
Abstraction and Reuse Mechanisms in 
Web Application Models 

Gustavo Rossi*, Daniel Schwabe** and Fernando Lyardet * 

*LIFIA Facultad de Informática. UNLP. 
La Plata, Argentina 

{gustavo, fer}@sol.info.unlp.edu.ar 
 

**Departamento de Informática, PUC-Rio, Brazil 
schwabe@inf.puc-rio.br 

Abstract. in this paper we analyze different abstraction and reuse mechanisms 
that should be used in Web applications to improve their evolution and 
maintenance. We first review the OOHDM approach for defining a Web 
application model, in particular the separation of the navigational model from 
the conceptual model. We next focus on abstraction and composition  
mechanisms in both models showing how to combine OOHDM’s views with 
the concept of node aggregation. We introduce navigation and interface patterns 
and show the way in which patterns generate the architecture of Web design 
frameworks. We strongly argue that in the currently state of the art of Web 
applications we can build models of families of similar applications to improve 
design reuse. Next, we present our notation for specifying Web frameworks, 
giving some examples in the field of E-commerce. Some further work is finally 
discussed. 

1 Introduction 

Building complex Web applications is a time consuming task as they must provide 
navigational access to critical information resources, not only allowing the user to 
browse through the potentially large universe of information but also to operate on it. 
In some areas such as electronic commerce, customers’ actions trigger a sophisticated 
workflow that must be integrated with the core business software. The first obvious 
consequence is that we must not only design the navigational architecture carefully 
but also integrate it effectively with the underlying business model. 

To complicate matters, Web applications should be developed with zero defects, 
with short deployment and maintenance times. In this context, we should use not only 
systematic engineering techniques but also be able to improve reuse during the whole 
development cycle. The key for obtaining reusable designs or components is to be 
able to build extensible and reusable conceptual models. However, while reuse 
techniques have been widely explored for conventional applications [Meyer94], the 
very nature of Web applications seems to prevent designers from being able to cope 
with design and implementation reuse. 



The purpose of this paper is to present different design reuse mechanisms that 
should be used while building Web application models. We stress mechanisms such 
as navigation patterns and Web frameworks, particularly those that apply to Web 
applications, such as contexts. In this sense, our goal is not to present novel design 
primitives, though we introduce some, like aggregates and generic contexts; we rather 
seek to motivate discussion on the problem of reuse in Web application models. 

Though we use OOHDM [Schwabe98, Rossi99b, OOHDM00] as the base design 
method, the ideas in this paper can be easily applied to other modeling approaches. In 
section 2 we characterize Web application models as the combination of conceptual 
and navigational models. In section 3 we show how different abstraction and 
composition mechanisms in OOHDM work together to achieve elegant and reusable 
design models. In section 4, we briefly address abstract design reuse by reviewing 
navigation patterns. Since patterns generate architectures, we go further in section 5 
and present Web design frameworks as a way to achieve reuse of entire domain 
models. In section 6 we present OOHDM-Frame, a notation for specifying Web 
design frameworks. Some further work is finally discussed. 

2 Web application models: Conceptual + Navigation models 

The key concept in OOHDM is that Web application models involve a Conceptual 
and a Navigational Model [Rossi99b]. The conceptual model aims at capturing the 
domain semantics using well-known object-oriented primitives and abstraction 
mechanisms. In an electronic store for example, the conceptual model will contain 
core classes such as Product, Order, Customer, etc. with their corresponding 
behaviors. We use UML as the notation to specify the conceptual model. Since the 
conceptual model is an object-oriented model, we can use existing reuse approaches 
in object-orientation [Fayad99, Meyer94]. 

In the OOHDM approach the user does not navigate conceptual objects but 
navigation objects (nodes). Nodes are defined as views on conceptual objects, using a 
language that is similar to OODB view-definition approaches [Kim90]. Nodes are 
complemented with links that are themselves specified as views on conceptual 
relationships. The navigational schema shows the node and link classes that comprise 
the navigational structure of the application.  For each particular user profile we build 
a navigational model as a view of the shared conceptual model. In this way, we can 
reuse the conceptual model in a family of similar applications. Moreover, as shown in 
section 3, we can define different views in the context of a single application. 

In Fig. 1 we show part of the conceptual model of an electronic store. Notice that 
some classes in the model will be mapped onto the navigational model (i.e. they will 
be explored as nodes) while others, such as PaymentMethod, will not. 



Order

Date:date

CD

Name:string
Description: [string+,

photo]
Keywords:{string}
Price:real
Size:string
Section: {Section}
InPromotion:boolean
Addit_Info:string
DeliveryTime:string

Comment

Author: String

Text: String

1 1..*

1 1..*has

Performer

Name:String 1..* 1..*

performs

PaymentMethod

Date:date

1  Payment_Form    1

 

Fig. 1. Conceptual Model of CD store. 

If we are designing the customer view of the electronic store, we will specify node 
classes for products. As shown in Fig. 2, these nodes may combine some attributes of 
conceptual class CD with attributes from conceptual class Comments and Performer. 
Notice that in good object-oriented software specifications (such as the one in Figure 
1), products, comments and performers belong to different classes -. Nodes 
meanwhile implement opportunistic views of conceptual classes (following the 
Observer design pattern [Gamma95]). The precise syntax for defining views can be 
found in [Rossi99b]. 

 

Node CD FROM CD:C 
name: String, price: Number 
performer: String SELECT name FROM Performer: P WHERE C isPerformed by P 
comments:Array[Text] SELECT text FROM Comment: R WHERE 

 C hasComment R 
other attributes and anchors 

 

Fig. 2. CDs including comments in Amazon.com and the OOHDM definition. 

The Navigational Schema is complemented in OOHDM with a Context Schema 
that shows the navigational contexts and access structures (indexes) in the application. 
A navigational context is a set of objects that are usually explored sequentially; for 
example: Books of an author, CDs by a rock band, etc. There are different kinds of 



navigational contexts: class derived, link derived, arbitrary, etc [Schwabe98]. Access 
Structures act as indexes to group of  related objects; they are specified by indicating 
the target objects and the selector to be used in the index. 

In Figure 3 we show part of the context schema for the electronic store. The 
notation in Figure 3 shows in a compact way, which sets the user will explore, and 
how they are related with each other. Navigational contexts are a novel design 
primitive for specifying sets in a concise way, specifically developed for exploring 
hyperspaces. 

 

Main Menu
CD STORE

Subject: Topic

Author

Subject

Related

Search

CD

By Author

Comment

By book

Order Form

Shopping Cart

In Order

By Subject

By Related

 

Fig. 3. Context Schema for the CD store. 

Dashed boxes in Figure 3 show access structures (indexes) while boxes inside 
Class CD (and comment) indicate possible contexts in which a CD (respectively a 
comment) can be accessed. A node may appear in different contexts, showing 
different information according to the context within which it is reached. In this 
situation, we use Decorators [Gamma95] to decouple the base information in the node 
from the different “faces” this node exhibits. Consequently, navigational contexts 
combine two navigational patterns, Set-based navigation and Nodes in Context 
[Rossi99a]. The navigational and the context schemas play an important role when 
reusing application models in a family of applications in the same domain. We will 
discuss this kind of reuse in section 6. 

3 Combining views with aggregate nodes 

Complex Web applications provide multiple ways of reaching the information they 
contain. In e-commerce applications for example customers receive different kinds of 
advising such as hot-lists, recommendations, new releases, etc. In Figure 4 we show 
an example of a home page that contains different kind of links to products in an 
electronic store. In OOHDM we can aggregate nodes to specify this home page. An 
aggregate allows gluing different information items (other nodes) and access 
structures (like indexes) in the same node. 



 

Fig. 4. A node representing a home page. 

The specification of part of the node for the home page in Figure 4 reads as 
follows: 

Node MusicHome 
news: Array [CDView]  
search: SearchTool 
categories: IndexOfCategories 
topSellers: IndexOfTop 
landmarks: IndexOfStores  
... 
other attributes 
 
Node CDView FROM CD: C 
name: String 
performer: String SELECT name FROM Performer: P WHERE C isPerformed by P 
description: Photo 
shortComment: Text  

 
Notice that the specification of type CDView above takes profit of the viewing 

mechanism and it can be reused in other parts of the site (for example the Artists 
Essentials section uses a similar summary for each CD). Aggregates allow specifying 
composite nodes in an opportunistic way (as it is usual in Home pages). However, 
aggregate nodes combine with the viewing mechanism in a way that goes beyond 
simple composition mechanisms in object-orientation. This synergy is complemented 
with the linking mechanism that allows different views of the same object to be 
connected with each other. For example you can easily navigate from the summaries 
of CDs in Figure 4 to the corresponding CD. In Figure 5 we show in a diagram how to 
reuse one object’s view and how this view is linked to another one of the same object. 



CD

Music Home

CD View

Artist Essentials

CD View can be used in different
aggregates; from it, we can
navigate to CD (another view of
the same conceptual class).

 

Fig. 5. Aggregates and view reuse in a navigational schema. 

This simple example raises some interesting issues and questions related with 
design reuse:  
1. Can we generalize the basic idea behind the previously shown home page? What 

design problem are we solving when building this kind of aggregate node? Can we 
apply this same solution in other Web applications? 

2. Is the structure of this application similar to others in the same domain? In other 
words: how can we profit from our intellectual investment while designing the 
conceptual and navigational models in similar applications?  
These questions show some non-trivial design reuse problems. While composition, 

viewing and inheritance allow improving reuse and maintenance in a single 
application, they are not enough for expressing reusable aspects in a family. We next 
introduce two novel approaches for design reuse in Web applications: navigation 
patterns and Web design frameworks. 

4  Design Reuse using Navigation Patterns 

Patterns record design experience by expressing in an abstract way recurrent problems 
and proven solutions. They are a wonderful tool for capturing, conveying and reusing 
design experience.Patterns complement design methods by showing solutions that go 
beyond naive uses of the methods’ primitives. Patterns improve communication 



among designers by enriching the design vocabulary with terms that express non-
trivial design structures. They formalize well-known solutions in such a way that 
novice designers can profit form experts’ knowledge. We have mined patterns for 
Web applications and have documented them using a template similar to Alexander’s 
one [Rossi99a]. In fact hypermedia and Web patterns are similar to the original urban 
patterns as they express recurrent structures for building usable navigable spaces; they 
show design solutions that help the user find his way through the hyperspace. The 
hypermedia community have proposed dozens of new patterns [Garzotto99], and it is 
now pursuing a project for expressing these reusable solutions in a shared catalogue 
[HypPatterns99].  

Continuing with the previous example we may define two simple but effective 
patterns for dealing with (part of) the application’s complexity: Portal and Landmark. 
We briefly describe them, stating the problem they address and the (widely used) 
solution. 

4.1 Portal 

In many Web applications, particularly in E-commerce we want to give the user a 
comprehensive description about what he will find in the site including daily news, 
suggestions, opportunities, etc. If we follow a naive hypermedia design view, the 
“home” page should map some conceptual object, or may just be an index to services 
or products. The solution is to design the home (or homes) as aggregates of different 
information items, anchors and access structures, Dedicating space to news, 
suggestions to the user, general indexes, special offers, etc. This home page may even 
contain information that may not be “semantically” connected. A portal is an 
opportunistic design solution that allows increasing the site’s number of visitors as it 
is easier and quicker for them to find what they want. Portals are widely used in all e-
commerce sites such as amazon.com, netgrocer.com and more general sites such as 
netscape.com. Portals generalize the design solution in Figure 4. 

4.2 Landmark 

Many Web applications contain sub-sites that provide specific functionality 
(different shops, search facilities, etc). When we describe the navigational schema 
(i.e. the network of nodes and links types), we try to follow closely those relationships 
existing in the underlying object model; for example we can navigate from an author 
to his books, from a CD to the list of songs it includes. However, we may want that at 
any moment the reader can jump to the music or book (sub) stores or to his shopping 
basket. The solution is to define a set of landmarks and make them accessible from 
every node in the network.  making the interface of links to a landmark look uniform. 
In this way users will have a consistent visual cue about the landmark. We may have 
different levels of landmarks according to the site area we are visiting. Landmarks are 
different from indexes as they appear in every node in the application. This pattern is 
widely used in Web applications for indicating relevant sub-sites and functionality. 



Patterns do not stand by themselves. They must be integrated into the development 
method in order to be effective. They must be combined to create higher level 
abstractions. In the context of OOHDM we have defined notations for some 
navigation patterns such as Set-Based Navigation and Nodes in Context [Rossi99b] 
and Landmarks [Rossi99a]. In Figure 6 we generalize the preceding example by 
showing a navigation model incorporating the idea of Landmarks. Notice that instead 
of a tangled diagram we get a simplified one in which links to landmarks are omitted. 
CD Store, BookStore and Toy Store in Figure 6 are Landmarks (indicated with an 
arrow with a bullet as source). Notice that, within CD Store, “Subjects”, “Search”, 
“Shopping Cart” and “Order” are second level Landmarks. 

 

...

...

CD STORE
Menu

Subject: Topic

Author

Subject

Related

Recomended

Search

CD

By Title

Comment

By CD

Order Form

Shopping
Cart

In Order

BOOK STORE
Menu

TOY STORE
Menu

WEB STORE

 
Fig. 6. Using Landmarks in the Navigational Schema. 

Incorporating patterns into the design armory helps to reduce the complexity of 
diagrams thus making reuse more feasible. However, when we design complex 
applications we need more powerful reuse approaches. 

In the e-commerce domain for example we can easily find that most virtual stores 
offer similar services to the customer: most of them allow finding products by 
searching or hierarchical navigation, all of them provide a shopping basket for making 
selections persistent, etc. Moreover we can find commonalties even in the core 
application behavior: for example, the set of actions triggered when a customer makes 
a check-out operation are basically identical: verifying user data, creating an order, 
sending a confirmation mail, sending another mail when products are shipped, etc. 
We should be able to define architectures that abstract these commonalties and that 
can be extended smoothly to cope with variations in each particular application. We 
next introduce Web design frameworks and show how they relate with navigation 
patterns. 

5 From Web patterns to Web frameworks 

Frameworks are reusable designs for a family of applications in a particular 
domain. They act as skeletons of a set of applications that can be customized by an 
application developer. When many different applications must be constructed in the 
same domain, application frameworks provide "templates" for supporting their 



commonalties, and accommodating individual variations (differences). While patterns 
provide abstract reuse of design experience, frameworks allow reusing concrete 
designs in a domain [Fayad99].  Frameworks are composed of a set of abstract and 
concrete classes, which contain the specification of generic behaviors (usually 
specified using a particular programming language) in the intended domain. A key 
aspect for designing frameworks is identifying its hot spots (i.e.: the points in the 
framework where variations will appear). Following with the preceding example, we 
can generalize the conceptual model (in Figure 4) to reflect abstract classes and 
collaborations in virtual stores. The model should include an abstract class Product, 
different kinds of Orders and Payment Methods, Comments, etc. A designer 
developing a particular store will need to define new concrete classes (for example 
sub-classes of Product) and specialize some behavior such as order processing, to 
accommodate it to the particular application (for example, selling other products 
using different business rules). In virtual stores (such as Amazon.com) the approach 
will work for defining new sub-stores in the company that may have, for example, 
different shipping or payment policies. 
 Designing frameworks is a difficult but rewarding task. We need to understand the 
domain and produce a generic design that can be instantiated into different 
applications.  To apply this approach to Web application models, we need to take into 
account different kinds of variability: those related with the domain model (e.g. 
different payment policies) and those related with navigation architectures (e.g. 
different indexes, contexts, etc). Besides, programming-language-centric approaches 
(common in application frameworks) are difficult to apply in the Web, given the large 
number of combinations of languages and tools that are often used in Web application 
development and implementation. 

We define a Web design framework as a generic design of possible Web 
application architectures, including conceptual, navigational and interface aspects, in 
a given domain. We have used the OOHDM model as the basis architecture for 
specifying Web design frameworks. Web design frameworks comprise a generic 
conceptual model (that may be itself an object-oriented framework), a generic 
navigation schema and a generic context schema.  

Web design frameworks are different from application frameworks because while 
the latter are programmed in a specific language, Web design frameworks are 
environment and language-independent. Web design frameworks include an 
additional perspective with respect to conventional application frameworks: the 
generic navigation architecture. 

Web design frameworks can be mapped either to an application framework to be 
later instantiated into a running application or can be instantiated into “pure” 
OOHDM models and then implemented as a single Web application [Schwabe00]. 
We next present a notation for improving Web application models with the kind of 
abstractions needed in Web design frameworks. 



6 OOHDM-Frame: A notation for Web frameworks 

In order to specify Web design frameworks, we have defined a new notation, called 
OOHDM-Frame that extends OOHDM smoothly. It is not our objective in this paper 
to give the detailed syntax of the notation but rather to analyze how to improve 
existing abstraction and composition mechanisms in conceptual modeling in order to 
express generic Web functionality. We will present the notation briefly to stress each 
particular modeling feature. As previously explained, the specification of a 
framework’s model in OOHDM-Frame is comprised of generic Conceptual and 
Navigational Models specifications, together with instantiation rules. We next analyze 
each one pointing out novel abstraction mechanisms. 

6.1 Abstraction and Genericity in the Conceptual Model 

Variability in Web applications may appear in the conceptual model. In Figure 7 
we show part of a generic model for electronic stores. Notice that we have included 
some abstract classes like Product and specialized Comment and Payment Method. 

Person

Name:string
Address:string
CustomerID: String

Order

Order_Date:date

Duplicate

1..* Makes *

Product

Name:string
Description: [string+,

photo]
Keywords:{string}
Price:real
Size:string
Section: {Section}
InPromotion:boolean
Addit_Info:string
DeliveryTime:string

1

1..*

1..* reference 1..*
Company

Name:string
Address:string
Email:string
Site:URL

1..* Makes *

Comment

Author: String

Text: String

1 1..*has

Payment Method

Cost%:Real

ExpirationDate: Date
SecurityCode: String
Company:String

Bank:String

Credit Card Money Order

1  Payment_Form  1

CD

Themes:{string}

Book

ISBN: String

Editorial Comment

ISBN: String

Customer Review

ISBN: String  

Fig. 7. A generic conceptual model for virtual stores. 

Genericity in object-oriented models has been largely discussed in the object-
oriented community and one can use existing notations to express generic classes and 
behaviors [Pree94], so we don’t discuss it further here. 

6.2 Specifying Generic Navigational Models 

A generic Navigation Model in OOHDM-Frame is made up of a Generic Navigation 
Schema, a Generic Context Diagram, and a set of mapping and instantiation rules. 
The Generic Navigation Schema generalizes the idea of views (or observations in the 



terminology of [Gamma95]). It is similar to the Navigation Schema, except for the 
fact that Node attributes may be optional (marked with an "*") and Relations (links) 
can be optional (drawn with a dashed line), as shown in Figure 8. An optional 
attribute (respectively Link) may or may not appear in an instantiated application. 
Notice that as the navigational model will be often mapped into a non object-oriented 
implementation, we are not constrained to “pure” notations, e.g. we can always 
specify optional features (attributes or links) by defining appropriate class hierarchies, 
though in a less concise way. For the sake of simplicity we have not included those 
sub-classes in Figure 8. 

Order

Order_Date:date
Payment_Form:string
Client_Name: p.Name

where P:Person makes
self

Client_Address: p.Address
where p:Person makes
self

DuplicateOrder(order)*
MakeOrder(order)

Product

Name:string
Image: photo *
Mfg: c.Name where

c:Company Makes self *
Author: p.Name where

p:Person IsAuthorOf self *
Keywords:{string}*
Section: {Section}
InPromotion:boolean *
Addit_Info:string*
DeliveryTime:string*

Product in Order

Qty:int

IncludeProd(order,
product,qty)

1

1..*

Generic Reference

Title:string
Author_Name:

p.Name where
P:Person
IsAuthorOf self

Text:string
Ref_Date:date

1..* Mentions *

1..* reference 1..*

 
Fig. 8. Optional attributes and Links in the generic navigational schema 

Sub classing in the Generic Navigational Schema allows a more subtle way of 
achieving genericity. In the example above, we may create a sub-class of Product and 
either add an attribute or anchor or we may even need to specialize the view 
specification for a particular attribute, as shown below. 

Suppose for example that we have two sub-classes of Comment (as shown in the 
generic conceptual schema of Figure 7); if we want to generalize the store to a Books 
and CDs store (in the context of a framework for virtual stores), we may require that 
some of the navigational Product sub-classes show comments from only one 
(conceptual) sub-type. Accordingly, we show the specification of part of the abstract 
node class Product, and how we specialized the definition of the attribute comments 
for Books. The Refine operator takes the query in the corresponding super-class and 
replaces Comment with its sub-class EditorialComment. We are thus indicating that 
books only show Editorial Comments. 
Node Product from Product: P 
comments: Array[Text] SELECT text FROM Comment: R WHERE P hasComment R 
 
Node Book from Book:B  
REFINE comments WITH EditorialComments 

Generic Context Diagrams meanwhile represent another kind of hot spot in Web 
applications, showing in an abstract way which contexts and access structures may 
appear in a particular domain. Notice that as navigational contexts are sets of nodes, 
defining generic contexts is equivalent to specifying generic sets. Thus, achieving 



generictiy in a context diagram is not straightforward with usual object-oriented 
abstraction mechanisms, i.e. though context and indexes may be finally mapped into 
classes, expressing their variability may require using complex diagrams. Instead, we 
preferred to generalize Context Diagrams and to complement them with a generic 
context specification card providing a guide for the implementers indicating possible 
restrictions. In Figure 9 we show a simplified generic Context Schema for our virtual 
store framework. Dashed boxes and rounded boxes indicate generic access structures 
and contexts. For example the generic context “Product by Property” will be typically 
instantiated into one or more contexts that allow navigation among products 
according to certain properties (e.g., “Product by price”; “Product by author”; etc…). 
Once within any of these, it is normally possible to navigate to other “Related 
Products” (e.g., accessories, matching products, etc…). There are several access 
structures that lead the reader into these contexts; typically, these are hierarchical 
access structures that reflect product sections (departments) in a real world store. 
Notice that we have also specified some Landmarks (like Shopping Card, Order Form 
and Search). A second way to look at products is within arbitrary groupings obtained 
opportunistically. Typically, these will correspond to some person’s (or publication) 
recommendations, or some guide, such as “N.Y. Times Bestsellers List”. This 
grouping is modeled through the generic context “Products by Reference”. 

Order

Product

By Property
 n

Related
 0

By Query
 0

By Reference
 0

In Order

Comment

By Product
 0

Similar Property

Generic Reference

Arbitrary
 0

…:Section Product

…:Generic
Reference

Order Form

Query

Main Menu

checkout

Shopping Cart

References

Categories

Search

In Shopping
Basket

 

Fig. 9. Generic Context Schema for virtual stores. 

The context diagram in Figure 3 is an instantiation of the generic diagram in Figure 
9, where the generic context “Product by Property” has been concretized into “CD by 
Subject” and “CD by Author”. Generic Context Schemas show concisely different 
ways of providing Set-based navigation in Web applications for a particular domain. 

7 Concluding Remarks and Further Work 

We have discussed in this paper different abstraction and reuse mechanisms in the 
context of Web applications. We have shown that even the simplest techniques like 
composition and inheritance offer subtle combinations to the designer when dealing 



with non-trivial navigation models. In particular, the OOHDM viewing language can 
be used synergistically with aggregation (and sub-classification) to produce compact 
and reusable navigation designs. We have discussed reuse of design experience by 
briefly analyzing navigation patterns. Although patterns provide design reuse at a fine 
granularity, we have shown how to combine them to obtain larger reusable models. 
We have introduced Web design frameworks, explaining how generic and reusable 
conceptual and navigational models can be described using the OOHDM-Frame 
notation. Web design frameworks show how the combination of patterns (like Set-
Based Navigation, Landmark, and Observer) may yield a generic design for a family 
of applications in a particular domain.  

Even though the focus of this paper has been put on design, it is important to stress 
that all primitives and mechanisms previously presented can be implemented using 
current Web technologies [Schwabe00]; in addition, mapping design frameworks to 
“pure” object-oriented settings is straightforward. We are mining Web patterns in 
specific domains such as e-commerce, and studying ways to enrich the framework 
design notation with these new patterns. Several implementation aspects should also 
still be studied, such as efficient ways to implement views and contexts in Web 
applications. Another aspect that we did not address is the use of support tools both 
for drawing diagrams and generating code. While UML tools like Rational Rose can 
be used we still have to build similar editors that support the slight syntactic and 
semantic differences among UML and OOHDM. 

We believe that the growing interest in Web applications requires ways to build 
easily extendable and reusable conceptual models. Web applications present novel 
features that need to be considered in order to apply well-known abstraction and 
composition mechanisms to this new field. The ideas underlying this paper may serve 
as the background for studying abstraction and reuse in Web models. 

8 References  

1. [Fayad99] M. Fayad, D. Schmidt and R. Johnson (editors): “Building Application 
Frameworks”, Wiley 1999. 

2. [Gamma95]  E. Gamma, R. Helm, R. Johnson and J. Vlissides: "Design Patterns. 
Elements of reusable object-oriented software". Addison Wesley, 1995. 

3. [Garzotto99] F. Garzotto, P. Paolini, D. Bolchini and S. Valenti: “Modelling by patterns 
of Web applications”. Proceedings of the First International Workshop on Conceptual 
Modeling and the WWW,  Paris, France, November 1999,Lecture Notes in Computer 
Science, Vol. 1727, Springer, 1999, 293-306.  

4. [HypPatterns99] Hypermedia Patterns repository: http://www.designpattern.lu.unisi.ch. 
5.  [Kim90] W. Kim, "Advanced Database systems", ACM Press, 1994. 
6. [Meyer94] Bertrand Meyer, “Reusable Software” - The base object-oriented 

component libraries. Prentice Hall 1994. 
7. [OOHDM00] Daniel Schwabe and Patricia Vilain: “The OOHDM notation”, available at 

http://sol.info.unlp.edu.ar/notacaoOOHDM/ 
8. [Pree94]  W. Pree: “Design Patterns for object-oriented software”, Addison Wesley, 

1994. 
9. [Rossi99a] G. Rossi, F. Lyardet and D. Schwabe: “Patterns for designing navigable 

spaces” Pattern Languages of Programs 4, Addison Wesley, 1999. 



10. [Rossi99b] G. Rossi, D. Schwabe, F. Lyardet: “Web application  models are  more than 
conceptual models”. Proceedings of the First International Workshop on Conceptual 
Modeling and the WWW,  Paris, France, November 1999, Lecture Notes in Computer 
Science, Vol. 1727, Springer, 1999, 239-253. 

11. [Schwabe98] D. Schwabe, G. Rossi: “An object-oriented approach to web-based 
application design”. Theory and Practice of Object Systems (TAPOS), Special Issue on 
the Internet, v. 4#4, pp.207-225, October, 1998. 

12. [Schwabe00] D. Schwabe, G. Rossi, L. Emeraldo, F. Lyardet: “Web Design Frameworks: 
An approach to improve reuse in Web applications. Proceedings of the WWW9 Web 
Engineering Workshop, Springer Verlag LNCS, forthcoming. 


