
60 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

WILLIAM OPDYKE AND Ralph John-
son introduced refactoring in the early
1990s, mainly for restructuring an
object-oriented design’s class hierar-
chy.1 A few years later, Martin Fowler
popularized it, defi ning refactoring as
“a change made to the internal struc-
ture of software to make it easier to un-
derstand and cheaper to modify with-
out changing its observable behavior.”2
Since then, refactoring has been applied
to different software artifacts, such as

Unifi ed Modeling Language (UML)
models,3 databases,4 and HTML
documents.5

Refactoring’s basic philosophy—that
each refactoring is a small behavior-pre-
serving transformation—has remained
the same, but its intent has varied con-
siderably from the original purpose of
improving source code readability, ex-
tensibility, and maintainability. For ex-
ample, an HTML refactoring, such as
“Turn on autocomplete,”5 doesn’t im-

prove any internal code qualities, but it
does make a Web form easier to use and
thereby shifts the refactoring’s intent
toward improving software product us-
ability. A similar case occurs in refac-
toring APIs, which are intended for ex-
ternal users and so essentially involve
external attributes.

We believe it’s important to link
each refactoring not only to the “bad
smells” it can eliminate—borrowing
Kent Beck and Fowler’s metaphor for
symptoms of code problems—but also
to the specifi c quality attributes it aims
to improve. To illustrate our claim, we
present some refactorings intended to
improve usability in Web applications.
In general, Web applications are de-
fi ned by three models corresponding
to three design layers: content, naviga-
tion, and presentation.6 Elsewhere, we
presented a catalog of usability refac-
torings for the navigation and presen-
tation models of the Object Oriented
Hypermedia Design Method for Web
design.7 The catalog’s intent was to im-
prove the usability of applications de-
rived from those models. In this article,
we stress the characterization of refac-
torings according to the design model
they apply to and their specifi c intent.
By classifying navigation and presen-
tation refactorings, we can target each
model’s specifi c attributes and poten-
tial bad smells. We also generalize
their mechanics to stereotyped UML
diagrams.

Refactoring Web Software
for Usability
Refactorings that aren’t intended to im-
prove the code’s internal quality attri-
butes include refactorings to improve
database performance4 or HTML ac-
cessibility.5 These examples indicate
a development trend toward applying

Refactoring
for Usability in
Web Applications
Alejandra Garrido and Gustavo Rossi,
Universidad Nacional de La Plata

Damiano Distante, Unitelma Sapienza University

// Refactoring a Web application’s design structure can

improve its usability. Characterizing each refactoring

according to the usability factor it improves and the bad

usability smells it targets can further clarify its intent. //

FEATURE: SOFTWARE QUALITY

 MAY/JUNE 2011 | IEEE SOFTWARE 61

refactoring to external
quality attributes. We fol-
low this trend in defi ning
refactorings for Web ap-
plication models to im-
prove an application’s
usability without chang-
ing its content and
functionality.7

Let’s fi rst consider an
example. Figure 1 com-
pares two Facebook inter-
faces, illustrating a major
redesign the company did
in 2008. Many widgets
are moved around, but
let’s focus on the tabs de-
signed to ease navigation.

In the original interface
(Figure 1a), the homep-
age of a given account
shows personal informa-
tion, a list of friends, and
a mini-feed of news about
the account owner and
her friends, among other
things. The page is clut-
tered with information and links of
different kinds, which require repeated
scrolling. In the newer interface (Figure
1b), the homepage has been split into
different pages with a new tab row that
allows navigation between them. Focus-
ing on this particular change, we can
see that the application’s basic behavior
is preserved. It still supports browsing
the same information and accessing the
same functionalities. However, the user
will perceive a change in the graphi-
cal interface and navigation struc-
ture, which now balance the weight of
the different kinds of information and
provide some breathing room for each
kind. We catalogued this Web refactor-
ing under the name “Split page.”7

At the implementation level, the me-
chanics of this refactoring involve list-
ing every change in the source code in
charge of building the homepage front
end. For example, if we suppose that
the site is based on HTML code, imple-

menting this refactoring would entail
the following actions:

 1. Create new HTML pages, split the
original homepage into them, and
distribute the HTML code associ-
ated with the information, links,
and widgets available in the original
homepage.

 2. To each new page, add the
HTML code to implement the tab
row and the associated functional-
ities, which include enabling navi-
gation between the new pages,
indicating the current page by dis-
tinguishing the active tab from the
others, and announcing each page’s
content by using a meaningful label
or icon for each tab.

However, if the site generates the
HTML pages using a different tech-
nology, such as Flash or a Web appli-
cation framework, the mechanics will

differ—in the same way traditional
code refactorings depend on the target
language. This is one advantage of de-
fi ning the mechanics at a model level,
where they can be generalized as model
refactorings on UML-like diagrams.
Additionally, Web design models pro-
vide a more abstract picture of the
application and its different aspects,
supporting informed decisions for syn-
chronizing the changes in the different
design layers. For example, splitting a
page might motivate splitting a table
in the database that holds that page’s
content. Finally, we see model-driven
development (MDD) becoming more of
a reality as more tools become avail-
able to generate code from Web models
(for example, UWE4JSF at http://uwe.
pst.ifi .lmu.de/toolUWE4JSF.html). In
this case, the tool supporting the MDD
process would derive the transformed
HTML code automatically from the
refactored models.

FIGURE 1. Comparison of Facebook interfaces: (a) original homepage, (b) restructured with tabs. Both

interfaces provide the same functionality, but the organization of content is better in (b).

62 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: SOFTWARE QUALITY

Characterizing Web
Model Refactorings
In the three design models that most Web
engineering methodologies support,6 the
content model defi nes the types, attri-
butes, and relationships of the applica-
tion contents and associated behaviors.
Refactorings that apply over this model
are traditional refactorings intended to
improve internal quality factors.

The navigation model maps the
content model’s classes to navigation
nodes (units of information and be-
havior perceived by the user) and its
associations between content classes
to navigation links. Moreover, it orga-
nizes the navigation space by mapping
associations with a multiplicity greater
than one to navigation indexes.

The presentation model defi nes the
Web application’s abstract user inter-
face, which is mainly a collection of
pages with their components: widgets
that show node attributes, those that
trigger node operations, and anchors
for navigating over links. It’s abstract
because it doesn’t specify the exact po-

sition of widgets, nor their graphical
attributes, but just their type.

We can represent both the naviga-
tion and presentation models with ste-
reotyped UML class diagrams.8 Figure
2 shows simplifi ed navigation and pre-
sentation diagrams for the Facebook
homepage presented in Figure 1. Classes
in the navigation diagram represent
nodes or indexes, and classes in the
presentation diagram represent pages.
For space reasons, we omitted naviga-
tion class attributes and show a single
presentation class corresponding to the
“Wall” tab (see Figure 1). Each box in-
side the presentation class represents an
attribute. For example, anchoredCol-
lection represents a list of anchors for
links, mapping an index. Presentation
classes can also be nested (for example,
“Basic information” is also tagged as a
<<Presentation class>> and should be
expanded in a different box).

Our defi ned Web refactorings over
the navigation and presentation models
give us a powerful abstraction mecha-
nism compared with implementation-

level refactorings.7 This classifi cation
is intended to help developers choose
the right refactoring depending on the
design attributes they need to improve.

Navigation Model Refactorings
We defi ne a navigation model refactor-
ing as a change to the navigation model
of a Web application that preserves

 1. the set of operations made available
by all the nodes (considered as a
whole) in the model; and

 2. the reachability of each opera-
tion through a navigation path from
the home node.

Following this defi nition, navigation
model refactorings include

•	 renaming nodes, node attributes,
and node operations;

•	 adding nodes;
•	 removing unreachable or redundant

nodes;
•	 moving contents or operations

among the available nodes;

<<navigationClass>>
User

Package Navigation [Navigation Diagram]

<<presentationClass>>
User Wall

<<index>>
FriendsIndex

<<index>>
PhotoAlbumIndex

<<index>>
NewsIndex

<<navigationClass>>
PhotoAlbum

<<navigationClass>>
News

<<image>>

Package Presentation [Presentation Diagram]

<<text>>
: name

<<anchor>>
: PhotoAlbums

<<textInput>>
: statusInput

<<presentationClass>>
Basic information

<<anchoredCollection>>
: NewsIndex

abl

: pro�lePicture

<<anchor>>
: News<<anchoredCollection>>

: FriendsIndex

FIGURE 2. Navigation and presentation model diagrams. Names enclosed by guillemets and icons shown in each box distinguish UML

stereotypes. For example, the stereotype <<navigationClass>> represents a navigation node, and the stereotype <<anchor>> represents the

means for activating a link.

	 MAY/JUNE 2011 | IEEE SOFTWARE � 63

•	 adding links; and
•	 removing redundant links and links

from unreachable nodes.

This list is not exhaustive. We can de-
fine more refactorings to improve us-
ability as long as they preserve the
Web application’s behavior, given by
its operations and links to reach those
operations.

Presentation Model Refactorings
The presentation model specifies a Web
application’s behavior in the set of op-
erations that users can trigger in a page
and the set of links they can navigate
from a page. Therefore, we define a
presentation model refactoring as a
change to the application’s presentation
model that preserves

	 1.	the set of operations made available
by all the model’s pages, considered
as a whole, and their semantics; and

	 2.	the availability of an abstract
interface for navigation model
elements.

Under this definition, legal presenta-
tion model refactorings can

•	 split or merge pages;
•	 change an abstract widget’s type, if

the new type preserves the underly-
ing functionality;

•	 reorganize the arrangement of wid-
gets in a page; and

•	 add or change the available inter-
face effects.

Note that some navigation model refac-
torings might signal the application of
a presentation model refactoring. For
example, moving content from a heavy
node to a new one could lead us to split
the page of the original node.

Target Usability Factors
In addition to classifying Web model
refactorings by the design model to
which they apply (scope), we also char-
acterize them by the specific usability
factor they aim to improve (intent).
Inspired by research on patterns,9 us-
ability,10 and the ISO 9241-11 usability
definition (among others), we list fac-
tors contributing to a Web application’s
usability, which can be improved by
refactorings. By classifying refactorings
with their target usability factors, we
aim to help developers find the correct

refactorings for their problem. Web us-
ability factors are

•	 accessibility: degree to which a Web
application can be used by people
with physical impairments or assis-
tive technology.

•	 navigability: quality of the naviga-
tion structure in facilitating orga-
nized, effortless access to the appli-
cation’s contents through links.

•	 effectiveness: extent to which the
application provides quick flows to
expedite processes for advanced or
returning customers.

•	 credibility: the application’s capa-
bility to encourage trust and sup-
port lasting relationships with
customers.

•	 understandability: extent to which
content organization and layout
help a user easily understand what
the Web application provides, how
to access it, and its current status.

•	 customization: ability to make rel-
evant recommendations, to target
user needs on the basis of past be-
havior or usage context, and to dis-
play enough information at any one
time to alert interested users but not

TA
B

L
E

 1 Classification of Web refactorings.

Refactoring Intent Scope

Convert images to text5
In webpages, replace any images that contain text with the text they contain, along with the markup and CSS rules
that mimic the styling.

Accessibility Code

Add link7,11

Shorten the navigation path between two nodes.
Navigability Navigation

model

Turn on autocomplete5

Save users from wasting time in retyping repetitive content. This is especially helpful to physically impaired users.
Effectiveness,
accessibility

Code

Replace unsafe GET with POST5

Avoid unsafe operations, such as confirming a subscription or placing an order without explicit user request and
consent, by performing them only via POST.

Credibility Code

Allow category changes7

Add widgets that let users navigate to an item’s related subcategories in a separate hierarchy of a hierarchical
content organization.

Customization Presentation
model

Provide breadcrumbs7

Help users keep track of their navigation path up to the current page.
Learnability Presentation

model

64 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: SOFTWARE QUALITY

overwhelm or distract those who
aren’t.

•	 learnability: degree to which the
application is easy to use or easy to
learn through effective user support
and guidance.

Table 1 shows some Web refactor-
ings, both code5 and models,7,11 classi-
fi ed by their specifi c intent toward us-
ability and their scope.

The Refactoring Process
We now review two important aspects
of the refactoring process: when to
refactor and how to measure refactor-
ing benefi ts.

Detecting Bad Usability Smells
Incrementally detecting and correct-
ing usability bad smells simplifi es the
process of overall usability evaluation,
which application developers must nev-
ertheless perform when they fi nish an
application. Strategies for fi nding bad
usability smells include

•	 user testing (performed by repre-
sentatives of real users) or feedback,

•	 inspection methods (generally per-

formed by experts), and
•	 Web usage analysis (mining user ac-

cess logs).

We favor heuristic evaluation, which
is the least formal of the inspection
methods and fi ts well with an agile
style. Heuristic evaluation analyzes the
current system version according to a
list of usability principles, reports us-
ability problems (bad smells), and sug-
gests improvements (usability refactor-
ings). Manual processes for fi nding bad
smells depend on the inspector’s skill;
automated tools can work even at the
model level. For example, we can detect
the bad smell “Absence of meaningful
links” by analyzing a schema such as
the one in Figure 2 and automatically
applying the corresponding refactoring,
“Turn attribute into link.”

We categorize bad smells in two
coarse groups, navigation and presen-
tation, and tag each bad smell with the
usability factors it affects. We stress,
however, that the impact of bad smells
strongly depends on the application
domain (for example, e-commerce and
e-learning), the types of users (for ex-
ample, impaired users), and the site’s

idiosyncrasies. For example, the bad
smell “Excessive information den-
sity,” which might lead to refactor-
ings such as “Introducing information
on demand,” is more critical for an
e-commerce than a software download
site.

In our growing catalogue of refac-
torings, we characterize each refactor-
ing with the bad smells it deodorizes.

Measuring the Impact of Refactoring
The usability improvement that Web
model refactorings can achieve will al-
ways depend on the developer’s good
judgment in selecting the most advan-
tageous changes—that is, in his or her
ability to detect the catalogued bad
smells.

Developers can employ user feed-
back both to identify needs or oppor-
tunities for refactoring (by considering
negative feedback as bad smells) and to
evaluate user satisfaction after apply-
ing it. A formal approach to fi nd bad
smells, choose the appropriate refac-
torings, and measure the usability im-
provement gain is to apply Web model
refactorings within a structured Web
quality evaluation framework. We’ve

<<presentationClass>>
RequestPage

<<presentationGroup>>
: Input/Progress Region

entry/InputForm.display()

Accepting input

entry/Progress.display()

Processing

<<form>>
: InputForm

<<presentationClass>>
Progress

<<button>>
: Process

<<presentationClass>>
RequestPage

<<form>>
: InputForm

<<button>>
: Process

Add processing
page

MouseClick(Process)/InputForm.hide()

FIGURE 3. “Add processing page” refactoring. The InputForm is replaced by a presentationGroup, which is used to specify alternative

components—in this case, InputForm and Progress. The state diagram describes the behavior of the presentationGroup, which shows the

InputForm on entry and replaces it by the Progress section when the user clicks the Process button.

 MAY/JUNE 2011 | IEEE SOFTWARE 65

already proposed such an approach
to incrementally and systematically
improve an application’s usability.12
This prior work also discusses the use
of acceptance testing in the process of
evaluating the fi nal application’s ex-
ternal quality, much as unit testing is
used in traditional refactoring to evalu-
ate the preservation of functionality. In
this sense, as the application is trans-
formed, we will need to adapt and ap-
ply the corresponding unit tests and as-
sess the users’ satisfaction.

Example Web
Application Refactorings
We present three of our Web model
refactorings here, with details in six
sections. Scope is the model to which
it applies, intent refers to the spe-
cifi c usability factors it pursues, bad	
smells label the targeted problem that
might suggest its application, mo-
tivation is the story behind the bad
smells, mechanics is the list of steps
to apply the refactoring on stereo-
typed UML diagrams, and example is
self-explanatory.

Add Processing Page
Scope: Presentation model

Intent: Understandability
Bad	 smells: No way of knowing cur-
rent state in a process
Motivation: Users often leave a web-
site in the middle of a transaction af-
ter waiting some time without receiv-
ing feedback that their transaction is in
progress. A processing page can allevi-
ate this problem.
Mechanics: In the presentation dia-
gram, perform the following three ba-
sic steps:

 1. Add a new presentation class to rep-
resent a processing page.

 2. Add widgets into the new page
for a progress bar and some text.

 3. Change the interface effect associ-
ated with the widget that triggers
the transaction so that it also navi-
gates to the processing page.

Note that you can also apply this
refactoring by replacing a section in
the source page—probably an input
form—with a progress bar, instead of
navigating to a new page with the prog-
ress bar. This solution is common in
rich Internet applications (RIAs). To
model this kind of behavior, we attach
a state diagram to the presentation dia-

gram. The state diagram describes the
dynamic behavior of interface elements
in response to user-generated events.
Figure 3 shows the mechanics of this
version of the refactoring.
Example: The result of this refactoring
is visible in practically all airline opera-
tor websites or travel brokers. It could
be useful to apply it during the check-
out process on websites like Amazon,
when a progress bar indicates the trans-
action stages while the site contacts a
credit card service: communicating
with bank, checking card, getting au-
thorization, and so on.

Turn Attribute into Link
Scope: Navigation model
Intent: Navigability
Bad	smells: Diffi cult access to informa-
tion, absence of meaningful navigation
links
Motivation: Often, some page content
clearly refers to other content (pages),
such as product names and book au-
thors. This page content should provide
a navigation link, as suggested by the
Embedded Links Web pattern.9

Mechanics: In the navigation diagram,
select the attribute of the source node
that better distinguishes the target

(a) (b)

FIGURE 4. Shopping cart for an online bookstore: (a) without links and (b) with links after applying “Turn attribute into link” refactoring. The

links let a user navigate from the book titles to the pages containing book details—for instance, to review the difference between the � rst and

second titles in the cart.

66 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: SOFTWARE QUALITY

node and perform the next two steps:

 1. Add a new link as an association
from the source to the target node.

 2. Remove the attribute from the
source node.

Example: An opportunity to use this
refactoring occurs when a customer
checks the shopping cart’s status dur-
ing the purchase of products from an
e-commerce website. You can use this
refactoring to add links from product
names in the cart to the product de-
tail pages. In Cuspide.com, an online
bookstore, we can apply this refactor-
ing to add links from book titles in the
shopping cart to the book page. Figure
4 shows how the shopping cart changes
after applying this refactoring to the
navigation model and synchronizing
the webpage (either manually or auto-
matically) with the new model.

Introduce Information on Demand
Scope: Presentation model
Intent: Navigability, customization
Bad	smells: Excessive information den-
sity, cluttered interface, lack of inter-
face space
Motivation: We often have plenty of
information to show and a small area
to accommodate it. One solution is to
add a scrollbar to the available area. A
better solution is to use the same screen
space to show different content accord-
ing to what a user chooses for an active
object.
Mechanics: In the presentation dia-

gram, select the page that will be af-
fected by this refactoring and

 1. Add or select the objects that will
activate the presentation of the
different content (for example, a
menu).

 2. Enclose the widgets that dis-
play the different content into a
“presentation group” to specify that
they’re alternative components.

 3. Attach a state diagram to specify
the appearance of each alternative
component in response to a mouse-
generated event.

Example: Figure 5 shows this kind of
refactoring in the context of an online
music store, such as Amazon.com. By
using RIA technologies to synchronize
the interface with the model changes,
this refactoring replaces a typical ar-
rangement of CDs with an overlapping
arrangement that can accommodate
more CDs in the same space. When the
mouse hovers over one of the CDs, the
application shows its details.

T hese examples show how we
can use refactoring to apply
small changes to progressively

improve the external quality of an ex-
isting Web application. For simplicity,
we’ve presented examples with well-
known coarse-grained usability fac-
tors. However, the intent can be fi ner
grained—for example, you could de-
fi ne accessibility factors for visually

impaired or motion-impaired people.
Our catalog of Web model refactorings
isn’t complete, but we believe our char-
acterization will be useful in suggesting
many others. We hope other people will
contribute to building a robust set of
refactorings over time, plus tools that
reify the model transformations.

Our approach is agnostic with re-
spect to design methods and implemen-
tation technologies used for application
development. All refactorings can be
explained by showing how they affect
the corresponding webpage. Addition-
ally, the transformations can be applied
at different abstraction levels, such as
the modeling level in a model-driven ap-
proach or the implementation level in
a Java or HTML code base. However,
we do maintain that thinking about
Web applications and refactorings from
a model perspective is a more powerful
refactoring approach than focusing on
the implementation. We’re now work-
ing to automate the refactoring pro-
cess and incorporate refactoring in dif-
ferent model-driven Web development
approaches.

References
 1. W. Opdyke and R. Johnson, “Creating

Abstract Superclasses by Refactoring,” Proc.	
1993	ACM	Conf.	Computer	Science (CSC 93),
ACM Press, 1993, pp. 66–73.

 2. M. Fowler, Refactoring:	Improving	the	Design	
of	Existing	Code, Addison-Wesley, 1999.

 3. M. Boger, T. Sturm, and P. Fragemann,
“Refactoring Browser for UML,” Objects,	
Components,	Architectures,	Services,	and	
Applications	for	a	Networked	World, LNCS
2591, Springer, 2003, pp. 366–377.

(a) (b)

More to Explore More to Explore
You looked at You might also consider

Iberian and African-Brazilian
Music of of 17th Ctry
~ Ensemble Banza

Naxos Classial Guitar
~ Naxos Guitar Sampler

Naxos Classial
Guitar ~ Naxos
Guitar Sampler

Latin American Guitar
Music ~ Astor Piazzolla

FIGURE 5. “Introduce information on demand” refactoring. (a) The original user interface presenting a set of CDs in an online music store, and

(b) the interface after applying the refactoring using RIA technologies.

 MAY/JUNE 2011 | IEEE SOFTWARE 67

 4. S.W. Ambler and P.J. Sadalage, Refactoring	
Databases:	Evolutionary	Database	Design,
Addison-Wesley, 2006.

 5. E.R. Harold, Refactoring	HTML:	Improv-
ing	the	Design	of	Existing	Web	Applications,
Addison-Wesley, 2008.

 6. G. Rossi et al., eds., Web	Engineering.	Model-
ling	and	Implementing	Web	Applications,
Springer, 2008.

 7. A. Garrido, G. Rossi, and D. Distante,
“Systematic Improvement of Web Application
Design,” J.	Web	Eng., vol. 8, no. 4, 2009, pp.
371–404.

 8. N. Koch et al., “UML-Based Web Engineer-
ing: An Approach Based on Standards,” Web	
Engineering:	Modelling	and	Implement-
ing	Web	Applications, G. Rossi et al., eds.,
Springer, 2008, pp. 157–191.

 9. D.K. van Duyne, J.A. Landay, and J.I. Hong,
The	Design	of	Sites:	Patterns	for	Creating	
Winning	Web	Sites, 2nd ed., Prentice Hall
PTR, 2006.

 10. J. Nielsen, Designing	Web	Usability, New
Riders, 1999.

 11. J. Cabot and C. Gomez, “A Catalogue of
Refactorings for Navigation Models,” Proc.	
8th	Int’l	Conf.	Web	Eng. (ICWE 08), IEEE CS
Press, 2008, pp. 75–85.

 12. L. Olsina et al., “Web Application Evaluation
and Refactoring: A Quality-Oriented Improve-
ment Approach,” J.	Web	Eng., vol. 7, no. 4,
2008, pp. 258–280.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S ALEJANDRA GARRIDO is an assistant professor at the Universidad
Nacional de La Plata, Argentina, and a researcher at Conicet, Argen-
tina’s National Scientifi c and Technical Research Council. Her research
interests include refactoring and Web engineering. Garrido has a PhD in
computer science from the University of Illinois at Urbana-Champaign.
Contact her at garrido@lifi a.info.unlp.edu.ar.

GUSTAVO ROSSI is a full professor at Universidad Nacional de La
Plata, Argentina, and a researcher at Conicet, Argentina’s National
Scientifi c and Technical Research Council. His research interests
include Web engineering. Rossi has a PhD from Pontifícia Universidade
Católica do Rio de Janeiro (PUC-Rio). Contact him at gustavo@lifi a.info.
unlp.edu.ar.

DAMIANO DISTANTE is an assistant professor at Unitelma Sapienza
University, Italy. His research interests include Web engineering,
conceptual modeling, and software evolution. Distante has a PhD in
information engineering from the University of Salento, Italy. Contact
him at damiano.distante@unitelma.it.

Silver
Bullet
Security
Podcast

Sponsored by

www.computer.org/security/podcasts
*Also available at iTunes

In-depth interviews
with security gurus.

Hosted by Gary McGraw.

