
Case Studies for 
Method and 
Tool Evaluation 
BARBARA KITCHENHAM and LESLEY PlCKARD, 
National Computing Centre 
SHARI LAWRENCE PFLEEGER , City University 

Case studies help industry 
evaluate the benefits of 
methods and tools and provide 
a cost-effective way to ensure 
that process changes provide 
the desired results. However, 
unlike fomal  experiments and 
surveys, case studies do not have 
a well-understood theoretical 
basis. This article provides 
guidelinesfor organizing and 
anahzing case studies so that 
they produce meaning@ results. 

new technique or tool in IEEE Software 
or elsewhere, and you are considering 
its use on your project. If it worked for 
someone else, how do you know it will 
work for you? The last decade has seen 
explosive growth in the number of 
software-engineering methods and 
tools, each one offering to improve 
some characteristic of software, its 
development, or its maintenance. With 
an increasing awareness of the compet- 
itive advantage to be gained from con- 
tinuing process improvement, we all 
seek methods and tools that will make 
us more productive and improve the 
quality of our software. But disaster 
can result from introducing inappro- 
priate technolow to a software-pro- 

tive improvement? 
Norman Fenton, Shari Lawrence 

Pfleeger, and Robert Glass suggest 
that rigorous experimentation is need- 
ed to evaluate new technologies and 
their effects on our organizations, 
processes, and products.2 Such scientif- 
ic investigation is essential to under- 
standing our processes and products, 
to increasing our customers' confi- 
dence in our products, and to making 
software engineering' a science rather 
than an art. 

Suppose you have decided to evalu- 
ate a technology. How do you pro- 
ceed? Do you do a survey? An experi- 
ment? A case study? In this article, we 
discuss the conditions under which 
each type of investigation is appropri- 

duction depariment. '  How dd  we ate. Then, because good case studies 
ensure that our changes lead to posi- ~ are as rare as they are powerful and 

5 2  07407459/94/$04 W D 1994 IEEE J U L Y  1995 



informative, we focus on how to do a 
proper and effective case study. 
Although they cannot achieve the sci- 
entific rigor of formal experiments, 
case studies can provide sufficient 
information to help you judge if specif- 
ic technologies will benefit your own 
organization or project. Even when 
you cannot do a case study of your 
own, the principles of good case-study 
analysis will help you determine if the 
case-study results you read about are 
applicable to your situation. 

engineering methods 
In their landmark paper, Vimr  Basili, 

Richard Selby, and David Hutchens 
described a framework for quantitative 
software-engineering s t u d i e ~ . ~  T h e y  
defined software-engineering experi- 
ments in terms of a two-dimensional 
classification scheme: 

+ Single-project studies, which exam- 
ine objects across a single team and a 
single project. 

+ Multiproject studies, which exam- 
ine objects across a single team and a 
set of projects. 

+ Replicated-project studies, which 
examine objects across a set of teams 
and a single project. 

+ Blocked subject-project studies, 
which examine objects across a set of 
teams and a set of projects. 

Many published software-engineer- 
ing experiments and case studies refer 
to this classification scheme when 
explaining how their studies were car- 
ried out, and it is very useful for under- 
standing how the investigation was 
done; the box on pp. 54 defines some 
other common experimental terms. 
However, we believe this classification 
must be extended to consider the for- 
mality of the experimental design. 

+ If the study focuses on a single 
project, we prefer to ‘call it a case study, 
because it is not possible to have a for- 
mal experiment without replication. 

’ + If the study involves many pro- 
jects or a single type of project that is 
replicated several times, i t  can be 

either a case study or aformal experi- 
ment. A formal experiment requires 
appropriate levels of replication, and 
experimental subjects and objects that 
are chosen a t  random within the con- 
straints of an experimental design. 

+ If the study looks at many teams 
and many projects, i t  
mav be a formal exDeri- 
ment or a survey, de- 
pending on whether the 
selection of teams and 
projects was planned or 
post hoc. Thus ,  any 
investigation can be 
considered a case study, 
formal experiment, or 
survey. 

DIFFER1 
YIELD D 
ENVIR( 
DESIGN 
TECHNII 
CONCLL 

However, the differ- 
ences among these 
methods are also reflected in their 
scale. By their nature, since formal 
experiments must be carefully con- 
trolled, they are often small in scale: 
“research-in-the-small.” Case studies 
usually look a t  what is happening on a 
typical project: “research-in-the-typi- 
cal.” And surveys try to capture what is 
happening broadly over large groups 
of projects: “research-in-the-large.” 
The differences among research meth- 
ods is important because the experi- 
mental design, analysis techniques, 
and conclusions they yield differ with 
each type. 

Choosing a technique. Thus, the choice 
of investigative method depends in 
part on the size and nature of the orga- 
nization or project that you want to 
investigate. It also depends on whether 
you are studying the technology in 
advance or after the fact. If you are try- 
ing to choose among several compet- 
ing methods or tools, you may orga- 
nize your study as a formal experiment 
or a case study. If you are establishing 
a pilot project to assess the effects of a 
change, you will probably choose to do 
a case study. But after the change has 
already been implemented across a 
large number of projects, a survey will 
help you to document the benefits of 
the change. 

For all three investigative tech- 
niques, you must understand which 
variables you can control and how to 
measure the results. Formal experi- 
ments are sometimes difficult to con- 
duct when the degree of control is lim- 
ited. In order to impose full control, 

formal experiments are 
often small. which is a 

NT MUHODS problem when YOU try 
to  increase the scale 
from the laboratory to a FFERENT 

NMENTAL real project. Thus; case 
studies are particularly 

;, ANALYSIS important for industrial 

53 I E E E  S O F T W A R E  



EXPERIMENTAL TERMINOLOGY 
The most important concept in a formal experiment is the experimeirtd 

bypoihesis, which defines what the experiment is intended to test. For example, a 
software experiment may investigate if design.method A leads to better quality 
software than design method B. The corresponding hypothesis is: Design 
method A yields better quality software than design method B. 

ferent effects on experimental subjects or objects. In the context of software 
experiments, a treatment is usually a method or tool. To draw any conclusions 
from an experiment, them musf be at least t w o  treaments, because hypothesis test- 
ing is comparative. Thus, the result of applying one treatment is compared with 
the result of applying another treatment, to determine if there is any difference. 

In many experiments, one of the treatments, the L.OO,IWO~, is equivalent to the 
status quo. The use of a new method or tool is then compared with the control. 
However, software experiments have sometimes used the concept of a control 
incorrectly by assuming that the alternative to using method X is not using the 
method at all. However, if software staff using method X produce better prod- 
ucts than software staff who do not use X, we cannot draw a valid conclusion 
about the effectiveness of X. We cannot tell if the difference in product quality 
is due to using X or simply due to the discipline of using a method. Moreover, 
we cannot tell if “not using X means not using a method at all, or whether the 
status-quo group is actually using an informal or undocumented method of 
some kind. This distinction may not be important if your project is deciding 
whether or not to use X, but it is very important if another project or company 
wants to apply experimental results generated by other research groups. Thus, 
for experimental results to be generalized, there must be either two alternative 
treatments or a well-defined control. 

We measure the effects of the change in method or tool by measuring the 
rarponrr vuria61es, measures taken to test the hypothesis. A difference iri treat- 
ments should be visible by examining differences in the values of the response 
variables. The specific response variables should be derived directly from the 
hypothesis. However, we often use surrogate measures instead of direct mea- 
sures. For example, we may measure product reliability by counting the number 
of faults detected during testing, even though reliability reflects problems 
encountered by the user. Use of surrogate measures should be explicitly justi- 
fied>because poor surrogate measures can invalidate the results of an experi- 
ment. 

EsprmnentalsubJects and experimental o&em are the people or things involved 
in an c.Jrperiment. In sohare experiments, experimental subjects are individuals 
or groups (teams) who use a method or tool. Experimental objects may be the 
progrrms,.algorithms, or problems to which the methods or tools are applied. 

objects, and conditions. They capture facts that are likely to affect the 
response variables. 

An experimental hypothesis usually asserts that different treatments have dif- 

Stute vuriabh are measures used to describe the experimental subject, 

~~ 

can be judged immediately, rather than 
awaiting the results of a long develop- 
ment process, so that the experiment 
‘does not delay project completion; and 

+ the results of self-standing tasks 
can be assessed in isolation from other 
project processes, so that small bene- 
fits can be identified and distinguished 
from other variables: 
’ 

Intarpwthg reds. The reward for a 
well-designed experiment is results 
tfiat are easier to generalize. Formal 
texperiments are essential if you are . -  

looking for results that are broad1 
applicable across many types of pro 
jects and processes. Thus,  forma 
experiments are important for the soft 
ware-engineering research communitj 
but they may not be necessary for 
process-improvement program tha 
applies only to your particular organi 
zation. For example, if you want tc 
find out if using Ada will improve you 
project’s software, but you do not nee( 
to know if using Ada will improvc 
everyone’s software, then a forma 
experiment may be overkill - you cai 

rely on a case study. 
However, even with formal experi- 

ments you must be careful - formal 
experiments do not generalize outside 
the controlled experimental condi- 
tions. For example, if you demonstrate 
that Ada improves real-time software 
using a formal experiment, you cannot 
guarantee Ada will improve software 
for data-processing systems. 

A case study is usually preferable to 
a formal experiment if 

+ the process changes are very wide- 
ranging. This means that the effect of 
the change can be assessed only at a high 
level because the proces change re- 
presents many detailed changes 
throughout the development process. 
For example, if your project is chang- 
ing from structured to object-oriented 
methods, the repercussions could af- 
fect all aspects of your processes and 
products - too much for you to con- 
trol and measure. 

the effects of the change cannot 
be identified immediately. For exam- 
ple, if you want to know if a new de- 
sign tool increases reliability, you may 
hive to wait until after delivery to as- 
sess the effect on failures. 

Case studies are a standard method 
of empirical study in various “soft” sci- 
ences such as sociology, medicine, and 
psychology, but there is little formal 
documentation available on how to 
perform a proper case study; Robert 
T i ’ s  book is a notable exception! How- 
ever, Yin says that a case study should 
be used when “a how or why question 
is being asked about a contemporary 
set of events, over which the investiga- 
tor has little or no control.” For soft- 
ware engineering, we need case studies 
to evaluate not only how or why, but 
also “which is better.” In t h i s  article we 
concentrate on the “which is better” 
type of case study. 

Survey advantages. By combining the 
advantages of case studies (applicability 
to real-world projects) with those of 
experiments (replication that mini- 
mizes the problems of unusual results) 
surveys are particularly useful. Surveys 

J U L Y  1995 5 4  



~ ~~ ~ -~ ~ r ~- 
~ 

CHECKLIST FOR CASE4TUDY PUNNING 

This checklist, along with the seven steps to design and administer case 
studies, will help you undertake a valid investigation. 

can be used to ensure that process 
changes are successful throughout an 
organization, because they collate ex- 
perience from several different pro- 
jects. However, data collection can 
take a great deal of time, and the re- 
sults may not be available until after 
many projects are completed. In med- 
ical research, millions of patients may 
undergo a particular treatment or use a 
particular drug simultaneously, so it is 
relatively easy to build up a large a- 
mount of data quickly. There are fewer 
such opportunities in software engi- 
neering because it is more difficult to 
find comparable experimental objects, 
because software measures are not used 
consistently, and because there is no 
framework to review and collate exper- 
imental results. 

The most common form of survey 
is based on distributing questionnaires 
that elicit opinions about the benefits 
of technology.’ In a different type of 
study, David Card, Frank McGarry, 
and Gerry Page6 analyzed project data 
from the University of Maryland’s Soft- 
ware Engineering Laboratory, looking 
at the effects of technology on NASA’s 
productivity and quality. Card’s group 
analyzed existing data, rather than so- 
liciting new information, a technique 
used frequently in other disciplines. 

No one type of empirical study is 
better than any other; each is appropri- 
ate in particular situations. But experi- 
ments and surveys are traditional “hard- 
science” techniques that are supported 
by a rich literature describing how to 
design and administer them. Thus, for 
the rest 0 f . h  article, we concentrate 
on case studies in order to provide 
more rigor to a neglected discipline of 
investigation. 

CASE STUDY GUIDELINES 

There are seven steps to follow in de- 
signing and administering case studies: 

1. Define the hypothesis. 
’ 2 .  Select the pilot projects. 

3 .  Identify the method of comparison. 
4. Minimize the effect of confound- 

Cess study context 
1. U’hat are the objectives of your case study? 
2 .  What is the baseline against which you will compare the results ofthe 

3 .  What are your external project constraints? 
evaluation? 

Setting the hypothesis 
4. \$‘hat is your evaluation hypothesis? 
5. How do you define, in measurable terms, what you want to evaluate (that 

is, what are your response variables and how will you measure them)? 

*nnins 
6. What are the experimental subjects and objects of the case study? 
7. When in the development process or life cyle will the method be used? 
8. When in the development or life cycle will the response variables be 

measured? 

V d i t i n g  the hypothesis. 
9. Can you collect the data you need to calculate the selected measures? 
10. Can you clearly identify the effects of the treatment you want to evaluate 

and isolate them from the other influences on the development? 
11. Have you taken adequate procedures to ensure that the method or tool is 

being correctly used? 
12. If you intend to integrate the method or tool into your development 

process, is the method or tool likely to have an effect other than the one 
you want to investigate? 

your case study? 

posed case study project typical of those projects? 

do you need to do a multiproject study? 

13. Which state variables or project characteristics are most important to 

14. Do you need to generalize the result to other projects? If so, is your pro 

15. Do you need a high level of confidence in your evaluation result? If so, 

Andpbg ha results 
16. How are you going to analyze the case study results? 
17. Is the type of case study going to provide the level of confidence you 

require? 

g factors. 
5.  Plan the case study. 
6. Monitor the case study against 

7. Analyze and report the results. 
These steps, which help ensure that 

)U can draw valid conclusions from 
JUT investigation, are related to the 
IU criteria for research-design q~al i ty :~  

+ Construct validity. Establish cor- 
:ct operational measures for the con- 
:pts being studied. 

+ Internal validity. Establish a causal 
:lationship and distinguish spurious 
:lationships. 

e External validity. Establish the 
)main to which a study’s findings can 
: generalized. 

te plan. 

+ Experimental reliability. Demon- 
strate that the study can be repeated 
with the same results. 

For simplicity, we explain the steps 
by assuming that you are testing a new 
method on an actual software-develop- 
ment project. T h e  box on this page 
provides a checklist to help you plan a 
case study. 

Define the hypothesis. You begin by 
defining the effect you expect the 
method to have. This definition must 
be detailed enough to make clear what 
measurements are needed to demon- 
strate the effect. For example, if you 
expect the new method to improve 
productivity, you must state if effort 

I E E E  S O F T W A R E  5 5  



Variable 

Productivity 
~- _ _ _  - i (function pointdhour) 

1 Team experience (years) 1 1 

Method A 
- .  

0.054 

i 

Method B 
0.237 

1 size (function points) 118 168 

Project management 
experience (years) 

1 1 

I Duration (months) 10 9 

Function point 2s 27 

and duration will be affected and how. 
Without this information, you cannot 
identify, measure, and collect the data 
you need to draw valid conclusions. 

It is also important to define what is 
not expected to happen. Formally, we 
can never prove hypotheses, we can 
only disprove them, so we state a null 
hypothesis to say that there is no dif- 
ference between treatments. However, 
research is proposed and funded based 
on studying the alternative hypothesis: 
there is a significant difference be- 
tween treatments. T h e  formal case- 
study data andysis and evaluation ad- 
dresses the null hypothesis, but you 
should be ready to present your find- 
ings to managers and staff in terms of 
the alternative. 

The  more clearly you define your 
hypotheses, the more likely you are to 
collect the right measures, test them 
properly, and achieve construct validi- 
ty. You must specify carefully what 
really interests you. For example, pro- 
cess-improvement programs often de- 
fine quality as the reduction of rework 
and waste, presenting quality in terms 
of defect rates from the perspective of 
a software developer. However, this 
definition differs from the user's point 
of view, in which operational reliabili- 
ty, efficiency, and usability reflect how 
the user sees the software. 

S o k t  tb pikt prw. The pilot pro- 
jects you choose must be representa- 
tive of the type of projects your orga- 
nization or company usually under- 
takes. Ideally, you can describe pro- 
jects in terms of significant character- 
istics, such as application domain, pro- 
gramming language, design method, 
and degree,ofmse, and then use this state 
variable information to select projects 

that are most typical. Your selection 
should consider not only project type 
but also the frequency with which each 
type is developed. In practice, it may 
be difficult to control the choice of case- 
study projects. However, the extent to 
which the case-study project is typical 
of the organization is central to the 
issue of external validity. If your case 
study is atypical of the projects you 
usually undertake, you will not get 
very useful results. 

I h t i f y  the method of comparison. Your 
case study is by nature comparative, 
contrasting the results of using one 
method with the results of using an- 
other. T o  avoid bias and ensure inter- 
nal validity, you must identify a valid, 
basis for assessing the results of, the 
case study. There are three ways to 
organize your study to facilitate this 
comparison: 

+ Select a sister project ulith which to 
compare. Here, the case study involves 
two projects, one that uses the new 
method and another that uses the cur- 
rent method. Each project should be 
typical of your organization, and both 
should have similar characteristics ac- 
cording to the state variables you have 
chosen. The box on this page describes 
variants of this design. 

+ Compare the results of using the 
new method against a company baseline. 
In this case, your company gathers 
data from projects as a standard prac- 
tice and makes data available on such 
things as average productivity or 
defect rate. You can compare the 
response-variable values from your 
case study, which involves a single pro- 
ject using the new method, to the cor- 
responding variables from previous 
projects or a subset of similar projects. 

+ I f  the method applies to individrial 
rontponents, app[y it at random t o  some 
product components m d  n o t  to  others. 
Here, the case study resembles a for- 
mal experiment, because you can use 
replicated values and standard statisti- 
cal methods to analyze the response 
variables. But because the projects are 
not drawn at random from the popula- 
tion of all projects, this is not a true 
formal experiment. This kind of study 
is useful for methods that may be 
applied to different degrees. For 
example, if you want to know what 
level of structural testing is most cost- 
effective, you can measure the level of 
structural testing achieved for differ- 
en t  modules and compare testing 
effort and subsequent defect rates (or 
defect-detection efficiency, if you have 
seeded errors). 

Minimize the effect of confounding fac- 
tors. When the effect of one factor 
cannot be properly distinguished from 
the effect of another factor, the two 
factors are confounded. For example, if 
expert software engineers tested tool A 
and novice software engineers tested 
tool B, we cannot tell if the higher qual- 
ity software produced by the experts 
was the result of their experience or of 
using tool A. Confounding factors can 
affect the internal validity of the study. 

Software case studies often have 
confounding factors. The most signifi- 
cant are likely to be: 

+ Leaming hor to use a method or 
tool as you tTy  t o  assess its benefits. In 
this case, the effects of learning to use 
the method or tool might interfere 
with the benefits of using it. For exam- 
ple, a decrease in productivity caused 
by the learning curve might hide pro- 
ductivity improvements. T o  avoid this 
effect, you must separate activities 
aimed a t  learning how to use a new 
technology from those aimed a t  evalu- 
ating it. 

+ Using staff 'rho are either very 
enthusiastic or z?e?y skeptical about the 
method o r  tool. Staff morale can have a 
large effect on productivity and quali- 
ty. Differences in the response variable 

' 5 6  J U L Y  1995 



may be due to staff enthusiasm, or to 
differences in enthusiasm from one 
developer to another. T o  minimize this 
effect, you must staff a case-study pro- 
ject using your normal staff-allocation 
method. 

+ Comparing different application 
types. For example, the productivity of 
real-time system developers is usually 
lower than for data-processing systems, 
so case studies should not compare 
across application domains. Appro- 
priate selection of case-study projects 
will avoid this problem. 

Sometimes it is possible to control a 
confounding effect rather than elimi- 
nate it. This usually involves designing 
a multiproject case study in which the 
different projects experience different 
conditions. For example, to investigate 
if the benefits of some method or tool 
are influenced by application type, we 
can identify a pair of case-study pro- 
jects for each application type: one to 
use the new method and one to use the 
current method. 

You can sometimes control con- 
founding by measuring the confound- 
ing facJor and adjusting the results 
accordingly. For example, to study how 
different levels of reuse affect quality 
and productivity, you may select a case- 
study project in which components 
(specifications, designs, or code) are 
being reused, measure the amount of 
each component that is reused, the 
development productivity for each 
component, and the defect rate. If you 
suspect that, in addition to reuse, com- 
ponent complexity affects productivity 
and defect .rates, you can record com- 
ponent complexity and use partial cor- 
relation to assess the relationship 
between percentage reuse, productivity, 
and defect rates, adjusted for complexi- 
ty- 

Plan the case study. Basili, Selby, and 
Hutchens emphasize that organizations 
undertaking experiments should pre- 
pare an evaluation p1an.j This plan 
identifies all the issues to be addressed 
so that the evaluation runs smoothly, 
including the training requirements, 

I E E E  S O F T W A R E  

the necessary measures, the data-col- 
lection procedures, and the people 
responsible for data collection and 
analysis. Attention to detail contributes 
to experimental reliability. 

The  evaluation should also have a 
budget, schedule, and staffing plan 
separate fi-om those of the actual pro- 
ject. A separate plan and budget is 
needed to ensure that the budget for 
the evaluation does not become a con- 
tingency fund for the project itself! 
Clear lines of authority are needed for 
resolving the inevitable conflicts of 
interest that occur when a develop- 
ment project is used to host an evalua- 
tion exercise. 

Monitor the case study against the plan. 
The case study’s progress and results 
should be compared with the plan. In 
particular, ensure that the methods or 
tools under investigation are used cor- 
rectly, and that any factors that would 
bias the results are recorded (such as 
change of staff, or a change in the pri- 
ority of the case-study projects). It is 
essential that you audit conformance 
to the experimental plan and record 
anv changes. At the end 
of’the scdy,  you should 
write an evaluation report 
including recommenda- 
tions for changes in pro- 
cedures. 

Analyze and report the re- 
sults. T h e  analysis pro- 
cedures you follow depend 
on the number of data 
items you must analyze 
(that is, the number of 

Kruskall-Wallis method, which bases 
the analysis on rank rather than on raw 
data. (See the box on pp. 59 for refer- 
ences to useful analysis texts.) If you 
have only one value from each method 
or tool being evaluated, no analysis 
techniques are available; you can only 
present the results as we describe next. 

ANALYSIS METHODS FOR CASE STUDIES 

Once you have designed your case 
study and collected the data, you must 
analyze it to determine what has hap- 
pened and if the results are sipficant. 
Suppose your case study involves a sis- 
ter experiment with one response value 
per project. For example, for each pro- 
ject participating in the study, you mea- 
sure productivity in function points per 
staff hour using method A (the current 
method) and method B (the new me- 
thod). Table 1, using real data,’ shows 
what you might find. 

The  data in Table 1 indicate that 
the projects are quite similar with res- 
pect to the state variables: size, team 
experience, project-manager experi- 

ence, duration, and func- 
tion-point adjustment fac- 
tor. Thus, the results sug- i MAKE SURE TO 

~ SEPARATE THE gest that using method-B 
would improve produc- EVALUATION tivity. However, to draw 
that conclusion, you must 

BUDGET so THAT be sure that both projects 
IT DOES NOT G f l  are typical of those un- 

dertaken by the organiza- SPENT ON THE tion. You must also under- 
PROJECT ITSELF, stand the factors that are 

imDortant for software 
response-variable values 
that are available). If your case study 
compared treatments assigned to com- 
ponents at random, you can use stand- 
ard statistical methods, such as analy- 
sis-of-variance and contingency tables. 
Data distribution is important in choos- 
ing an analysis technique. If you can- 
not guarantee that the data is distrib- 
uted normally (according to a bell- 
shaped Gaussian curve), then you must 
use nonparametric tests such as the 

development in the orga- 
nization that might affect the success- 
ful use of methods A and B. 

In addition to looking a t  the quanti- 
tative results, you can investigate how 
typical these projects are by reviewing 
the distribution of state-variable values 
over all the projects undertaken by the 
organization. Simple frequency plots 
are useful for depicting the distribu- 
tion of discrete state-variable values for 
an organization. For example, Figure 1 

5 7  



tower toil Lower fourth Upper fourth 
Median 

t t  T 
I 

Uppertoil Oullien 

T 
/ '  

P ! 

Figure 1. Frequency plot showing the Figure 2. Boxplot slioxiiig a distrihirtion oj-data vulites over a xtrde rnnge, i n  
distribution o f  discrete values, in this this rase the piodiict size. Box plots are constriicted porn jiue statistics: the medi- 
case the team experience for the set of an, the upper joiii-th (or ripper gua?i!ile), the lower fozirth, the upper tail, arid the 
projects fiom which the case-study pro- lower tail. The iipper and lover f o r d s  are the 75- and 25-percentile points. 
jects were selected. The plot shows that The upper tail is ronstmcted by multiplying the box leiigtb Ly I .  5, adding the 
it is not unusual for a team t o  have value to the upper fbiirth, and truncating to the nearest nctual ooliie. The lover 
only one year of' experience. tail is constriicted h! a similar process. Values that are larger thaii the npper toil 

or smaller than the l o v e r  tail are called outliers. 

shows the team experience for the set 
of projects from which the case-study 
projects were selected. As you can see, 
i t  is not unusual for a team to have 
only one year of experience. 

When you have state variables that 
cover a wide range of values (such as 
counts or ratios), a boxplot can help 
you evaluate the distribution of data 
values, particularly when data values 
are skewed. Figure 2 shows a boxplot 
of product-size data. 

Boxplots give a simple visual display 
of the distribution of a data set and 
help you see how representative a sin- 
gle point is. If the data set were distrib- 
uted as a classic Gaussian (normal) dis- 
tribution, the mean would be in the 
center of the box, the tail lengths 
would be approximately equal, and the 
distance from the median to the upper 
(or lower) tail would be approximately 
three standard deviations. 

It is clear from Figure 2 that the 
product-size data set is skewed, and 
that the two pilot projects were rela- 
tively small ones (in the lower 25-per- 
cent range). Thus, there is some doubt 
about whether the case-study projects 
were truly representative of the organi- 
zation's projects. Any productivity 
improvements resulting from method 
B might occur only on smaller projects. 

Boxplots are also useful for con- 
structing a company baseline. Figure 3 
shows productivity distributions data 
from 46 projects that used method A. 
There are no outliers in the data set, 

- 

so the baseline for average projects is 
some productivity value between the 
upper (0.044) and lower (0.076) 
fourths; the upper and lower tails give 
the upper and lower bounds for the 
organization. If you place the produc- 
tivity of a case-study project using 
method B on the figure as an asterisk, 
it becomes clear that the case study 
had unusually high productivity com- 
pared to the company baseline. The  
baseline can be refined further by 
reconstructing it using projects that 
have similar state-variable characteris- 
tics to the case study. 

SAMPLE CASE STUDIES 

To see how software-engineering 
case studies can be improved, we rurn 
now to three studies"' aimed a t  assess- 
ing the benefits of Fagan inspections."' 
The studies represent not only the dif- 
ferent types we have discussed but also 
the many problems that can result 
from improper case-study planning 
and administration, 

The  first study compared different- 
ly treated components, the second 
used a company baseline, and the third 
involved sister projects. Each study 
was run for ICL's VME development 
group. W E  is a large general-purpose 
operating system (approximately two 
million lines of code) that has been 
under continual evolution since its first 
release in the early 1970s. When the 

case studies were performed, fairly 
small teams (two to eight people) 
worked on specific functional subsys- 
tems. Staff turnover was low, and peo- 
ple worked on the same team for many 
years. The operating system was writ- 
ten in a variant of Algol 68 and sup- 
ported by a special-purpose database 
environment that maintained records 
of literals, data types, and module 
interfaces, all supported with configu- 
ration control. 

Case study 1. T h e  first case study 
used a single project to investigate if 

iect's 7 3  programs were gken detailed 
design inspections; the rest were not. 
Thus, if'Gas possihle to compare the 
postdesign fault profile of  inspected 
programs with the postdesign fault 
profile of uninspected programs. The 

Total project effort and inspection 
effort were both recortled. 

+ Design-inspel t i v i i  sesnlts. T h e  
case-study procedure ensured that 
several productn 19 mil quality mea- 
surements were iti.ide. T h e  design 

-. _ _  

J U L Y  1 9 9 5  5 8  



inspections detected 5 0  percent of all 
faults found for this development (up ’ 

to  nine months postrelease). T h e  
inspections xcounted for 6 percent of : 
the  total development costs. T h e  1 

fault-detection rate was approximately 
1.2 hours per bu l t .  However, a major 
probleni was that there was no basis 
for identifjing if these results were ~ 

good or bad because there was noth- 1 
ing to compare them with! 

4 Postimperrion falilt mtes. Table 2 ~ 

shows the main response variable - , 
the number of faults detected subse- 
quent to code production, as measured 
for each group of modules for different 
defect types. However, the modules , I 

were not allocated to design inspection 1 
randomly. In fact, the project staff se- I 
lected for inspection only those mod- ’ ’ 

ules they thought were “difficult”; . -  I 
“easy” modules were not given design ~ 

, 

USEFUL ANALYSIS TEXTS 

Ex- w 
4 W.G. Cochran and G.M. Cox, Euperimental Designs, 2nd ed., John Wiley 

4 D.T. ?ampbell and J. Stanley, Experinrental and Qzrrrsi-~pn-in~etal 
& Sons, New York, 1957: Standard statistical text. 

Designsfor Research, Rand McNally, Chicago, 1966: Practical industrial experi- 
mental design. 

Engineering,” .iliznaLF ofSoj+uare Enginetwng, Vol. 1 No. 1, pp. 1-20; Design 
issues for software experiments. 

4 S.L. Pfleeger, “Experimental Design and Analysis in Software 

i 
I 

i 
t 

! 
i 

Survey analysis 

York, 1963: Discussion of methodological issues of surveys, in particular h 
sample a finite population so that survey results can be generalized. 

4 D. Coggon, G. Rose, and D.J.P. Barker, Epidmiology fw the Uninitia 
3rd. ed. , British Medical Journal, London, 1993: Survey techniques used i 
medical research. 

4 W.G. Cochran, Sampling Techniques, 2nd ed., John Wiley & Sons, New 

k t 0  atdysis 
+ P.G. Hoel, 1ntrodUEtiom to Matbemutical Stuttktk, 3rd. ed., John Wiley 

Sons, New York, 1962. 
+ S. Siege1 and N.J. Castellan, Jr., Nwzparmtetv$c SflEtr.sticrfw the 

Sciences, 2nd ed., McGraw-Hill, New York, 1988: Classic text on no 
analysis techniques. 

Data Amlysis, John Wiley & Sons, N 
and other exploratory data-analysis me 

D.C. Hoaglin, F. Mastsller, and J.W. Tuk.ey, UIIllmcpnding Explwa 
1983: Dcmiptions of bo 

were simpler. But the inspected pro- I 

grams revealed their faults earlier in the ~ 

development process than the unin- 
spected programs. By the time they 
reached system test, inspected programs 1 

appeared to have higher quality than , I 

uninspected programs, a situation con- ~ Unit 
firmed by the postrelease fault rates. 

4 Problems r i th  rase stvdy 1 .  This I I 

pilot project was chosen because the I Customer 

~ ~ ~ ~ ~ ~ + h ~ d  

C& reading 

System test 

Fouhs per 100 lines of code 
Code inspected Code not inspected 

(8,852 lines of code) 

0.97 0.45 

0.82 0 , O X  

0.20 0.36 

0.011 0.04< 

- _. 
(13,334 lines of code) 

’ Overall 2.0 1.54 I ;earn wanted to participate. There was 
no formal selection to ensure that the 1 

pilot was representative of typical ICL , 
projects. Furthermore, this predisposi- 1 
tion to be helpful probably biased the I 
results in favor of the inspection tech- i 

i _ _ _ _ ~  

nique. But the major pioblem with 
this study was the nonrandom selec- 
tion of modules that were subjected to 
detailed design inspections. The  deve- 
lopment staff members themselves de- 
cided which modules would be given 
detailed inspections, and they selected 
only those that were difficult. This was 
a sensible approach for the project, but 
it had a disastrous effect on the evalua- 
tion’s validity. Had the allocation been 
random, an analysis-of-variance on the 
postdesign quality of each module 

i l  Prqects using 
method B 

T 

I 

Figure 3. Boxplot used to construct a company baseline. In tl1r.v iitse, 46 projects 
using method A are compared with one project rising niethocl 8. The boxplot 

I shows that this single case study bad unusually high productri’rty wupni-ed to the 
company baseline. 

ilr 

I E E E  S O F T W A R E  5 9  



(measured in defects per hundred lines 
of code) would have revealed if the 
inspections made a significant differ- 
ence. But because difficult modules 
exhibit more defects than simple mod- 
ules even after design reviews, this 
analysis was not valid. Thus the only 
useful result is the overall defect rate 
for each major postdesign activity. 
This problem could have been avoided 
if the case study had been planned and 
controlled as an activity in its own 
right, rather than as an adjunct to the 
development effort. 

Other problems resulted from this 
lack of planning. For example, several 
other response variables were collected 
but could not be properly interpreted 
because there was no basis of compari- 
son. Thus, it was impossible to tell if 
inspections decreased productivity. 

Case study 2. The second case study 
looked at whether Fagan inspections 
would increase software quality through 
a cost-effective detection of defects. A 
single project was used and compared 
with a baseline made up of all other 
concufrent projects. Thus, it was possi- 

REPLICATED PRODUCT DESIGN 

ble to compare the postdesign fault pro- 
file of the pilot project with the postde- 
sign fault profile of other projects. 

The  response variables were fault 
counts and staff effort. Here, faults 
were again related to each major stage 
in the development process. In addi- 
tion, faults were classified as design or 
coding faults. Total project effort, effort 
for conventional testing, and inspection 
effort were recorded. As before, the 
pilot project was self-selected because 
the development team was interested in 
the inspection technique. 

+ Design-inspection remlts. This sec- 
ond case study, involving the production 
of a new subsystem of approximately 
39,000 lines of code, gave results broad- 
ly similar to the first. However, because 
this case study collected data on testing 
and inspection effort, it was possible to 
assess the relative costs of fault detec- 
tion and correction. The  inspections 
detected 41 percent of in-house faults 
at a cost of 9 percent of the project- 
development effort. The cost-per-fault 
was approximately 1.6 hours, with an 
average cost-per-fault detected postde- 
sign of 8.5 hours. This result suggests 

It is sometimes possible to develop a product a second time using a different 
development method. This is called a replicated pladcirt design. T o  use it: 

1 .  Replicate an existing product using the new method or tool. 
2 .  Measure the response variables on both versions ofthe product. 
3.  Compare the two sets of response variables. 
The advantage of this design is that some of the differences between the sis- 

ter projects is eliminated because they both produce the same project. 
However, usually only one of the products is produced under normal commer- 
cial conditions. 

This method is often used when a research group wants to demonstrate the 
superiority of a new method compared with current development methods. 
However, if the research group also undertakes the replication project, the 
results will be biased because the research group will usually have more experi- 
ence with the new method than would the development staff and are more 
motivated to see it.succeed. 

opment group to undertake both projects to commercial standards, and the 
product that performs best in final system test (or acceptance test) is the one 
released to customers. 

These problems can be overcome if the research group sponsors the devel- 

6 0  

that inspections are a very cost-effec- 
tive fault-detection method. 

+ Postdesign fiult profie. When the 
fault profile of the pilot project postde- 
sign was compared with the fault pro- 
file found for other projects during the 
same time, it appeared that postdesign 
faults were again being found earlier in 
the development process, as Table 3 
shows. However, the baseline does not 
include any assessment of variability. 

+ Fault types. Table 4 shows the 
types of fault found postdesign, indicat- 
ing that inspections reduced the num- 
ber of design faults but not the number 
of interface faults (which can be regard- 
ed as a kind of design fault). These find- 
ings were reviewed with the develop- 
ment goup, which pointed out that the 
faults were found in code that inter- 
faced to a subsystem developed by team 
members who refused to attend inspec- 
tions. Thus, they reasoned, the results 
actually supported the need for inspec- 
tions. This result emphasizes the im- 
portance of monitoring the pilot pro- 
ject for unexpected effects. If the inter- 
face problems had not been traced back 
to the nonparticipating group, the re- 
sults might have been misinterpreted. 

+ Problems with case study 2. As in 
the first case study, the pilot project 
was not chosen using any formal se- 
lection process. However, the more 
significant problems occurred at the 
analysis stage. The  construction of the 
baseline would have been greatly im- 
proved by using a boxplot to indicate 
the extent of natural variability. In some 
circumstances, it might have been bet- 
ter to use a direct measure of faults 
per hundred lines of code during sys- 
tem test as the response measure 
rather than percentages. However, in 
this particular environment, there was 
a considerable variation in basic fault 
rates from different types of project. 
The pilot project was a new utility pro- 
iect and was expected to have lower 
fault rates than some of the more com- 
plex enhancement projects; a baseline 
based on faults per hundred lines of 
:ode would have to have been derived 
from a very small selection of similar 

J U L Y  1 9 9 5  



Test Method Percentage Faults 
Pilot Project All Projects 

projects. A baseline based on internal 
distribution of faults was valid for all 
projects because they all use the same 
development process. 

Finally, it is important to note that 
the case study used a surrogate mea- 
sure of quality. Actual quality depends 
on the defects found during use, but 
the analysis was based on the defects 
found during in-house testing. Thus 
the conclusions may be misleading. 

Case study 3. The third investigation 
was not planned as a case study. Rather, 
it occurred naturally as two parts of the 
same project were developed in differ- 
ent ways. At first, the primary part of 
the project was planned; however, later 
a large additional functional develop- 
ment was required. T h e  same team 
produced both subprojects, and testing 
on each was done by the same staff 
member. Although these subprojects 
were not selected to be part of a case 
study, they were typical of the commer- 
cial projects undertaken by the group. 

Because the project manager want- 
ed to get the second part of the project 
completed as quickly as possible, he 
did nor permit any detailed design in- 
spections. His unstated hypothesis was, 
therefore, that detailed design inspec- 
tions cause delays to product develop- 
ment and do not have a major influ- 
ence on quality. In effect, what result- 
ed was a case study based on sister sub- 
projects, with response variables de- 
fined as time to complete production, 
effort, and fault rates. 

+ Results. T h e  results, shown in 
Table 5, indicate that trading quality 
for productivity simply did not work, 
and the hypothesis can be firmly re- 
jected. The subproject without inspec- 
tions took far longer to produce than 
the much larger “high-quality” sub- 
project. Additional time and effort 
were needed to test the code that had 
not been subject to design inspections. 
This diminished productivity is clear, 
even though the state variables show 
that the subproject without inspec- 
tions was much smaller than the other 
subproject in terms of absolute size 

Code reading 

Cnit  test 

57.5 

38.4 

37.6 

SL.’ 

’ System test 4.1 11.2 

~ Fault Type 

I 

1 Interface 

1 Design 
I 
j Code 

~ Other 

Percentage Faults 
Pilot Project All Projects 

5.8 

8.1 

81.0 

5.1 

2 . 1  

13.3 

70.3 

14.2 

and number of modules. In addition, 
code from the subproject done without 
design inspections was of poor quality 
(in terms of fault rates) and was more 
expensive than the inspected code. 

The  case study is convincing be- 
cause the difference in results is so dra- 
matic. In addition, many of the typical 
problems with case-study control and 
variation were absent because the same 
personnel were involved, the same 
development environment was used, 
and the applications were related. 

+ Problems with case d y  3. Clear- 
ly, the study was not planned in ad- 
vance. Nevertheless, i t  conformed 
quite well to case-study requirements 
and resulted in sufficient information 
to reject the hypothesis that inspec- 
tions increase time to market and do 
not affect quality. However, this study 
is not completely without problems. 
T h e  quality measure was based on 
prerelease rather than postrelease de- 
fects, again reflecting a developer’s 
rather than a user’s view of software 
quality. A more subtle problem in- 
volves whether or not the two parts of 
the project are really comparable. Ac- 
cording to the subjective opinion of 
the staff involved, the two subprojects 
were similar in complexity; however, 
there were no objective measures to 
confirm this claim. 

hat is the next step? W Software-engineering experi- 
mentation is a necessary adjunit to 
process improvement, and objective, 
meaningful case studies can help us 
understand our processes and control 
the improvements. Many case studies 
are performed, but few are done well. 
The case-study process is itself in need 
of improvement. 

Good case studies involve: 
+ Specifying the hypothesis under 

+ Using state variables for project 

+ Establishing a basis for compar- 

+ Planning case studies properly. 
+ Using appropriate presentation 

and analysis techniques to assess the 
results. 

We must stop and assess each tool 
and technology before we jump on a 
promotional bandwagon. Even when 
formal experiments are not available or 
possible, we can perform case studies to 
determine if the tool or technology is 
helpful on our typical projects. That is, 
we need not wait until a method is 
proven effective in every environment; 
we can run careful tests to see if the 
method is useful in our particular envi- ’ 
ronments. 

But such investigation requires the 

test. 

selection and data analysis. 

isons. 

I E E E  S O F T W A R E  6 1  



investment of time and effort, not only 
in planning and carrying out the case 
studies, but also in analyzing and 
reporting the results. The  findings of 
academic experiments are often widely 
publicized, as universities encourage 
their staff to publish and disseminate 
results. But the results of industrial case 
studies, less often made available to the 
public, are no less relevant to practi- 

tioners who are seeking new or im- 
proved ways of developing and main- 
taining sohare.  

The results of case studies are con- 
text-dependent, but we can be more 
confident that a method is generally 
beneficial if encouraging results are 
reported by a number of different orga- 
nizations under a number of different 
conditions. We can also better under- 

ACKNOWLEDGMENTS 
This  article is based on research undertaken as part of the Desmet project, a collabo- 

rative project funded by the UK Department of Trade  and Industry and the Science and 
Engineering Research Council. The aim of the project was to  develop and validate a 
methodology for evaluating software-engineering methods and tools. W e  are also indebt- 
ed to  the referees, who provided valuable suggestions that we have incorporated into the 
final version. 

REFERENCES 
1. D.R. Lindstrom, “Five Ways to Destroy a Development Project,” IEEE Sojhare,  Sept. 1993, pp. 

2 .  N. Fenton, S.L. Pfleeger, and R.L. Glass, “Science and Substance: A Challenge to Software Engi- 

3 ,  V.R. Basili, R.W. Selby, and D.H. Hutchens, “Experimentation in Software Engineering,” IEEE 

1. R.K. Yin, Case Study Research Design andMethods, Sage Publications, Beverley Hills, Calif., 1984. 
5 .  C.R. Necco, R.N.W. Tsa, and K.W. Hoogeston, “Current Usage of CASE Software,”y. Systems 

,V&nagement, ‘May 1989. 
6. D.N. Card, F.M. McGarry, and G.T. Page, “Evaluating Software-Engineering Technologies,” 

IEEE Transactions Sojhare Eng., July 1987, pp. 845-851. 
7. J.-iM. Desharnais, Analyre Statistique de la Productivitie des Pryect de Deueloppment en Informatigue a 

Partir de la Technique des Point des Fonction, master’s thesis, University of Quebec, Montreal, 1989; 
in French. 

Quality and Productivity,” ICL Technical3., May 1986, pp. 112-122. 

B. Littlewood, ed., Blackwell Scientific Publications, Barking, UK, 1987, pp. 113-124. 

IBMSystemsJ., Mar. 1976, pp. 219-248. 

55-58. 

neers,”IEEE Sofmare, July 1994, pp. 86-95. 

Transactions SofCwareEng., July 1986, pp. 758-773. 

8. B.A. Kitchenham, A.P. Kitchenham, and J.P. Fellows, “The Effects of Inspections on Software 

9. B.A. Kitchenham, “Management Metrics,” Sojhare Reliabiliy Achievement and Assessment, 

10. M E .  Fagan, “Design and Code Inspections to Reduce Errors in Program Development,” 

stand the limits of methods and tools if 
we get conflicting reports from different 
case studies. 

We encourage you to assess the work 
of others, not only in terms of the issues 
raised here, but also in terms of whether 
it is applicable to your projects. And we 
encourage you to publish your case- 
study results, to the benefit of the gener- 
al software-engineering community. + 

.~ ~ ~. 

Lesley Pickard is an inde- 
pendent consultant. In the 
last 10 years she has been 
involved in researching the 
use of statistical techniques 
and software metrics for 
the monitoring and control . 
of software development. 
Much of her work has been 
part of European collabo- 
rative projects. She has 

written several technical papers. 
Pickard received a BSc in applied mathematics 

from Abertay University, Scotland, and a PhD in 
computer science from the City University, London. 
She is a fellow of the Royal Statistical Society. 

Barbara Kitchenham is a s o h  are-engineering consultant at Britain’s National 
Computing Centre Her interests are software metrim and their application to 
project management, quality control, and evaluauon of software technologies 
She was a programmer for ICL’s Operating System Division before hecoming 
involved wth a number of UK and European research prqects on software qual- 
ity, software-cost estimanon, and evaluation methodologies for software technol- 
ogy She has written more than 30 papers on software metrics 

l tchenham received a PhD from the University of Leeds She 15 an associate 
fellow of the Insitute of Mathemancs and Its Applications and a fellow of the 
Royal Starisucal Socieq 

pal scientist a t  both the 
Contel Technology Center and Mine. She is cur- 
rently a visiting professorial research fellow at the 
Centre for Software Reliability, investigating how 
software-engineering techniques affect software 
quality. She has written two software-engineering 
texm and several dozen articles. 

ogy from George Mason University. She is an 
adviser to IEEE Sprctrum. 

Pfleeger received a PhD in information technol- 

Address questions about this article to Kitchenham at h’auonal Computing Centre, Oxford House, Oxford Rd., Manchester M1 7ED, UK; harharaktchenharn 
@ncc.co.uk. 

6 2  J U L Y  1995 

mailto:ncc.co.uk

