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Abstract

Time of Flight (TOF) cameras generate two simul-

taneous images, one of intensity and one of range.

This allows to tackle segmentation problems in which

the separate use of intensity or range information is

not enough to extract objects of interest from the 3D

scene. In turn, range information allows to obtain a

normal vector estimation of each point of the captured

surfaces. This article presents a semi-supervised spec-

tral clustering method which combines intensity and

range information as well as normal vector orienta-

tions to improve segmentation results. The main con-

tribution of this article consists in the use of a statisti-

cal region merging as a final step of the segmentation

method. The region merging process combines adja-

cent regions which satisfy a similarity criterion. The

performance of the proposed method was evaluated

over real images. The use of this final step presents

preliminary improvements in the metrics evaluated.

Keywords: Spectral Clustering, TOF images, Unsu-

pervised image segmentation

Resumen

Las cámaras de tiempo de vuelo (TOF) generan

dos imágenes simultáneas, una de intensidad y una

de rango. Esto permite abordar problemas de seg-

mentación donde la información de intensidad o de

rango separadamente es insuficiente para extraer los

objetos de interés de la escena 3D. A su vez, la infor-

mación de rango permite obtener una aproximación

del vector normal de cada punto de las superficies
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capturadas. En este artı́culo se presenta un método

de clustering espectral no supervisado que combina

la información de intensidad, de rango y las orienta-

ciones de los vectores normales para mejorar los resul-

tados de la segmentación. La principal contribución

de este artı́culo consiste en la utlización de un pro-

ceso estadı́stico de unión de regiones como paso final

de método de segmentación. El proceso de union de

regiones combina regiones adjacentes que satisfacen

un criterio de semejanza. El rendimiento del método

propuesto fue evaluado sobre imágenes reales. El uso

de este paso final presenta mejoras preliminares en las

métricas evaluadas.

Palabras claves: Agrupamiento espectral, Imágenes

TOF, Segmentación de imágenes no supervisada

1 Introduction

Image segmentation is one of the main challenges in

automatic vision field. Its aim is to extract the ele-

ments that constitute an image [1][2]. To achieve this,

these methods group pixels according to some simi-

larity criterion. Traditionally, the problem of image

segmentation has been tackled using color or inten-

sity information of the objects in the scene. Recent

developments in image segmentation have shown that

adding the depth of objects as an additional feature im-

proves precision in segmentation methods [3]. From

a point cloud, in turn, it is possible to obtain local nor-

mal vectors of the surfaces. These vectors allow to

discriminate objects in the scene with greater preci-

sion [4] [5]. Actual developments in hardware allow

to estimate the geometry of the scene and to use new

approaches to segment images. With this perspective,

the challenge of image segmentation can be posed as

the search for effective ways to adequately partition

a set of samples with intensity and distance informa-

tion, as well as information regarding the geometry of

the objects in the scene.

In this work we use a TOF camera allowing us to si-

multaneously obtain range and intensity images. TOF
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cameras illuminate the scene with amplitude modu-

lated infrared light-emitting diodes. The sensors of

the camera detect the light reflected in the illuminated

objects and two images are generated. The intensity

image is proportional to the amplitude of the reflected

wave and the range or distance image is generated

from the phase difference between the emitted and re-

flected wave in each element of the image [6].

Recently there have been proposed techniques to

segmentate objects presents in range and intensity im-

ages with the aim of define more precise contours.

In [7] a method was proposed that combines range

and intensity information via feature product [8]. The

method proposed in [3] uses semi-supervised learning

to fuse range and intensity information. In [9] surface

normals were added to the semi-supervised scheme in

order to improve the segmentation quality.

The method proposed in this article incorporates a

variation of the region merging stage used in [10] to

the algorithm proposed in [9] that refines the segmen-

tation obtained. In the first step, the proposed method

uses an optimized co-regularization technique to ob-

tain an over-segmentation of the image. The last step

involves merging the over-segmented regions accord-

ing to a predicate that takes planar property of each

region into account.

The proposed method is evaluated by comparing 4

supervised evaluation metrics [11] over a set of real

images.

This article is organized as follows: in section 2 we

present a revision of spectral clustering that is used

in the proposed method; in section 3 we describe the

process of region merging; in section 4 we explain the

proposed method; in section 5 we present the experi-

mental results; and finally, in section 6 we present the

conclusions.

2 Spectral Clustering

Given a set of patterns X = {x1,x2, ...xm} ∈ R
m , and

a similarity function d : Rm ×R
m → R, it is possible

to construct an affinity matrix W such that W (i, j) =
d(xi,x j). Algorithms of spectral clustering obtain a

data representation in a lower dimensional space solv-

ing the following optimization problem:

max
U∈Rn×k

Tr
(

UT LU
)

s.t. UTU = I
(1)

where L = D− 1
2 W D− 1

2 is the Laplacian matrix of W

according to [12], and D is a diagonal matrix with

the sum of the rows of W placed in its main diagonal.

Once U has been obtained, its rows are considered the

new pattern coordinates. In this new representation

it is easier to apply a traditional clustering algorithm

[13].

It is possible to obtain an approximation to the

pattern coordinates in this new space calculating the

affinities of a small set of pixels and approximating

the remaining affinities.

Let A ⊂ X be a subset of sampled patterns and

B = V −A, the remaining not sampled patterns. WA

is the similarity matrix derived from A data and LA is

the Laplacian matrix of WA. WB and LB are the corre-

sponding affinity matrices of points of A and B. It is

possible to define L as:

W =





WA WB

W T
B WC



 L =





LA LB

LT
B LC





It is possible to obtain an approximation of W ,

named Ŵ , only from A and B:

Ŵ = ŪΛŪT =





A B

BT BT A−1B





With the aim of obtaining the eigenvectors of the

approximate Laplacian matrix, L̂ = D̂
1
2 Ŵ D̂

1
2 , it is nec-

essary to calculate L̂A y L̂B:

ˆLAi j =
WAi j
√

d̂id̂ j

ˆLBi j =
WBi j

√

d̂id̂ j+|A|
(2)

where d̂ = Ŵ 1. If LA is positive-definite, it is pos-

sible to find the approximate orthogonal eigenvec-

tors in just one step. Let S be a matrix defined as

S = L̂A + L̂A
− 1

2 L̂BL̂B
T

L̂A
− 1

2 and its diagonalization

S =USΛSUT
S , Fowkles et al. [14] demonstrated that if

matrix V is defined as

V =





L̂A

L̂B
T



 L̂A
− 1

2 USΛ
− 1

2
S (3)

L̂ is diagonalized by V and by ΛS y V TV = I.

2.1 Co-regularization

When the dataset has more than one representation,

each of them is named view. In the context of spectral

clustering, co-regularization techniques attempt to en-

courage the similarity of the examples in the new rep-

resentation generated from the eigenvectors of each

view.

Let X (v) = {x
(v)
1 ,x

(v)
2 , ...,x

(v)
m } be the samples for

view v and L(v) the Laplacian matrix created from X

for view v. U (v) is defined as the matrix formed by the

first k eigenvectors corresponding to L(v) according to

Eq (1). A criterion was proposed in [15] that measures

the disagreement between two representations:

D(U (v)
,U (w)) =

∣
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where KU(v) is the similarity matrix generated from

the patterns of the new representation U (v) and ||·||F
is the Frobenius norm. If the inner product among

the vectors is used as similarity measure, K
U(v) =

U (v)U (v)T
is obtained. Ignoring the constant additive

and scaling terms, the previous equation can be for-

mulated as follows:

D(U (v)
,U (w)) =−Tr

(

U (v)U (v)T
U (w)U (w)T

)

(4)

The objective is to minimize the disagreement

among the representations obtained from each view.

Therefore, if we have m views, we obtain the fol-

lowing optimization problem that combines the indi-

vidual spectral clustering objectives and the objective

that determines the disagreement among the represen-

tations:

max
U(i) ∈ Rn×k

,

1 ≤ i ≤ m

m

∑
v=1

Tr

(

U (v)T
L(v)U (v)

)

+λ ∑
1 ≤ v,w ≤ m

v 6= w

Tr

(

U (w)T
L(w)U (w)

)

s.t. U (v)T
U (v) = I ∀1 ≤ v ≤ m

(5)

The λ parameter balances the spectral cluster-

ing objective and the disagreement among the rep-

resentations. The problem of joint optimization can

be solved using alternating maximization. Given

U (w)
,1 ≤ w ≤ m, the following problem of optimiza-

tion is obtained for U (v)
,v 6= w:

max
U(v)∈Rn×k

Tr
(

U (v)T
(

LM(v)
)

U (v)
)

s.t. U (v)T
U (v) = I

(6)

resulting in a traditional clustering algorithm with

the Laplacian matrix modified LM(v) = L(v) +

λ ∑
1 ≤ w ≤ m

v 6= w

U (w)U (w)T

3 Region Merging

Spectral clustering methods are usually used as a first

step as image over-segmentation [16]. Therefore, it

is necessary to merge the over-segmented regions to

obtain the constitutive elements of the image. The it-

erative scheme proposed in [10] requires, first of all,

the construction of an adjacency graph RAG = (V,E)
for region merging. This graph takes each segmented

region vi ∈V as a node and each of them is connected

with their adjacent regions. Each node is character-

ized by parameters µ and κ of a Watson distribu-

tion, shown in Appendix A, associated to the region,

and by the 3D points obtained from the range image

corresponding to the pixels of the node. Each edge

ei j ∈ E consists of two weights: wd , based on statis-

tical dissimilarity, and wb, based on the similarity of

the boundary shared by regions vi and v j.

Weight wd is given by the Bregman divergence

among two Watson distributions [17]:

D(θi,θ j) == F(θi)−F(θ j)−< θi −θ j,∇F(θ2)>

where θ is the natural parameter of a

Watson distribution Wd(x; µ ,κ). Given

v =
[

µ2
1 , ...,µ

2
d ,

√
2µ1µ2, ...,

√
2µd−1µd

]

, θ is

defined as θ = κv, F(θ ) = log(M( 1
2
,

d
2
,κ)) and

∇F(θ ) = g( 1
2
,

d
2

;κ) θ
κ . Here M(a,b,κ) is the

confluent hypergeometric Kummer’s function and

g( 1
2
,

d
2

;κ) is the Kummer’s ratio.

Then wd is defined as:

wd(vi,v j) = max(D(θi,θ j),D(θ j,θi)) (7)

Weight wb based on the boundary shared between

two regions vi and v j is calculated from the normal-

ized magnitude of the image gradient along the limit

of its corresponding regions ri and r j as:

wb(vi,v j) =
1

|ri ∩ r j| ∑
b∈ri∩r j

I(b) (8)

where ri ∩ r j is a set of boundary pixels between two

regions, |.| indicates the cardinality and I(b) is the nor-

malized magnitude of image gradient calculated from

the intensity image.

3.1 Merging strategy

The strategy to merge the regions proposed in [10]

consists of an iterative procedure that evaluates a

merging predicate between the adjacent nodes.

The candidacy of a region defines if the region is

valid to be merged with its neighboring nodes. For

each node, the candidature criterion proves the pla-

nar property of the corresponding region. The planar

property can be proved analyzing the concentration

parameter κ associated to node vi. The predicate of

the planar property is defined as:

candidacy(vi) =

{

T If κi > κp

F otherwise

κi is the concentration parameter calculated for the

region vi and kp is the threshold that defines if a region

is considered planar.

The eligibility criterion to decide if two regions

should be merged evaluates the dissimilarity in the

weights of edges wd and wb:

eligibility(vi,v j) =







T if wb(vi,v j)< thb and

wd(vi,v j)< thd

F otherwise
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where thb and thd are thresholds associated to the

weight based on the contours wb and the weight based

on the distance between regions wd respectively.

Given two regions ri and r j, the consistency crite-

rion evaluates if the two merged regions are still one

planar region calculating the plane inlier ratio [18] of

the new region. It fits a plane to the 3D point cloud

which is the result of combining both regions, and

then it calculates the proportion of anomalous points

and of points belonging to the plane according to a dis-

tance threshold. RANSAC algorithm is used to fit the

plane to the point cloud. Therefore, the consistency

between ri and r j is defined as:

consistency(vi,v j) =

{

T If pl i r(vi,v j)> thr

F otherwise

pl i r is calculated dividing the total number of

inliers, i.e., of the 3D points fitted within the plane

based on a distance threshold, by the total number of

3D points of the combined regions. thr is the thresh-

old associated to the proportion of points within the

plane.

The merging predicate involves evaluating the can-

didacy of each node of the graph, as well as the eli-

gibility of the adjacent nodes to be merged, and ver-

ifying the consistency in merging both regions. Two

regions are merged if the merging predicate Pi j is true.

Predicate Pi j is defined as:

Pi j =























T If

(1) candidacy(vi) = T

(2) eligibility(vi,v j) = T

(3) consistency(vi,v j) = T

F otherwise.

4 Proposed method

The method proposed in this article incorporates a

variation of the region merging stage used in [10] to

the algorithm proposed in [9] that refines the segmen-

tation obtained. In the first step, the proposed method

performs an spectral embedding of the pixels in both

images in a lower-dimensional space more suitable to

perform clustering. After that the both embedding are

co-regularized to acoord betweenm them. One the

embedding converge in an agreement, the subspace

is clusterized in orted to obtain an oversegmentation

of the image. The last step involves merging the over-

segmented regions according to a predicate that takes

planar property of each region into account.

From intensity image I and range image R provided

by the TOF camera, we obtain the image N with the

surface normal vectors of each point . To do this, the

library provided in [4] was used.

A function that combines the distance of the pixels

in the image plane and the similarity among their val-

ues was used to determine the similarity Wi j among

each element of an image Img ∈ {I,R,N}:

W (Img)i j =

exp

(

−||posi − pos j||22
2(sx)2

)

exp

(

d(Img(i), Img( j))2

2(sy)2

)

where posi is the spatial location (x,y) of the i-th

pixel, Img(i) are the I-th elements of the image. Pa-

rameter sx determines the importance given to the spa-

tial location in the similarity function and sy deter-

mines the importance given to difference among the

values of each pixel. d is a distance function among

the elements of the image.

Instead of selecting only one parameter sy for all

the image, what is proposed in [19] is to calculate a

local scale parameter for each point considering the

local statistics of their vicinity. The local scale for a

point i of an image P using a distance d is defined

as maxd(P(i),P( j))∀ j ∈ N(i), where N(i) are all the

neighbors within a ratio r of pixels .

Let p and r be two elements of the image I,

dI(p,r) = |p − r|. The same function is used for

the range image. If p and r are two elements of N,

dN(p,r) = pT r.

The proposed method involves the following steps:

1. The approximate Laplacian matrices L̂1, L̂2 and

L̂3 are obtained from I, R and N respectively, as

described in (2), using its corresponding similar-

ity function for each image: W (I), W (R) and

W (N).

2. The approximate eigenvectors V̂2 and V̂3 are ob-

tained from L̂2 and L̂3 calculated according to Eq

(3).

3. The optimization problem in Eq (6) is solved for

V̂1 given V̂2 and V̂3.

4. Optimization is cycled over all the views keeping

fixed the ones previously obtained.

5.
3

∑
i=1

3

∑
j=1

D(Vi,V j) is evaluated. If the disagreement

is reduced, go to 4.

6. Algorithm k-means is applied over V̂1 to obtain

M regions.

7. The algorithm of region merging described in

section 3 is used to obtain N < M regions.

5 Experimental results

5.1 Experimental setup

The performance of the proposed segmentation algo-

rithm was evaluated over a set of real images captured

with a TOF camera MESA SwissRanger SR4000 [6].

The TOF camera provides two images: an amplitude

image and a range image both of 144 x 176 pixels.

Image segmentation was evaluated through the fol-

lowing parameters: precision and recall measure for
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Figure 1: Influence of parameter sx in relation to the

precision and recall metrics of objects and parts.

objects, Fop [11]; precision and recall measure for

contours, Fb [20]; segmentation covering, SegCov

[21] and variation of information, VoI [22]. An effec-

tive image segmentation method decrease the param-

eter value of VoI, and increase the values of SegCov,

Fb and Fop.

As reported by [14] the Nyström method used to ap-

proximate the eigenvectors needs sampling only less

than one percent of the pixels in the image to obtain

performance comparable with the traditional spectral

clustering algorithms. For this reason the 0.005% of

the total number of pixels were sampled, resulting in

a set of 250 evenly spaced pixels to build the affinity

matrices. Taking into account that the images have

an average of 6 segments, we compute the leading 6

eigenvectors to generate the space where k-means is

applied as clustering method. The co-regularization

parameter was established as λ = 0.01 conforming to

[15]. According to [10], parameters κp = 3, thd = 3.0,

thb = 0.2 and thr = 0.9 were used.

In order to determine the parameter sx, Fop was

evaluated for the set of TOF images. Figure 1 shows

the average result among all the images in relation to

the variation of the influence of the spatial location in

the similarity function. Considering the results, sx =

35 was established. Figure 2 shows the influence of

the size of the window to be considered when select-

ing the local scale of sy, r = 5 was used.

5.2 Results and discussion

Table 1 shows the performance analysis of the pro-

posed method and Nystrom method [14] over the in-

tensity, range and normal image, separately, the use of

co-regularization between intensity and range [7] and

the use of co-regularization between intensity, range

and normal images [9]. Results present the average of

10 runs over 13 images of the dataset. It is possible

to observe that the proposed method improves met-

rics Fop, Fb and Seg.Cov., indicating that the obtained

clusters have a greater coincidence with the ground

Figure 2: Influence of parameter r in relation to the

precision and recall metrics of objects and parts.

Table 1: Performance evaluation of the proposed

method

Fb VoI Fop Seg.Cov.

I [14] 0.268 0.126 0.309 2.61

R [14] 0.205 0.054 0.249 3.192

N [14] 0.228 0.059 0.256 3.043

IR Coreg [7] 0.257 0.106 0.313 2.717

IRN Coreg [9] 0.266 0.096 0.316 2.683

IRN Coreg-RM

(Proposed Method)
0.293 0.104 0.482 3.24

truth. In Figure 3, we show results of the proposed

method on real images from the dataset. Qualitatively,

the segments obtained from the image recover the ob-

jects present in the scene.

Comparing IRN Coreg with IRN Coreg-RM, it is

possible to analyze the contributions of the region

merging process. The added step improves cluster-

ing output in all metrics except for VoI. The metric

most improved was Fop indicating that the the region

merging process helps to recover more adequately the

objects presents in the scene.

6 Conclusions

In this work we presented a clustering method applied

to segmentation of images captured with TOF cam-

eras, leading to satisfactory preliminary results. The

algorithm uses information from the geometry of the

scene, as well as intensity and range information, thus

improving segmentation results. The use of a region

merging process that exploits the planar statistics of

the image regions improves the results obtained ac-

cording to the metrics used. The region merging al-

gorithm find a good balance between preserving the

segments obtained and the risk of overmerging for the

remaining regions.

A future step of this work foresees the use of

more efficient techniques to obtain an approximate

eigenvector embedding space, the use of other co-
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Figure 3: Segmentation obtained using the proposed

method

regularization techniques and enhancing the region

merging method with intensity information.

Appendix A Watson Distribution

Multivariate Watson distribution is a distribution that

models axially symmetric directional data. For a m

dimensional unit vector symmetrically axial ±x =
[x1, ...,xm] ∈ Rm, multivariate Watson distribution is

defined as:

Wd(x|µ ,κ) = M(a,c,κ)−1 exp(κ(uT x)2) (9)

Wd(−x|µ ,κ) =Wd(x|µ ,κ) (10)

Where µ is the mean direction (con |µ |2 = 1), κ ∈ R

is the concentration parameter, a = 1
2

, c = m
2

, and

M(a,c,κ) is the confluent hypergeometric Kummer’s

function. Watson distribution is rotationally symmet-

ric around µ and its shape depends upon the value of

concentration parameter κ .

A.1 Maximum likelihood estimation

Let X = {x1, ..,xn},xi ∈R
m
,1 ≤ i ≤ n be n pointsi.i.d.

sampled from a Watson distribution Wd(x; µκ), with

mean µ and concentration κ . The logarithm of the

likelihood function is given by:

l(µ ,κ ;X) = n(κµT Sµ − logM(
1

2
,

p

2
,κ)+ γ) (11)

where S = n−1
n

∑
i=1

xix
T
i is the sample scatter matrix

and γ is a constant that can be ignored. It is possi-

ble to obtain parameter µ that maximizes Eq (11) as

follows:

û = s1 si k̂ > 0, û = sp si k̂ < 0 (12)

where s1,s2, ...,sp are the normalized eigenvectors of

the scatter matrix S corresponding to the eigenvalues

λ1 ≥ λ2 ≥ .... ≥ λp. The estimation of concentration

parameter κ̂ is obtained solving:

g( 1
2
,

p
2
, κ̂) =

M′( 1
2
,

p
2
, κ̂)

M( 1
2
,

p
2
, κ̂)

= µ̂T Sµ̂ := r

It is possible to calculate κ̂(r) by means of the

bounds proposed by [23].

• k̂(r)≈U(r) for 0 < r <
a

2c

• k̂(r)≈ B(r) for
a

2c
≤ r <

2a√
c

• k̂(r)≈ L(r) for
2a√

c
≤ c < 1

where L(r),B(r) and U(r) are defined as follows:

• L(r) =
rc− a

r(1− r)

(

1+
1− r

c− a

)

• B(r) =
rc− a

2r(1− r)

(

1+

√

1+
4(c+ 1)r(1− r)

a(c− a)

)

• U(r) =
rc− a

r(1− r)

(

1+
r

a

)

Given that Eq (12) has two possible solutions,

the easiest way to obtain parameter µ is by solving

both equations and selecting the one with greater log-

likelihood.
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