map εM : ĈeM → M given by

εM (x, y) := x ∨ ((∼ y) ∧ c) (4)

for any x, y ∈ M .

Let us now see that it is in fact a map in NRL. Let (a, x), (b, y) ∈ ĈeM ,
then we have,

εM ((a, x) ∧ (b, y)) = εM ((a ∧ b, x ∨ y)) =

= (a ∧ b) ∨ [∼ (x ∨ y) ∧ c] =

= (a ∧ b) ∨ [(∼ x) ∧ (∼ y) ∧ c]

and that,

εM (a, x) ∧ εM (b, y) = [a ∨ (∼ x ∧ c)] ∧ [b ∨ (∼ y ∧ c)] =

= (a ∧ b) ∨ ((∼ x ∧ c) ∧ b) ∨ (a ∧ (∼ y ∧ c)) ∨ [(∼ x ∧ c) ∧ (∼ y ∧ c)] =

= (a ∧ b) ∨ [(∼ x) ∧ (∼ y) ∧ c]

since (∼ x∧ c)∧ b = a∧ (∼ y ∧ c) = 0 because a, b ≤ e and c∧ e = 0. Thus,

εM ((a, x) ∧ (b, y)) = εM (a, x) ∧ εM (b, y)

Similar computations show that

εM ((a, x) ∨ (b, y)) = εM (a, x) ∨ εM (b, y)

εM (∼ (a, x)) = ∼ εM (a, x)

εM (e, e) = e and

εM (0,0) = c

Let us finally check that

εM ((a, x) ∗ (b, y)) = εM (a, x) ∗ εM (b, y) (5)

We start by observing that, since a, b, x, y ∈ M , in this particular case
we can write

(a, x) ∗ (b, y) = (a ∗ b, ∼ [(a ∗ (∼ y)) ∨ ((∼ x) ∗ b)])

Hence, we have on one hand that,

εM ((a, x) ∗ (b, y)) = (a ∗ b) ∨ [((a ∗ (∼ y)) ∨ ((∼ x) ∗ b)) ∧ c] =

= (a ∗ b) ∨ ((a ∗ (∼ y)) ∧ c) ∨ ((∼ x) ∗ b)) ∧ c) =

= (a ∗ b) ∨ (a ∗ ((∼ y) ∧ c)) ∨ (((∼ x) ∧ c) ∗ b)
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Last equality follows from condition (CC) of Remark 5.8 and the fact that
a, b ≤ e.

On the other hand, we have that:

εM (a, x) ∗ εM (b, y) = (a ∨ ((∼ x) ∧ c)) ∗ (b ∨ ((∼ y) ∧ c)) =

(a ∗ b) ∨ [a ∗ ((∼ y) ∧ c)] ∨ [((∼ x) ∧ c) ∗ b] ∨ [((∼ y) ∧ c)) ∗ ((∼ x) ∧ c)] =

(a ∗ b) ∨ (a ∗ ((∼ y) ∧ c)) ∨ (((∼ x) ∧ c) ∗ b)

Thus, (5) holds.
Let us now define for any L ∈ IRL0, ηL : L → Ce(L̂) by

ηL(a) := (a, 1) (6)

By Theorem 4.4 (iii), ηL is an isomorphism in IRL0.

We claim that η and ε are the unit and counit of an adjunction (̂ ) � Ce.
Straightforward computations show the naturality of both η and ε. We

shall now check that for any L ∈ IRL0 and any M ∈ NRL, ε
L̂
(̂ηL) = 1

L̂
and

Ce(εM )ηCeM = 1CeM .

Let (a, b) ∈ L̂, η̂L(a, b) = ((a, 1), (b, 1)), and

ε
L̂
((a, 1), (b, 1)) = (a, 1) ∨ [∼ (b, 1) ∧ (0, 0)] = (a, 1) ∨ (0, b) = (a, b)

Let x ∧ e ∈ CeM , ηCeM (x ∧ e) = (x ∧ e, e), and

Ce(εM )(x ∧ e, e) = (x ∧ e) ∨ (e ∧ c) = x ∧ e

Thus, we have proved that (̂ ) is left adjoint to Ce. Furthermore, since both
ηL and εM are isos, they are an equivalence.

Corollary 6.4. Functor C : NRL → IRL0 is an adjoint equivalence.

Proof. Immediate from Lemma 5.9 and Theorem 6.3.

7. Residuated Kalman construction

In Section 3 we defined K : DL → DM as assigning to L, the centered Kleene
algebra KL with underlying set {(x, y) ∈ L̂ | x ∧ y = 0} and lattice opera-
tions inherited from L̂.

Let us now proceed analogously but replacing (̂ ) : DL → DM by its lift-

ing (̂ ) : IRL0 → iRLb and ∧ by a residuated operation. More precisely, for L
in IRL0 we define K•L to be the set {(x, y) ∈ L × L | x · y = 0}.
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When equipped with the partial order inherited from L̂, we obtain a sub-De-
Morgan algebra K•L → L̂. Moreover, it is closed under the monoid operation
of L̂ in iRLb but notice that the unit (1, 1) ∈ L̂ is not an element of K•L. It
is not difficult to check, though, that the upper bound (1, 0) happens to be
neutral with respect to the restricted monoid operation. In this way, K•L
can be equipped with an integral and involutive residuated lattice structure.
From now on, K•L will always be considered equipped with this structure.
Further standard consideration of morphisms allows us to deduce the fol-
lowing result.

Lemma 7.1. The assignment L �→ K•L extends to a functor K• : IRL0 →
iRLb.

We see the functor K• : IRL0 → iRLb as the first step towards an ana-
logue of Kalman’s construction for residuated lattices. We feel, though, that
K• : IRL0 → iRLb is not the right place to stop. Much as Kalman saw his
construction as producing a Kleene algebra and not just a De Morgan alge-
bra, we want a more subtle description of K•L. The first thing to notice is
that K•L is integral.

Deeper insight is provided by looking at K•L from the perspective of

what we have learned about (̂ ) : IRL0 → iRLb and Theorem 6.3. The latter
result characterized the equations that hold in all objects of the form L̂
as those that follow from the equations we used to present the algebraic
category NRL. These equations postulated the existence of a complement c
of the unit e and the requirement that e (an so, also c) be a center. Now,
the element e = (1, 1) will not be in K•L unless L is trivial, but c = (0, 0)
is always in K•L. Moreover, it is clear from the proof of Theorem 6.3 that
(CE′) and (CC ′) are essential properties of L̂. This suggests that we consider
condition (CC) (see Remark 5.8).

Definition 7.2. Let (L,∨,∧) be a lattice equipped with a binary oper-
ation ∗ : L × L → L. We call c ∈ L a Leibniz element if for any x, y ∈ L,
(x ∗ y) ∧ c = ((x ∧ c) ∗ y) ∨ (x ∗ (y ∧ c)).

The terminology is chosen to reflect the analogy with the second item in
Definition 7.2 and the usual Leibniz rule for differentiation of a product.

Definition 7.3. A c-differential lattice is an integral centered residuated
lattice whose distinguished center c is a Leibniz element. A morphism of
c-differential lattices is a morphism of residuated lattices which preserves
the distinguished Leibniz element.
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Let us denote de category of c-differential lattices by DRL. It is clearly
an algebraic category and there are obvious forgetful functors DRL → iRLb

and DRL → IRL0. Moreover, by taking c = (0, 0), we obtain a factorization
of K• through DRL as below

IRL0

K•
����

��
��

��
�

�� DRL

��
iRLb

and we denote the factorization by K• : IRL0 → DRL again.
It seems relevant to notice that while in Section 6 the condition c ∗ c = 0

played an important role, Definitions 7.2 and 7.3 do not mention this equal-
ity. The reason is the following.

Lemma 7.4. If L is an integral involutive residuated lattice and c ∈ L is such
that ∼ c = c then c · c = 0.

Proof. The fact that L is integral implies that c/c = 1. Then we can
calculate: c · c = c · (∼ c) =∼ (c/c) =∼ 1 = 0.

For any A ∈ DRL, we take CA := {a ∈ A : a ≥ c} with the product
defined in Lemma 5.1. This defines another functor C : DRL → IRL0.

First, for any c-differential lattice T , let the morphism ηT : T → K•CT
be defined by ηT z = (z ∨ c, (∼ z) ∨ c).

Lemma 7.5. The function ηT is an injective morphism of c-differential lat-
tices. Moreover, it induces a natural transformation Id → K•C.

Proof. It is straightforward to check that ηT is a morphism of De Morgan
algebras. To check that it preserves monoid structures calculate:

(ηT u) ∗ (ηT v) = (u ∨ c, (∼ u) ∨ c) ∗ (v ∨ c, (∼ v) ∨ c) =

= ((u ∨ c) ∗c (v ∨ c), [((∼ v) ∨ c)/c(u ∨ c)] ∧ [(v ∨ c)\c((∼ u) ∨ c)]) =

= ((u ∗ v) ∨ c, [((∼ v) ∨ c)/(u ∨ c)] ∧ [(v ∨ c)\((∼ u) ∨ c)]) =

= ((u ∗ v) ∨ c,∼ [(u ∨ c) ∗ (v ∧ c)]∧ ∼ [(u ∧ c) ∗ (v ∨ c)]) =

= ((u ∗ v) ∨ c,∼ [(u ∗ (v ∧ c)) ∨ ((u ∧ c) ∗ v)]) =

= ((u ∗ v) ∨ c,∼ [(u ∗ v) ∧ c]) = ((u ∗ v) ∨ c,∼ (u ∗ v) ∨ c) = ηT (u ∗ v)

The fact that ηT is injective morphism is deduced as in Kalman’s traditional
result. Finally, naturality is also straightforward.
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Theorem 7.6. The functor C : DRL → IRL0 is left adjoint to the functor
K• : IRL0 → DRL. Moreover, K• is full and faithful and C is faithful.

Proof. For any R in IRL0, let εR : CK•R → R be defined by εR(x, 0) = x.
It is obviously an iso and it is easy to check that εR is a natural transforma-
tion CK• → Id. We show that η (discussed in Lemma 7.5) and ε are the unit
and conunit of the adjunction. So let us consider the triangular identities.
First we prove that for every c-differential lattice T , (K•εR)(ηK•R) = idK•R:

(K•εR)((ηK•R)(x, y)) = (K•εR)((x, y) ∨ (0, 0), (y, x) ∨ (0, 0)) =

= (K•εR)((x, 0), (y, 0)) = (εR(x, 0), εR(y, 0)) = (x, y)

and finally, we show that, for every c-differential lattice T , (εCT )(CηT ) =
idCT . So let x ∈ CT and calculate:

(εCT )(CηT )x = (εCT )(ηT x) = εCT (x ∨ c, (∼ x) ∨ c) = εCT (x, c) = x

So the two triangular identities hold. The fact that K• is full and faithful
follows from the fact that the counit is iso. The fact that C is faithful follows
from the fact that the unit is mono.

Much as in the case of Theorem 3.2, the left adjoint to K• has a further
left adjoint. Unfortunately we do not have such a simple description as that
of M. So we will have to address the problem from a different standpoint.

One way to obtain the left adjoint to C : DRL → IRL0 is to apply Freyd’s
Adjoint Functor Theorem by observing that C preserves limits and that the
solution set condition holds. A more explicit description can be given as
follows. For any L in IRL0, let M•L be the subalgebra of K•L generated
by the elements of the form (x, 0) with x in L. More intuitively, M•L is
the smallest subalgebra of K•L generated by L. The assignment L �→ M•L
actually extends to a functor IRL0 → DRL and it turns out that it is left
adjoint to C : DRL → IRL0. Of course, one can prove this directly but it
seems worth placing the result in a more general context. This context
allows to see more clearly what are the features of the adjunction C � K•

that allow C to have a left adjoint. The general result and its proof appears
in Appendix A.

Corollary 7.7. The functor C : DRL → IRL0 has a left adjoint.

Proof. Define κ : UC → U as the inclusion of the cone. It is straightfoward
to check that the hypothesis of Proposition A.4 hold.
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Also in a general categorical context one can prove that the type of
situation that arises in Section 3 and here allows to transfer congruences in
the sense that the lattice of congruences of CX is iso to that of X and that
the lattice of congruences of L is iso to that of K•L. (See Appendix B for a
more precise statement and proofs.)

7.1. The image of K•

We now give a characterization of the image of K•. Consider the follow-
ing condition, which is an algebraic alternative to interpolation property as
requested in [3]:

(CK ·) For every pair of elements x, y ∈ T , such that x, y ≥ c and x ∗ y ≤ c
there exists z ∈ T such that z ∨ c = x, ∼ z ∨ c = y.

Let DRL′ be the full subcategory of DRL determined by those objects
which satisfy (CK ·).

Corollary 7.8. The adjunction C � K• : IRL0 → DRL restricts to an equi-
valence C � K• : IRL0 → DRL′.

Proof. One shows that for every L in IRL0, K•L satisfies (CK ·) and
that for T in DRL′, η : T → K•CT is surjective. Since it is also injective
(Lemma 7.5), it is an iso. So both the unit and the counit of the restricted
adjunction are isos. Hence the restricted adjunction is an equivalence.

7.2. A relation between (̂ ) and K•

We present an interesting factorization of K• through (̂ ). This factorization
stands on the following observation.

Lemma 7.9. Let L ∈ IRL0 and x = (x0, x1) ∈ L̂. There are equivalent,

a. x ∗ 1 = x = 1 ∗ x,

b. 0/x = x = x \ 0 and

c. x0x1 = x1x0 = 0

Proof. We have that 0/x = ∼ (x∗ ∼ 0) = ∼ (x ∗ 1) and x \ 0 = ∼ (∼
0 ∗ x) = ∼ (1 ∗ x) . Hence, 0/x = x if and only if x ∗ 1 = x and x \ 0 = x if
and only if 1∗x = x. We have shown the equivalence between (a.) and (b.).
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On the other hand, we have that

x ∗ 1 = (x0, x1) ∗ (1, 0) = (x0, 0 \ x0 ∧ x1) and

1 ∗ x = (1, 0) ∗ (x0, x1) = (x0, x1 ∧ x0 \ 0)

Hence,

0 \ x0 ∧ x1 = x1 iff x1 ≤ 0 \ x0 iff x1 x0 = 0 and

x1 ∧ x0 \ 0 = x1 iff x1 ≤ x0 \ 0 iff x0 x1 = 0

Thus, we also have that (a.) and (c.) are equivalent.

The result immediately suggests considering, for a residuated lattice M
with 1, the set NM := {x ∈ M : x ∗ 1 = x = 1 ∗ x}.

Lemma 7.10. If M is a bounded involutive residuated lattice then the subset
N(M) of M is closed by ∧, ∨, ∼ and ∗. Moreover, 1 is a neutral element
and in this way NM becomes an integral involutive residuated lattice.

Proof. We briefly explain how NM is closed under ∼ and leave the rest of
the details for the reader. Suppose that x ∗ 1 = x then x ≤ x/1 and hence
∼ (x/1) ≤ ∼ x. Since 1 ∗ (∼ x) = ∼ (x/1) ≤ (∼ x) and ∼ x = e ∗ (∼ x) ≤
1∗(∼ x), we get that 1∗(∼ x) = ∼ x. Similarly, we get that (∼ x) ∗ 1 = ∼ x.

It is then clear that we have a functor N : iRLb → iIRL and by restriction
also a functor N : NRL → iIRL. But Lemma 7.9 allows us to exhibit also
the following relation between (̂ ) and K•.

Proposition 7.11. The diagram

IRL0

(̂ )
��

K•
�� DRL

��
NRL

N

�� iIRL

commutes.

Remark 7.12. We can now give a more explicit description of the isomor-
phisms between the congruence lattices stated after Corollary 7.7.

Let L ∈ IRL0 and θ ∈ ConL. Then θ̂ := θ × θop ∈ ConL̂ and θ̆ :=
θ̂ ∩ (K•L)2 ∈ Con(K•L). It can be seen that the correspondence θ �→ θ̆
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defines a lattice isomorphism between ConL and Con(K•L). However, in
general K•(L/θ) is not isomorphic to (K•L)/θ̆, as Example 7.13 shows.

On the other hand, for T ∈ DRL and α ∈ ConT , the correspondence
α �→ αc := α ∩ (CT )2 defines a lattice morphism from ConT to Con(CT ).
Take now φ ∈ Con(CT ). Since εT : T → K•CT is a monomorphism, φ̆
induces a congruence in T . Hence, we have a bijection between ConT and
Con(CT ), and, in this case,

(CT )/αc

∼= C(T/α)

Example 7.13. Consider the following lattice with its Heyting algebra
structure,

L = 1

a

���������
b

���������

a ∧ b

��������

���������

0

and θ given by the partition {{0, a ∧ b}, {a}, {b}, {1}}.
We have that (K•L)/θ̆ and K•(L/θ) are respectively isomorphic to

•

•

							
•

�������

•

�������

							

•

							
•

�������

•

�������

							

and •

•

							
•

�������

•

							
•

�������

							
•

�������

•

							

�������

•

�������

							

•

�������

							

8. Left adjoints to the cones

Let K be a class of algebras, closed by taking subalgebras, and X a subset
of an algebra A ∈ K. In this section we write SubK(X) for the K-subalgebra
of A generated by X.
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Definition 8.1. Let M ∈ cuRL. We define

Ne(M) := SubiRL(CeM) ≤ M (7)

Remark 8.2. Note that the subalgebra Ne(M) makes sense for any invo-
lutive residuated lattice such that ∼ e = e; i.e., for any M ∈ eiRL. For
instance, it makes sense for the result of applying the construction of Theo-
rem 4.4 to any (not necessarily bounded below) integral residuated lattice.

Definition 8.3. Let M ∈ NRL. We define

Nc(M) := SubiRL(CM) ≤ N(M) (8)

Example 8.4. Consider the MV-algebra with 3 elements {0, 1
2 , 1}, L3. We

have that N(L̂3), Nc(L̂3) and Ne(L̂3) are
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Let L ∈ IRL0. Let us write M•L := Nc(L̂), and M• : IRL0 → DRL for
the only functor defined by this assignment on objects (Lemma A.1).

Theorem 8.5. Functors M• : IRL0 � DRL : C form an adjoint pair.

This theorem is a particular case of Proposition A.4.

Let L ∈ IRL. Let us write M•L := Ne(L̂), and M• : IRL → eiRL for the
only functor defined by this assignment on objects (Lemma A.1). We have
that,

Theorem 8.6. Functors M• : IRL � eiRL : Ce form an adjoint pair.
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Proof. For any L ∈ IRL, let us consider the map ηL : L → Ce(M•L) given
by ηL(a) := (a, 1), for a ∈ L.

For any X ∈ eiRL, consider the unique map εX : M•(CeX) → X in
eiRL, completely defined by ε(x ∧ e, e) := (x ∧ e), for any x ∈ X.

A straightforward computation shows us that they are the unit and
counit of the mentioned adjunction.

9. Generalized Nelson algebras

Let H be a Heyting algebra and write T = K•H. We know, by Proposi-
tion 3.7, that T is a centered Nelson Algebra, whose Nelson implication is
given by

(x0, x1) ⇒ (y0, y1) := (x0 → y0, x0 ∧ y1) (9)

In the original signature of Nelson algebras there is no product, although
they are a class of algebras with involution and implication.

If ⇒ were the residue in a commutative residuated lattice with involution,
then the following identities should verify,

(x0, x1) ◦ (y0, y1) = (y0, y1) ◦ (x0, x1) (10)

(x0, x1) ◦ (y0, y1) = ∼ [(x0, x1) ⇒ ∼ (y0, y1)] = (x0 ∧ y0, x0 → y1) (11)

(y0, y1) ◦ (x0, x1) = ∼ [(y0, y1) ⇒ ∼ (x0, x1)] = (x0 ∧ y0, y0 → x1) (12)

However, this is not generally true.
Thus, we can try with a “symmetrization” of the product, and see if we

get back a new associative, commutative and residuated product,

(x0, x1) ∗ (y0, y1) := [(x0, x1) ◦ (y0, y1)] ∨ [(y0, y1) ◦ (x0, x1)]

= (x0 ∧ y0, (x0 → y1) ∧ (y0 → x1))

Note that this new product is exactly the one we obtain in K•L, which we
know satisfies all the desired conditions. Clearly, the residue of ∗ is not ⇒,
but the implication of K•L.

Anyway, the Nelson structure on KL, (K•L,∧,∨,⇒, ,0,1) is equationally
equivalent to that of K•L, (K•L,∧,∨, ∗,→,∼,0,1) (see [1] for reference) by
the translations,

x ∗ y := ∼ (x ⇒ ∼ y)∨ ∼ (y ⇒ ∼ x)

x → y := (x ⇒ y) ∧ (y ⇒ x)

and

x ⇒ y := (x ∗ x) → y



On Some Categories of Involutive Centered Residuated Lattices 119

Hence, centered Nelson algebras and the variety we obtain by applying
K• to Heyting algebras are equationally equivalent. These algebras are called
Nelson lattices in [1], where it is shown that they form a quasivariety. They
are algebraic models of constructive logic with strong negation.

For centered Nelson algebras, it is still possible to define an associative
(although noncommutative) binary operation, left adjoint of the implication.
More explicitly, let us define an associative product on a Nelson algebra
(N,∧,∨,⇒,¬,1,0) by x � y := x ∗ y ∗ y; then, we have that

x ≤ y ⇒ z iff x ≤ y ∗ y → z iff x ∗ (y ∗ y) ≤ z iff x � y ≤ z

This operation has a left unit (e = 1), but it fails to be a monoidal.
Let us call generalized Nelson lattice, (GNL) to a residuated Lattice which

isomorphic to K•L for some integral residuated lattice with zero L.
As in the case of Nelson lattices, it can be shown that GNLs form a

quasivariety. In a forthcoming work we study some particular subcategories
of the category of GNLs.

A. Further left adjoints

Let A and X be categories of algebras and let UA : A → Sets and UX : X →
Sets be the corresponding underlying set functors. (When there is no risk
of confusion we will denote the forgetful functors simply by U.)

Let H : A → X be a functor and let τ : UA → UXH be a natural trans-
formation. In other words, inside the following (non necesarily commutative)
diagram

A

U ����
��

��
��

H �� X

U

��
Sets

there is a 2-cell τ .
Now, for any A in A let FA in X be the subalgebra of HA generated by

the elements of the form τa with a ∈ A.

Lemma A.1. The assignment A �→ FA extends to a functor F : A → X in
such a way that the subalgebra inclusions FA → HA form a natural transfor-
mation ι : F → H. Moreover, the natural transformation τ factors through
UX ι inducing in this way a natural UA → UXF which we denote again by τ .

Proof. Let f : A → A′ be a morphism in A. By standard results in uni-
versal algebra, FA consists of the elements of the form t(τa1, . . . , τan)
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where t is a an n-ary term for some n in the signature of the presenta-
tion of X and a1, . . . , an are elements of A. Define (Ff)(t(τa1, . . . , τan)) =
t(τ(fa1), . . . , τ(fan)). If it was well-defined then it is clearly a morphism.
So suppose that s is an n-ary term (there is no loss of generality in assum-
ing that the arity is the same) and b1, . . . , bn are elements in A such that
s((τb1), . . . , (τbn)) = t((τa1), . . . , (τan)). Then (Hf)s((τb1), . . . , (τbn)) =
(Hf)t((τa1), . . . , (τan)). Since Hf is a morphism,

s((Hf)(τb1), . . . , (Hf)(τbn)) = t((Hf)(τa1), . . . , (Hf)(τan))

Since τ is natural, s(τ(fb1), . . . , τ(fbn)) = t(τ(fa1), . . . , τ(fan)).

Finally, the definition of Ff clearly shows that we have a commutative
diagram as below

FA

Ff

��

�� HA

Hf

��
FA′ �� HL′

in X where the horizontal maps are the subalgebra inclusions. The last part
of the result follows from the definition of F .

Let us now consider a more restricted situation. Let H : A → H be a
full and faithful functor with a left adjoint G. Assume also that there is
a natural transformation κ : UAG → UX . Since H is full and faithful the
counit ε is an iso. So κ induces another transformation as follows

UA
Uε−1

�� UAGHA
κHA �� UXHA

and we denote it by τ : UA → UXH. By Lemma A.1, this τ induces a functor
F : A → X .

If η : Id → HG is the unit of the adjunction let us say that a natural
transformation κ : UAG → UX as above is conical if the following diagram

UAGHG

κHG

		�����������������������

UAεG �� UAG
κ �� UX

UX η

��
UXHG

commutes.
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Lemma A.2. In the situation just presented, if κ is a conical transformation
then the following diagram

UAG

τG 

���������

κ �� UX

UX η

��
UXHG

commutes.

Proof. This is mainly a matter of notation. Just precompose the definition
of conical transformation with UAε−1

G : UAG → UAGHG and compare with
the definition of τG.

Another useful fact is the following.

Lemma A.3. If in the same situation of Lemma A.2, Gι : GF → GH is an
iso, then the following diagram

UA

τA

����������������������
ε−1

�� UAGH
(Gι)−1

�� UAGF

κF

��
UXF

commutes.

Proof. Just postcompose with UX ι and calculate.

Proposition A.4. Let H : A → X be full and faithful and have a faithful left
adjoint G : X → A. Let κ : UAG → UX be a conical natural transformation
and let τ and F : A → X be the induced natural transformation and functor.
If κ : UAG → UX is mono and Gι : GF → GH is an iso then F is left adjoint
to G.

Proof. Denote the composition of (Gι)−1ε−1 by ν : Id → GF . We show
that this natural transformation is the unit of the adjunction.

Let f : A → GX . We extend f to a function f : FA → X as follows:
ft(τa1, . . . , τan) = t(κ(fa1), . . . , κ(fan)). Notice that we have as a particu-
lar case that (Uf)τ = κ(Uf). (Here we are using the τ : UA → UXF .)

To prove that it is well defined, suppose that s is another n-ary term and
b1, . . . , bn are elements in A such that

s((τb1), . . . , (τbn)) = t((τa1), . . . , (τan)).
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Since G is faithful, the unit η : X → HGX is mono so from the following
calculation

(Uη)s(κ(fb1), . . . , κ(fbn)) = s((Uη)(κ(fb1)), . . . , (Uη)(κ(fbn))) =

= s(τ(fb1), . . . , τ(fbn)) = s((UHf)(τb1), . . . , (UHf)(τbn)) =

= (UHf)s(τb1, . . . , τbn) = (UHf)t(τa1, . . . , τan) = . . . =

= . . . = (Uη)t(κ(fa1), . . . , κ(fan))

we can conclude that s(fb1, . . . , fbn) = t(fa1, . . . , fan).
We must now prove that (Gf )ν = f . Since UA is faithful, it is enough

to prove that (UGf)(Uν) = Uf . We now use that κ is mono together with
Lemma A.3 and calculate:

κX(UGf)(Uν) = (Uf)κFA(U((Gι)−1))(Uε−1) = (Uf)τA = κX(Uf)

so the result follows.

B. Congruences

Let X be an object in a category. The set of regular epis with domain X can
be pre-ordered by stating that (q : X → Q) ≤ (q′ : X → Q′) if there exists
a map f : Q → Q′ such that fq = f ′. The pre-order induces an equivalence
relation and we denote the resulting quotient by Qt(X).

Varieties are exact (as categories) so taking coequalizers induces a natural
isomorphism between the set of congruences on X and the set Qt(X). In
this context Qt(X) extends to a contravariant functor (with action given by
pullback of congruences).

Proposition B.1. Let C have pushouts along regular epis and let L : C → D
be faithful and have both left and right adjoints M � L � K. If M (or equiv-
alently K) is full and faithful then the induced Qt(X) → Qt(LX) is an
isomorphism for every X in C. Moreover, so is Qt(A) → Qt(KA).

Applying Proposition B.1 to the adjunction M � L � K : DL → Klc pre-
sented in Theorem 3.2 we obtain the restriction of Corollary 1.10 in [3] to
centered Kleene algebras, namely: that for each centered Kleene algebra A,
QtA ∼= Qt(LA).

Lemma B.2. Let C be a category with pushouts along regular epis.
Let L : C → D preserve regular epis and so, induce a function
Qt(X) → Qt(LX). If L preserves pushouts along regular epis and has a full
and faithful left adjoint then the function Qt(X) → Qt(LX) is surjective.
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Proof. Let M : D → C be the left adjoint to L and let εX : MLX → X be
the counit of the adjunction. The unit ηA : A → LMA is an iso because M
is full and faithful.

Let q : LX → Q be regular epi. As M is left adjoint it preserves regular
epis so Mq is one. Take the pushout along the counit as on the left below

MLX

Mq

��

ε �� X

p1

��

LMLX

LMq

��

LεX �� LX

Lp1

��
MQ

p0

�� R LMQ
Lp0

�� LR

and as L preserves pushouts along regular epis, the square on the right above
is a pushout. But Lεx is an iso (indeed, the inverse of ηLX). So its pushout
Lp0 is an iso. Attaching the naturality square induced by q and η to the left
of the right diagram above shows that Lp1 and q induce the same element
in Qt(LX). So the function Qt(X) → Qt(LX) is surjective.

Lemma B.3. If L : C → D is faithful and it has a right adjoint then the in-
duced Qt(X) → Qt(LX) is injective.

Proof. It is enough to show that for regular epis q : X → Q and
q′ : X → Q′ with common domain in C, Lq ≤ Lq′ implies q ≤ q′. So let
f : LQ → LQ′ be such that f(Lq) = Lq′.

Now let e0, e1 : E → X be the kernel pair of X → Q. We need to check
that q′e0 = q′e1. But we can calculate

(Lq′)(Le0) = f(Lq)(Le0) = f(Lq)(Le1) = (Lq′)(Le1)

so L(q′e0) = L(q′e1) and as L is faithful q′e0 = q′e1. So the result follows.

Proof of Proposition B.1. To prove that Qt(X) → Qt(LX) is an iso-
morphism just use the two lemmas above. To prove that Qt(A) → Qt(KA)
is an iso let X = KA and use that LKA is iso to A.
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