
What does
“inteyation ’’ mean?
Integration is a
property o f tool
intewelationsh+s.
Understanding it
will help us design
better tools and
integration
mechanisms.

Definitions
of Tool
T Integration for
1’ Environments
IAN THOMAS, Hew let t-Packard

Innovative Software Engineering Practices
BRIAN A. NEJMEH

siderable discussion in recent years about
the integration of software-engineering
environments, perhaps beginning with
the use of “integrated” in the term lPSE
(integrated project-support environment)
and continuing with the coinage of the
terms ICASE (integrated CASE) and
ISEE (integrated software-engineering
environment).

Although some have tried to define
precisely what “intcgration” means in
these terms, we believe these definitions
are not as precise as they should be. We
believe integration is not a property of a
single tool, but of its relationships with
other elements in the environment,
chiefly other tools, a platform, and a pro-
cess. Of these, we believe the key notion is
the relationships between tools and the
properties of these relationships.

~~

IEEE S O F T W A R E 07407459/92/0300/0029/$03 00 D IEEE

Tool integration is about the extent to
which tools agree. The subject of these
agreements may include data format,
user-interface conventions, use of com-
mon functions, or other aspects of tool
construction. To determine how well
tools agree - and how well they are inte-
grated into an environment - we pro-
pose a framework that focuses on d&nzng
integration, independently of the mecha-
nisms and approaches used to support in-
tegration.

Our purpose is to identify the goals of
integration and propose some questions
that establish what information is needed
to know that these goals have been
reached. In thls respect, we are following
Victor Basili and David Weiss’s approach
for metria development, in which they
advocate identifymg goals, questions that
refine the goals, and quantifiable tnemcs

29

that provide the information to answer the
questions.’ However, we do not propose
quantifiable integration metria here.

Anthony Wasserman identified five
kinds of integration: plagim, which is
concerned with framework services; pre-
sentation, concemed with

and framework-technology builders. It
provides them with a definitional fi-ame-
work in which

+ users can characterize areas in their
environments in which tools should be
better integrated;

tool evaluators can
user interaction; data,
concemed with the use of
data by tools; c~ztrol, con-
cemed with tool commu-
nication and interopera-

of toolsq in the software

-
There are two

VieWpOinh in the

integration: the
t ion; and pmces, discussion of concerned with the role

environment user‘s
man’sanalysisby building and the environment
sentation, data, control, bu i Id e r‘s .

process.‘
We extend Wasser-

on his definitions of pre-

and process integration.
O u r elaborations are
based on experience with framework ser-
vices and integrated environments and an
analysis of the issues. Because our focus is
on the relationship among tools, we do not
consider platform integration, which we
regard as providmg the basic elements on
which the agreement policies and usage
conventions for tools are built.

TWO POINTS OF VIEW

There are two points of view in the
discussion ofintegration: the environment
user’s and the environment builder’s. The
environment user is concerned with per-
ceived integration at the environment’s
interface. The user desires a seamless tool
collection that facilitates the construction
of systems on time and w i h budget. The
environment builder, who assembles and
integrates tools, is concerned with the fea-
sibility and effort needed to achieve th~s
perceived integration.

The user would hke to see well-inte-
grated tools; the builder would like to see
easily integrable tools. Both perspectives
are important, and many of the integra-
tion properties we describe are meaning-
ful from both points ofview.

Our more precise way of looking at
integration has proved useful to four
groups: users, tool evaluators, tool writers,

identify criteria to evalu-
ate tool sets they want to
include in an integrated
environment;

+ tool writers can ex-
amine design and archi-
tectural issues as they de-
velop the next generation
of integrated environ-
ments and identify good
practice for the use of
emerging integration-
support mechanisms; and _. + framework-tech-
nology builders can ex-

plain how proposed and existing integra-
tion mechanisms contribute to improve-
ments in integration in terms of the prop-
erties described here.

We have tried to separate integration
properties so as to identify them as clearly
and independently as possible. In practice,
we know that tool writers can use a single
integration-support mechanism to im-
prove several integration properties.

TOOL INTEGRATION

The goal ofa software-engineering en-
vironment is “to provide effective support
for an effective software p~ocess.”~ We be-
lieve support is more effective if the envi-
ronment is integrated - if all its compo-
nents function as part of a single,
consistent, coherent whole.

Integration means that dungs function
as members of a coherent whole. When
we say, “A is well integrated with B,” we
are really making many statements be-
cause A and B are composites with many
characteristics. To understand howwellA is
integrated with Brequires a careful examina-
tion and comparison of each characteristic.

We extend Wasserman’s four lands of
integration by identifymg several well-de-
fined properties that characterize the vari-
ous integration relationships between

tools. The software-engineering commu-
nity generally agrees on the importance of
these four tool relationships, but the defi-
nitions of integration properties are not as
precise as they should be.

Figure 1 shows an entity-relationship
diagram depicting a single tool, four rela-
tionships, and our elaborated properties
for each relationship. T h e four well-
known relationships are

+ Presentation: The goal of presenta-
tion integration is to improve the effi-
ciency and effectiveness of the user’s inter-
action with the environment by reducing
his cognitive load.

+ Data: The goal of data integration is
to ensure that all the information in the
environment is managed as a consistent
whole, regardless of how parts of it are
operated on and transformed.

+ Conwo~’: The goal of control integra-
tion is to allow the flexible combination of
an enpironment’s functions, accordmg to
project preferences and driven by the un-
derlying processes the environment sup-
ports.

+ Procea: The goal of process integra-
tion is to ensure that tools interact effec-
tively in support of a defined process.

Our approach uses binary relation-
ships, which raises the issue of whether
integration should be defined as how well
t w o tools are integrated or if it should be
d e h e d as how well many tools are inte-
grated. We believe that the second d e h -
tion can be adequately captured as an ag-
gregate property, derived from how well
individual tool pairs are integrated. How-
ever, our focus on how well two tools are
integrated does not mean that we support
integration mechanisms that allow “pri-
vate” tool agreements. It is important to
distinguish a d+nztion of integration from
a good mechanism for integration support.

Presentation ‘ntegratkn. The goal of re-
ducing a user’s cognitive load should apply
to individual tools, tool sets, and the envi-
ronment as a whole. It can be aclueved by
letting users reuse their experience in
interacting with other tools by

+ reducing the number of interaction
and presentation paradigms in the envi-
ronment.

~

3 0 M A R C H 1 9 9 2

appearance and interadion behavior?

CONTROL INTEGRATION

Figure 1. Entity-relationship diagram depicting U single tool, four relationships, and elaboratedpropwties.fm each relationship.

providing interaction and presenta-
tion paradigms that match the user’s men-
tal models,

+ meeting the user’s response-time ex-
pectations, and

+ ensuring that correct, useful infor-
mation is maintained at the disposition of
the user.

We identify two properties in &IS class,
whch we base on the relationshps be-
tween the user interfaces of two tools: ap-
pearance and behavior integration and in-
teraction-paradigm integration.

Appeamnce and behavior. T h s property an-
swers the question, How easy is it to inter-
act with one tool, having already learned
to interact with the other? In other words,
how similar are the tools’ screen appear-
ance and interaction behavior?

Two tools are said to be well integrated
with respect to appearance and behavior
integration if a user’s experience with and
expectations of one can be applied to the
other.

Appearance and behavior integration
captures the similarities and differences
between the lexical level of the two tools’
user interfaces - how the mouse clicks,
the format of the menu bars, and so on. It
also covers some aspects of their ~r ” ’ t ac t i c
level differences and similarities - the

order of commands and parameters, uni-
formity of the presentation of choices in
dialogue boxes, and so on.

Both Motif and OpenLook specify
compliance levels that are relevant here.
However, both leave aspects of appear-
ance and behavior undefined, which may
lead to unnecessary, confusing differences
between the appearance and behavior of
two tools.

A broader definition of appearance and
behavior should also cover response-time
aspects. Similar interactions with two tools
should have similar response times for
them to be well integrated with respect to
this property. Appearance and behavior
might also include using a common mean-
ing for verbs and commands.

lntemcfion pmdigm. This property answers
the question, “How easy is it to interact
with one tool having already leamed the
interaction paradigm of the other?” In
other words, to what extent do two tools use
s d a r metaphors and mental models to
minimiw learning and usage interference?

Two tools are said to be well integrated
with respect to interaction-paradigm inte-
gration if they use the same metaphors and
mental models.

Clearly, it is important to balance the
use of one versus many metaphors. A sin-

gle metaphor may be awkward or ill-
adapted for some cases, while using many
metaphors may provide one that is well-
suited for each case but makes it difficult to
transfer experience between tools.

For example, a tool to access and
browse a database may use a filingsystem
metaphor, with filing cabinets, drawers,
dossiers, and so on. This metaphor might
impose a strict containment relationship
between cabinets and drawers and be-
tween drawers and dossiers. Another tool
for accessing the same information may
present a different metaphor that involves
navigating around a hypertext smcture,
with no emphasis on containment rela-
tionships.

A user who must use both tools may be
confused by the different navigation met-
aphors, so we would say that these two
tools are not well-integrated with respect
to their interaction paradigms.

Data m t e y a h The information ma-
nipulated by tools includes persistent and
nonpersistent data (which does not sur-
vive the execution of the tools that are
sharing or exchanging it). The goal is to
maintain consistent information, regard-
less of how parts of it are operated on and
transformed by tools.

Data integration between two tools is not

I E E E S O F T W A R E 3 1

relevant when they deal with disjoint data.
Also the data-integration properties
should reflecz the use of the “same” data by
tools, even if that data is represented differ-
ently or can be deduced from other data.

We have identified five properties in
t h~s class, defined between the data man-
agemendrepresentation aspects of two
tools: interoperability,

make it available to the second tool, the
data must be run through a conversion
program. From the environment builder’s
point of view, these two design tools are
not as well integrated with respect to
interoperability integration as two tools
that use the same fomiat and model. If the
user must initiate the conversion, the tools

are also not well inte-
grated from the user’s
point of view.

- nonredundancy, data
consistency, data ex-
change, and sYnc~oniza- Tools are well Tools are well inte-

tion. integrated when they pted when they have a common view of data.
/nteroprobi/* Suppose a have a common view Some environments

achieve this common
view by using common of data. tool using some data in

the environment has a
certain view of that data.
Another tool may need to
use some or all of the data used by the first
tool but may have a different view of that
data. How views differ can range from the
pedarit ies of character representations
to differences in the information model
each tool assumes and captures in sche-
mas. Two tools may even assume differ-
ent seniantics for data stored using the
same schema.

T h e interoperability-integration
property answers the question, “How
much work must be done to make the data
used by one tool manipulable by the
other?” In other words, what must be
done for the two tools to see the data as a
consistent whole?

This property illustrates the different
viewpoints of the user and builder. The
environment user may perceive that two
tools are well integrated because they
present a common schema at the user in-
terface, even if each tool actually has a dif-
ferent data model. The environment
budder will see that the tools are not well
integrated, because they use different data
modelsandrequirealotofwork to make the
data of one tool manipulable by the other.

Two tools are said to be well integrated
with respect to interoperability integra-
tion if they require little work for them to
be able to use each other’s data.

For example, suppose a design tool
produces data in a certain format and that
data must be manipulated by another tool
that expects data in a different format. To

internal structures for the
infomiation they manip-

ulate (such as prograns and design am-
facts). Examples include the Interlisp envi-
ronment and Rational’s Ada environment.
Other environment5 use common sche-
m a ~ . Exaiiples include Pact4 and IBMs
ADKycle Information Model.’

Nmredundunq T h ~ s property answers the
question, “How much data managed by a
tool is duplicated in or can be derived from
the data managed by the other?” In other
words, it identifies the redundancy in the
data that the two tools independently store
and manipulate.

Two tools are said to be well integrated
with respect to nonredundancy integra-
tion if they have little duplicate data or
data that can be automatically derived
from other data.

Redundant information in a database,
whether duplicate or derived, is undesir-
able because it is difficult to maintain con-
sistency. Nonredundancy is relevant even
if the tools store their data in the same
database.

Well-integrated tools should minimize
redundant data. For example, suppose two
project-management tools, which operate
on the same data, use the concept of a
project task. One assumes that tasks have
two attributes, start-date and end-date;
the other assumes that tasks have two attri-
butes, star-date and duration. Although
both tools use the same start-date, they are
not well integrated from the builder’s

point of view because duration can be de-
rived from the start-date and end-date.

Designers of environments that must
maintain consistent duplicate and derived
data must choose strategies for timing the
updates to the duplicate and derived data-
the well-known “refresh-time’’ problem.

Avoiding duplicated data in a database
still allows the use of replicated data, which
a distributed database might provide to
improve robusmess or performance.

Dutu c o m i ~ t e ~ . Maintaining the consis-
tency of duplicate or derived data is a fre-
quently observed special case of how to
maintain some general semantic con-
straint on the data. For example, a de-
signer may want to ensure that the sum of
certain attributes in the database is less
than some value: Tool 1 manipulates some
data A, Tool 2 manipulates some data B,
and there is a semantic constraint relating
the permissible values of A and B.

T h e data-consistency property an-
swers the question, “How well do the tools
indicate the actions they perfomi on data
that is subject to sonic semantic constraint
so that other parts ofthe environment can
act appropriately?” In other words, how
well do two tools cooperate to maintain
the semantic constraints on the data they
manipulate?

Two tools are said to be well integrated
with respect to data-consistency integra-
tion if each tool indicates its actions and
the effects on its data that are the subject of
semantic constmints that also refer to data
managed by the other tool.

Doto exchunge. Two tools may want to ex-
change data. The data may be in the fonn
of initial values communicated from the
first tool to the second when it starts exe-
cution or it may be in the fonn of values
passed to a tool while it is executing. To
exchange data effectively, the tools must
agree on data format and semantics.

This property answers the question,
“How much work must be done to make
the data generated by one tool usable by
the other?’ In other words, what must be
done to make the data generated by one
executing tool manipulable by the other?

Two tools are said to be well integrated

3 2

~~~ 

M A R C H  1 9 9 2  



with respect to data-exchange integration 
if little work on format and semantics is re- 
quired for them to be able to exchange data. 

This definition is very similar to the 
interoperability definition, but data-ex- 
change integration also applies to nonper- 
sistent data. 

Some environments may allow the en- 
vironment builder, rather than the tool de- 
signer, to decide which data is persistent. 
We make the distinction between data-ex- 
change and interoperability because the 
mechanisms that support data-exchange 
integration may be different from the 
mechanisms that support interoperability 
integration, although some environments 
may use the data-management system to 
implement interoperability integration. 
The  definition of persistent data is inde- 
pendent of whether or not the data is 
stored in a database. Data-exchange inte- 
gration is also relevant whether or not the 
two tools use the same database. 

Suppose you have two project-man- 
agement tools. The first is a scheduling 
tool that displays a network of project 
tasks, each represented as an icon. Each 
task icon has a user-defined name repre- 
sented as a task-type attribute in the 
environment’s database. The second tool 
is a time sheet that lets the user record time 
spent on projea tasks. The  user interface 
to the second tool is a spreadsheet, with 
each column headed by a task identifier 
that is used as an account number for 
charging. T h s  task identifier is also stored 
as a task-type attr ibute in the  
environment’s database. 

Now suppose the user wants to copy a 
task icon from the scheduling tool and 
paste it into the task-identifier cell of the 
time-sheet tool, which would then display 
the task identifier of the task icon. Clearly, 
both tools must agree on the format and 
semantics of the data exchanged via the 

1 

1 copy-and-paste mechanism. 

Synchronizatiion. In general, a single tool 
will manipulate some persistent data and 
will also need nonpersistent data for exe- 
cution. This is also true of a set of cooper- 
ating tools, whch typically will manipu- 
late persistent data (and interoperability, 
nonredundancy, and data-consistency 

xoperties determine how well integrated 
hey are to do h s ) .  Cooperating tools may 
ilso need to maintain the consistency of 
h e  nonpersistent data that may be repli- 
:ated in several tools in a set. 

The  synchronization property answers 
h e  question, “How well does a tool com- 
nunicate changes it makes to the values of 
ionpersistent, common data so that other 
:ools it is cooperating with may synchro- 
i z e  their values for the data?” Two tools 
ire well integrated with respect to syn- 
:hronization integration if all the changes 
to all shared nonpersistent data made by 
m e  tool are communicated to the other. 

Suppose a set of development tools in- 
dudes a debugger and a browser. The set 
might have been constructed with the idea 
that the debugger and browser would 
ihare a single current-source-code-line 
Dosition. When the de- 

gard, control integration complements 
data integration. 

Data integration addresses data repre- 
sentation, conversion, and storage issues; 
control integration addresses control- 
transfer and service-sharing issues. We 
have identified two properties, defined on 
the control relationship between two 
tools: provision and use. 

hovision. This property answers the 
question, “To what extent are a tool’s ser- 
vices used hy other tools in the environ- 
ment?” 

A tool is said to be well integrated with 
respect to provision integration if it offers 
services other tools in the environment 
require and use. 

Suppose you are building a project- 
management tool that requires the user to 

enter a brief description 
bugger stops at a break- I of project tasks. Such a 
II . I  

point, it changes the cur- Achieving high use tool requires an editing 
rent source code line service to  enter textual - -  

position, which the  integration requires task descriptions. In &IS 

browser uses to display 
the lines above and below 

case, provision integra- 
tion refers to the extent to modular tools. 

curren t-source-code- 
line. Both tools need a consistentview of h s  
datum and must inform each other of 
changes they make w i t  

T h s  definition is very similar to data- 
consistency integration, except it applies 
to nonpersistent data. We make the dis- 
tinction because the mechanisms used to 
support synchronization may be different 
from the mechanisms used to support data 
consistency. Both mechanisms must de- 
fine a refresh time to communicate 
changes between tools. 

Control integration. To support flexible 
function combinations, tools must share 
functionality. Ideally, all the functions of- 
fered by all the tools in an environment 
should be accessible (as appropriate) to all 
other tools, and the tools that provide 
functions need not know what tools will be 
constructed to use their functions. 

For tools to share functionality, they 
must be able to communicate the opera- 
tions to be performed. Because operations 
require data, the tools must also commu- 
nicate data or data references. In h s  re- 

which the editing tool 
provides the services required by the proj- 
ect-management tool. 

Use. Thls property answers the ques- 
tion, “To what extent does a tool use the 
services provided by other tools in the en- 
vironment?” 

A tool is well integrated with respect to 
use integration if it appropriately uses the 
services offered by other tools in the envi- 
ronment. 

Achieving high use integration re- 
quires modular tools. A tool written with- 
out regard for replacing services that it 
provides with similar services will not 
achieve good use integration. The same 
tool could be written so that it either ex- 
pects certain services in its execution envi- 
ronment and provides a means of incor- 
porating such services into the tool o r  
provides a convenient way of replacing a 
tool-provided service with a comparable 
service offered by another tool in the en- 
vironment. 

The  project-management tool in t h e  
earlier example would be highly inte- 

I E E E  S O F T W A R E  3 3  



grated with the editing tool with respect to 
use integration if it used the editing tool’s 
services. The project-management tool 
would then have to provide a convenient 
way to replace its text-editing services with 
those offered by the editing tool. 

Process ‘nteyot’on. There are three di- 
mensions to ensuring that tools interact 
well to support a defined process:6 

+ A process stq is a unit of work that 
yields a result. Assessing design perfor- 
mance is a process step. 

+ A process event is a condition that 
arises during a process step that may result 
in the execution of an associated action. 
Conducting a successful compile may re- 
sult in the scheduling of a unit test. 

+ Aprocess constraint restricts some as- 
pect of the process. A constraint might be 
that no person can have more than 10 pro- 
cess steps assigned to them concurrently. 

A tool embodies a set of assumptions 
about the processes in which it may be 
used; two tools are well integrated with 
respect to process if their assumptions 
about the process are consistent. The de- 
gree of consistency between the process 
assumptions of tools strongly influences 
the degree ofpotential process integration 
for all the process-integration properties 
we identified. 

Obviously, tools that make few process 
assumptions (like most text editors and 
compilers) are easier to integrate than 
tools that make many process assumptions 
(like those that support a specific design 
method prescriptively or generate test 
skeletons from a design notation). 

Whether we need to consider how well 
two tools are integrated with respect to pro- 
cess integration depends on whether they 
are both relevant to the same process step. 
For example, the relevant tools in asaing 
design performance might be a graphical 
design tool and a performance-analysis tool. 
Other tools that may be irrelevant to th~s 
process step are the assembler and debugger. 
Whether a tool is relevant or irrelevant de- 
pends on the process property. 

We identified three process-integra- 
tion properties, defined on the process re- 
lationship between two tools: process step, 
event, and constraint. 

frucesss step. This propeny answers the 
question, “How well do relevant tools in the 
environment combine to support the per- 
formance of a process step?” 

The  performance of a process step will 
often be decomposed into executions of 
various tools. Tools often have precondi- 
tions that must be true before they can 
perform work to achieve 

should reflect events generated by other 
relevant tools. Second, a relevant tool 
should generate events that help satisfy 
other relevant tools’ preconditions. 

Tools are said to be well integrated with 
respect to event integration if they gener- 
ate and handle event notifications consis- 
tently (when one tool indicates an event 

has occurred, another tool 
their goals. A tool’s pre- - responds to that event). 
conditions are satisfied 
when other tools achieve 
their goals. 

Tools are said to be 
well integrated with re- 

Suppose you want to 
plan and schedule a mod- 
ule unit test. TO do so, the 
process requires that 

1. the module be 

we should be 
designing and building 

tools to take - 
spect to process-step in- advantage of the completelydeve~oped (for 
tegration if the goals they . example, i t  has run 
achieve are part of a CO- lntegrafion support through the Unix lint tool 
herent decomposition of cleanly), 
the Drocess steD and ifac- mechanisms ovoilobk- 2 .  the module be 
complishing these goals 
lets other tools achieve their own goals. 

Tools can be poorly integrated for sev- 
eral reasons. The  goals achieved by two 
relevant tools can be incompatible in that 
one tool makes it harder for the other tool 
to achieve its goals. Similarly, the goals 
achieved by one relevant tool can be in- 
compatible with the preconditions neces- 
sary for the other relevant tool to execute. 

Suppose a compile-and-debug process 
step uses a C++ preprocessor, a C com- 
piler, and a debugger. The C++ preproces- 
sor accepts C++ and generates C, which is 
compiled. The  debugger, which is in- 
tended to sipport source-level debugging, 
uses infonnation generated by the C com- 
piler. It does not know that the C program 
was generated by a C++ preprocessor. 

In this case, the C++ compilation chain 
and the debugger are not well integrated 
with respect to process-step integration 
because the functions of the C++ compila- 
tion chain and the debugger do not form a 
coherent decomposition of the compile- 
and-debug step that would permit source- 
level debugging of the C++ program. 

Event. This property answers the ques- 
tion, “How well do relevant tools in the 
environment agree on the events they 
need to support a particular process?” 

There are two aspects to event agree- 
ment. First, a relevant tool’s preconditions 

checked into the configu- 
ration-management system, and 

3. test personnel be available. 
In other words, the notification of all 

three events is a precondition to unit-test 
scheduling. In tlus case, the lint tool might 
generate an event indicating a module has 
passed through lint cleanly, the configura- 
tion-management tool might generate an 
event indicating a completed module has 
been checked into the system, and a re- 
source-availability tool might generate an 
event indicating that test personnel are 
available. These tools would be well inte- 
grated with the unit-test s c h e d d g  tool 
because they generate the events necessary 
to satisfy its preconditions. 

Events have some similarities with the 
data-trigger mechanisms that are part of 
some persistent object-management sys- 
tems. One major difference is that events 
may be signaled without changes to persis- 
tent or nonpersistent common data; they in- 
dicate only that somedung of interest and 
relevance to the process has occurred. 

Ccxrdront. This property answers the 
question, “How well do relevant tools in 
the environment cooperate to enforce a 
constraint? ” 

There are two aspects to enforcing a con- 
straint First, one tool’s permitted functions 
may be constrained by another‘s functions. 
Second, a tool’s functions may constrain an- 

3 4  M A R C H  1 9 9 2  



other tool’s permitted fimctions. 
Tools are said to be well integrated with 

respect to constraint integration if they 
make similar assumptions about the range 
of constraints they recognize and respect. 

At first glance, constraint integration 
may appear to be the same as data-consis- 
tency integration. However, data-consis- 
tency integration is concerned with con- 
straints on data values; whereas, constraint 
integration is concerned with constraints 
on process states and how such process 
constraints affect tool functioning. If pro- 
cess-state information, such as the status of 
various process steps, is modeled and man- 
aged in the environment’s data-manage- 
ment system, then the mechanisms that 
support data-consistency integration can 
also support constraint integration. 

Suppose a process constraint is that the 
same person cannot both code and test a 
module. In t l s  case, if the resource-allo- 
cation tool that assigns a coding task to a 
person then prohbits the configuration- 
management tool from letting that person 
checkout the same module for testing, the 
resource-allocation tool is well integrated 
with respect to constraint integration with 
the configuration-management tool. 

n this article, we have emphasized defi- I nitions of integration properties on re- 
lationships between tools rather than the 
specific integration-support mechanisms. 

T h e  designs of integration-support 
mechanisms and tools do not proceed in- 
dependently. Integration-support mecha- 
nisms are not developed assuming a con- 
stant model of how tools are written. 
Similarly, tools and tool architectures 
must evolve to take advantage of the new 
generation of integration-support mech- 
anisms. 

Instead of asking how the integration- 
support mechanisms support tools, we 
should be aslung how to design and build 
tools so they can best take advantage of the 
mechanisms available. Brian Nejmeh of- 
fers advice on how to do this.’ 

This article describes a model of envi- 
ronment frameworks that identifies 
framework services, tools that offer other 
services, data-management services, and so 
on. Some proponents of object-orientation 

-gue that these distinctions are false and 
nnecessary - that all services a n  be pro- 
ided by operations associated with ob- 
rts.IIowever, itisstill truethatsomeobject 
p s  are defined as important to the system 
id that these objects have predefined oper- 
ions. Also, each object requires execution- 
ngine services and persistent data manage- 
lent for its implementation, in addition to 
iterobject communication. The in t ep -  
on properties we have identified are largely 

~ . 

indcpendent of an cn\;ironnient’s technol- 
ogy base atid are relevant to object-ori- 
ented environments. 

We helieve other environment ele- 
inelits - including the characzerization of 
the software process - have relation- 
ships that could be analyzed using this 
technique. \%’e look forward to cxtend- 
ing and refining this set of relationships 
and properties as our understanding of 
to( 11 integration grows. + 

ACKNOWLEDGMENTS 
Anunihcr of the initial ideas for this work e\ol\ed in working-goup discvssion\ invol\ingTim Colliiis, 

KcL-in Ewert, Colh &rev, andJon Gustaison. L k  also rcccived helpful ~ o ~ i i n i ~ n t s  from Frank B c k  hlark 
Dowson, Anthony Earl,John Favaro, Peter Feller, R a d  Fleming, Steve (;a&. AIikc hloriegan, Da\.c Ncttlt.9, 
Huw Oliver, Lolo Penedo, Bill Riddle, F:u Shafrir, and Lyn L /z lc .  ’Ihc Naoon,il Inauhite ofStmdards urd 
?tclinology W’orhig Group on ISEEs’ suhgroup 0 1 1  intcgr.ition gencratcd t i imy  trst exes we used tu refine 
thew ideas. 

REFERENCES 
1. \:R. Basili and D.M. U’eisq, “AMethodolop for Collectiiig\hlid Sofmxc  I;nginccring Data,“ IZXE 

2. A.1. LVassemran, “‘Iool Integr~non in Sofiu arc Engineering L;ii~iro~i~iicilt\,’’ in .S~:.ft. .w I.;i i ,~+wiii~q f ihi- 
ro?niimn: N-or. Int‘l Cf‘67-ksl.q uti Enr~rroiniiaits, F. Long. cd., Springcr-\‘erl.ig, Bei-lin, IYYO. pp 137-140. 

3. V. Stenning, “On the Role o f a n  I.:n\ironnicnt,” l’rnr. I i i t ‘ / C m ! f :  ;ofti:iiw k i ~ ~ q ,  IEEI ( 3  Press. Los 41- 
amitos, Calif., 1987, p p  10-34. 

4. M.1. ‘I’honias, ‘“liml Integ-ation in the P x t  I.ii~~ironiiir~it,” l h c .  ht’l Con/: Sufiii.07~ EiIg., IEEF C S  Press, 
1.m Alamitos, (Blif., 1989, pp. 13-22, 

i. \’.J. Mercui-ic et al., “AD/Cycle Strategy and Architccnii-c.” IRtl ,SW(,/~/J.~., \id 211, S O  2 ,  1900, p p  170- 
188. 

6. M. Iltiwson, B. Nejnieh. a n d  I$’. R~ddle, “Fnndanieiit~l S h a r e  Procc$\ (:iiiiccpts.” Ref. So. 7.:. Soft- 
\\ are Iksign aid ,tialysis, Booldrr, Colo., I WO. 

i. B. Nejineh, “Characteristics of Integ~ahle Soh-a re  Tool\,”’li.ch. Report 8Y036-N, Sofnr are Pi-(iducuvity 
Consortium, I{erndori. \:a., 1‘189. 

‘1;” Su@m En,& Nov. IYX4, pp. 728-738. 

-~ ~~~ ~~~ ~~ 

Ian Thomas \\orI\s on ~of tu~i re -eng~neer~ngen\~ronrncnt  infi-a\micture at  \ofmare 
Design and iZn~l~s i \ .  a research aid con\ulhng conipdni Liliile at l ieulen-Packad, he 
uorhed o n  nexT-generahon ohject-r)ricnted hroadcast i i i echnni~m~ to \upport control 111- 

tegrahon aid the use of the Portalde C oninion l i ~ ) l  tn\ironnient’s Olilcct-\lanage- 
inent \v\tem to wpporr dntd mteganon Ihs rcstarcli intti e\ts mcluclt viltnxe e n p -  
neering en, iromncnt framLworIO, data rnmagenient tor wftn are cngmeenng 
envlronmenn, en\ ~ronment-intrgration teclinolop, and soft\\ are process \uppoi t 

Thomas recentd d RS in dpplied ~l l ,~thenimc~ friini die LT1iner~;lni of \\!des, 
Aher)s twd and an MS incomputer saence kom die L nibersin ot Lxindon He IS ‘1 nieiii 
ber ofALhl md the IEFP < oinpiiter 5ocietr 

Brian Nejmeh iu president of Innov,ihve Software Engineering Prac~ices (Instep), d firm 
spec~dizing in softu-are jirweys impro\ enient. Refore fr)unding Instep, Ncjineh led sev- 
eral groups at the S o b a r c  Producu\ity Consortiuiii. He has ~ r i t t e n  widely on s o h  arc- 
engineering topics and is the s~ftware-engineering editor for Co~inr?iiiic~atiollr it t h  :1C\ I .  

Nejnieh rcccivcd d BS in computer science froin .Vlegheny C d e g e  and a n  AIS i n  
computer science from Piirdirr liiiiverv t),. €IC is A ineiiihrr ofPhi Rew Kqqn, 
and the IEEF Computer Socieh. 

Addrm quesnons ahout thi? article to Thoma\ a t  Sohvare Design and ;\nalysir. +W 
<:astro St., Stc. XX), Mountain \b, CA WM1; Intemct thoma&?sda.cnm or to Nejmeh a t  
Instep, l 1 i X  C o p p  Red Rd., €kmdon, \A 22071: Inteniet ncjmehQinstepcr~m. 

I E E E  S O F T W A R E  


