Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- ORIGINAL ARTICLE -

Analysis, Deployment and Integration of Platforms for
Fog Computing

Analisis, Despliegue e Integracion de Plataformas para Fog Computing

Joaquin de Antueno(}, Santiago Medina!{"}, Laura De Giusti'?{"} and Armando De Giusti'3{"}

! Institutode Investigacion en Informdtica Ill LIDI, Facultad de Informdtica, Universidad Nacional de La
Plata - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, La Plata, Argentina
2 CICPBA - Comisiénde Investigaciones Cientificas de la Provincia de Buenos Aires, La Plata, Argentina
3 Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), CABA, Argentina
{jdeantueno, smedina, ldegiusti, degiusti}@lidi.info.unlp.edu.ar

Abstract

In IoT applications, data capture in a sensor
network can generate a large flow of information
between the nodes and the cloud, affecting response
times and device complexity but, above all,
increasingcosts. Fog computingrefers to the use of
pre-processing tools to improve local data
management and communication with the cloud.
This work presents an analysis of the features that
platforms implementing fog computing solutions
should have. Additionally, an experimental work
integrating two specific platforms used for
controlling devices in a sensor network, processing
the generated data, and communicating with the
cloud is presented.

Keywords: Cloud Computing, Fog Computing,
Internet of Things, IoT Platforms.

Resumen

En las aplicaciones de IoT la captacionde datos en
unared de sensores puede generar un gran flujo de
informacion entre los nodos y el cloud,
condicionando los tiempos de respuesta, la
complejidad en los dispositivos y por sobre todo
incrementando los costos. Fog Computing se
refiere a la utilizacion de herramientas de pre-
procesamiento para mejorar el manejo de datos
locales y la comunicacién con la nube. En este
trabajo se presenta el analisis de las caracteristicas
que deben tener las plataformas que implementan
soluciones de Fog Computing. Adicionalmente se
presenta un trabajo experimental que integra dos
plataformas especificas, aplicadas al control de
dispositivos en una red de sensores, el
procesamiento de los datos generados y la
comunicacion con la nube.

- 108 -

Palabras claves: Cloud Computing, Fog
Computing, Internet de las Cosas, Plataformas de
IoT.

1. Introduction

The cloud computing modelis designed to provide
remote, on-demand access to a shared set of
resources, such as servers, networks, storage, or
otherservices. Theseresources canbe acquired and
released with minimal effort on the part ofthe user,
regardless of the infrastructure required to use
them, and with reduced interaction with the service
provider [1].

As aresult ofthe proliferation of Internet-of-Things
(IoT) applications in recent years, cloud service
providers are turning more and more attention to
developing platforms for the deployment of such
applications. The challenge lies in the new needs
thatsome IoT systems pose, which the cloud has
difficulties covering, including communication with
a large number ofnodes maintaining a low response
time and receiving large volumes of information
recorded by sensors to be analyzed, stored and
ultimately displayed to the user. This last aspect is
of particularinterest, giventhatthe traffic thatgoes
to the cloud in this type of applications is one ofthe
main costs generated.

In response to this problem, a new model, called
fog computing, was proposed, which consists of an
intermediate processing, storage and connectivity
layer for IoT nodes, located close to them, on the
edge of the network [2]. In this model,
communication load with all nodes is distributed
among several geographically distributed servers,
with the goal of providing shorter response times

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

and managing the volume ofdata generated locally.
This intermediate layer, in turn, interacts with the
cloud, and delegates to it only thetasks for which a
greater computational capacity, storage or a global
vision of the system is required. This model also
reduces the flow of data to the cloud, acting as a
filter or by preprocessing the information, thus
reducing communication costs.

The main goals are:

= Integration of a platform (Node Red) that is a
flow based programming tool designed to
manage and handle MQTT topics which allows
communication with cloud platforms and an
IoT platform (Thinger.io) that provides
communication with system nodes, storage,
data visualization and other features as efficient
data transmission for real time communication.

= Experimentation with one possible
implementation of the integration, in the
context of a real life Fog Computing system.

This work is formed by 5 sections, the first of
which is this introduction. Section 2 provides a
definition forthe Fog Computing model as well as
for the main attributes of applications that follow
the model. In section 3 the different functionalities
to be provided by an IoT platformto be used in Fog
Computing are described, and it is analyzed which
of them and how they are implemented by
Thingerio and Node-RED. In section 4 an
integration ofthese two platforms is proposed and
analyzed, and an example implementation of the
integrationin the context of a real Fog Computing
application is described. Finally, section 5 examines
how the necessary functionalities for the
development of Fog Computing systems are
provided by the proposed integration and describes
related future work.

2. Fog Computing

The fog computing model comes as a response to
an emerging wave of developments related to the
Internet of Things, originally conceived by Bonomi
[2]. These developments have characteristics that
make their development more complexusing cloud
computing technologies exclusively, but still
benefit fromtheiruse. Fog computing then consists
of an intermediate platform that provides
processing, storage and network communication
services between edge devices that collect
information and data centers in the cloud. The
defining characteristics of this model are:

- Real-time applications.
- Wide geographic distribution.

- 109 -

Large number of nodes.

- Node heterogeneity.

- Mobility.

- Predominantly
network.

- Low latency and location awareness.

wireless communication

At the same time, it should be noted that this
architecture does not work as areplacement for the
cloud, but interaction with it is crucial, with limited
resources available at the edge ofthe network.

3. IoT Platforms Applied to Fog
Computing

In [3], Assemani et al. identify the main
functionality that should be offered by a fog
computing-oriented IoT platform that is
implemented as the middle layer of the model.
Their goal was to define a model architecture for
these platforms and have an evaluation framework
for the different existing platforms.

In particular, the following components or
functionality to be offered by the fog layer in the
platform are specified:

- Device management: It provides real-time
communication, identification and response to
devices at the edge of the network.

- Data processing: It is responsible for sending
data to the cloud, as well as local processing,
which includes storage, filtering and analysis. It
can also respondto events generated by devices
in real time.

- Security: This includes both communications
security and edge devices authentication, as well
as controlling access tothese devices and their
data and establishing secure communication
with the cloud.

- Gateway features: Protocol translation and
managing devices with various characteristics.

- Applicationlife cycle management: Application
development, distribution, deployment and
updates.

This set of components, derived from 10 platforms
in use in the market, allows defining the needs that
a fog computing-oriented system should cover, as
well as having a clear criterion to assess results.

Additionally, the implementation priority for each
of the components is defined, based on the order in
which they were incorporated into the main market
platforms. Device management, data processing,
and gateway features are the highest priorities for
these platforms, followed by security measures and,

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

finally, application life cycle management, which is
offered only by a handful of the platforms in the
market.

Related works evaluating and comparing different
IoT platform’s features exist, bothin the context of
Fog Computing and outside of it [3, 4]. To the
author’s knowledge no previous works exist
regarding integrations between IoT platforms
similar to the one described in this paper.

Our workbegan in 2018 using Node-RED extended
functionality to communicate with cloud platforms.
In this paper we present the required integration
with a Thingerio to provide efficient
communication with systemnodes. The result is a
Fog Computing platform that allows new cloud
services for IoT applications.

Different IoT platforms were considered, including
Thinger.io, Thingsboard [5, 6], Mainflux [7] and
SiteWhere [8]. Our choice of integrating Node-
RED with Thinger.io was based on the features this
platformprovides for communication with external
services, and the third party Node-RED libraries
specifically designed to work with Thinger.io.

The features of Thinger.io and Node-RED, the
platforms to be used for this integration, are
describedbelow. Also, some missing features that
are required to adapt to the model described are
pointed out.

3.1. Thinger.io

Thinger.io [9] is an open source loT platformthat
follows the cloud computing model, providing
communication with systemnodes, storage and data
visualization, among other features. It places
special emphasis on efficient data transmission,
real-time two-way communication, interoperability,
and deployment simplicity.

Specifically, Thinger.io provides the following
features:

Device models: Each node is modeled by a
device on Thinger.io, and is identified by a
unique credential thatallows connecting to the
platformsecurely.

Resources: These are a complement to device
model, representing the information that flows
from or to the nodes. They are defined in a
simple way in the node code, and are encoded
using Protoson, a proprietary library, to reduce
packet size.

Data Buckets: These are a chronologically
ordered form of storage in which devices can

- 110 -

publish information, to which a timestamp is
added when it gets to the platform.
Endpoints: Theseallow devices to communicate
with services external to Thinger, either through
HTTP requests or by sending e-mails. These
communications may includeresources defined
by the devices in JSON format, or they may use
a different format that incorporates this
information as necessary.

Dashboards: These consist of a configurable
user interface that allows graphically
representing data in real time fromthe devices
or extracting historical information from the
buckets.

REST API: It allows interaction with Thinger
from external services, either to manage
buckets, endpoints, devices or dashboards, or to
communicate directly with the nodes.

This platformis used in various IoT applications;
[10, 11, 12] are some examples of systems
implemented using Thinger.io.

3.2. Node-RED

Node-Red is a flow-based open source
programming tool, originally designed to manage
and handle MQTT topics. It is ultimately a general
purpose tool, although nowadays it is strongly
oriented towards the development of IoT
applications [13, 14]. The different features of the
platform are modularized into "nodes" that
interconnect to create the application,
communicating with each other through JSON
packages. The main nodes used in this work are:

HTTP In: It allows creating an HTTP access
point through which other platforms can
communicate. As output, it produces a packet
with the body ofthe request and other data used
to send a response.

HTTP Request: It allows sending an HTTP
request to an external service, producing as
output a raw buffer or a JSON object.
Function Nodes: These are general-purpose
nodes thatrun JavaScript code every time they
receive a package fromanothernode, generating
a JSON object as output or stopping the flow if
necessary.

Bucket Write: It allows writing the contents of
the object received as input to a Thinger.io data
bucket.

TCP In: It allows establishinga TCP connection
to a remote server, or accepting incoming
connections, returning as output the packets
received together with connection
characteristics.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- TCP Out: It allows replying to messages
received through the TCP In node.

Node-RED functionality can also be extended
throughnumerous libraries . For the purposes ofour
work, the most relevant ones are those that allow
communication with other cloud platforms,
including Thinger.io, AWS IoT and IBM Watson,
among others.

3.3. Feature Analysis

Afterconsideringtheuse of Thinger.io as a fog
computing platform, based on thecriteria
mentioned above, it is found that it only partially
fulfills the required functionality:

- When it comes to device management,
Thinger.io provides efficient, real-time
communication throughits device models and
resources. We noted theneed for automatic
device registration, crucial for scalability and
ease ofdeploymenton systems with a large
number ofnodes.

- Dataprocessingis the biggest flaw we found on
the platform, since it only allows storage
throughdata buckets, which can be displayed on
dashboards. That is, data cannotbe locally
analyzed to obtain the information thatis more
useful forthe user,norto respondto node
events.

- Additionally, the only mechanismto connect
with external services, the endpoint, only
facilitates the direct transfer froma device to a
service via HTTP, which excludes the
application ofanytype ofplatformfilters or
pre-processing if the data are sentto the cloud.

- Regarding security, Thinger.io provides
encrypted communications using TLS for
connections to nodes. As already mentioned,
communication with the cloud would occur
through endpoints, which donotprovide any
type of security feature.

- Asregards gateway features, protocol
compatibility is solved by using Thinger.io's
proprietary one, built directly on TCP. In turn,
libraries are provided that allow connecting to a
variety ofhardware devices, regardless of their
characteristics, through the defined resources.

- Theplatformdoes not currently providethe
necessary functionality for applicationlife cycle
management.

- 111 -

Node-RED complements the features offered by
Thinger.io, with the possibility ofassembling
processing flows that work with the data buckets
that store the data. In addition, it allows secure
interaction with cloud services through dedicated
nodes.

The complete analysis of Node-RED features is
beyondthescope ofthis work, sinceit is a general-
purpose tool. For this reason, we will only discuss
the features that are useful for our development.

4. Model Architecture and Integration

Having described the features ofeach platform and
their deficiencies in the context ofa Fog Computing
application, we proceed to describe the integration
between them, conceived with the objective of
solving these deficiencies.

The model architecture would then include all the
edge devices, each equipped with their respective
sensors andactuators. Thesedevices are distributed
over a wide geographic area and they may be
provided with mobility. The intermediary servers
are deployednearto themin order to fulfill the low
latency requirements and analyze thedata the edge
devices generate. Each of the servers runs an
instance of both Node-RED and Thinger.io, which
complement their capabilities to accomplish all
required tasks. These servers are only responsible
for tasks with limited resource requirements. The
rest ofthe tasks, which demand more processing or
storagecapacity than the intermediary servers can
offer and are not limited by the same time
constraints, are performed by the cloud. This
reduces its usage and the volume of datait receives
to the minimum levels. Figure 1 demonstrates the
interaction between the three layers ofthe model. It
is important to notice how each intermediary server
only manages the (relatively reduced) group of
edge devices deployed nearest to it.

4.1. Integration

In this sectionwe will describehow theintegration
between Thinger.io and Node-RED works, in a way
that allows themto complement their functionalities
and provides us with a platformfordeveloping Fog
Computing applications.

The first point to solve is edge device registration
on Thinger.io, which is required to communicate
with the platform. By default, this must be done
manually, which is very limiting in terms of
deploymentand scalability in a system with many

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

& 18M Watson
s

af :: Building
2y thinger.io
& A
BB
<

LPy.

%<-amazon |
websenices F.

N

s

Node-RED

pe

Building

LPus LIPU

Fig. 1 - Architecture with platform integration.

devices. The proposed solution consists ofusing the
Thinger.io API in Node-RED to create both the
device modeland the data buckets that are used to
store data, dashboards to display data or tokens to
access the data remotely, depending on the
requirements of the specific system. The devices
are then responsible for connecting with Node-RED
through TCP only once, receiving in response the
credentials they will have to use for all
communications with Thinger.io from then
onwards.

Afterthis first connection, all communications with
the devices will be established through Thinger.io,
taking advantage ofits transport efficiency and data
encoding features.

Thus, each device will define its interface using
Thinger.io resources, periodically transmitting
information that can be stored in data buckets.

The secondaspect to be considered is the analysis
of these data by the intermediary servers. To
communicate with Node-RED, Thinger.io HTTP
endpoints are used, creating one for each type of
package that needs to be sent, depending on
application requirements. An API is built in Node-
RED to receive the packets using HTTP-In nodes.
This provides a communication mechanism
between the devices and Node-RED. The latteris in
charge of processing all information, storing it
temporarily, grouping it and filtering it before
sendingit to the cloud, responding to events with a
reduced response time compared to that of the
cloud and generating statistics and useful

- 112 -

information from the system to local level, which
will be sent to Thinger.io through the dedicated
nodesto be written in data buckets and shown to
the user in dashboards.

At this point, the flexibility of Node-RED when
acting on this information should be highlighted.
The most basic processing, and the one
implemented as part of this work, is carried out by
function nodes, which run JavaScript.

In turn, the possibility of using the Thinger.io API
from Node-RED in a dynamic way should be
considered, allowing the creation and modification
of data buckets and dashboards to improve how
information is presented to the end user
automatically from the information collected.

Beyond local collaboration with Thinger.io, Node-
RED meets the otherimportantrequirement for this
type of systems — the interaction with the cloud.
This can be carried out using several dedicated
node packages, which include using services from
Amazon Web Services, Google Cloud, IBM
Watsonand Microsoft Azure, among others. Using
a Thinger.io cloudinstance integrated with Node-
RED is also a possibility, although this
implementation will differ from that used on
intermediary servers.

Finally, cloud services are responsible for tasks that
donot havelow latency requirements; for example,
analyzing information, generating statistics at a
global level, and allowing the implementation of
system-wide operational policies.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

Connect { JSON package

Creale device

Handle response

Build response

Send credentials

JSON Package
Create bucket

Log error

Fig. 2 - Node registration implementation in Node-RED.

4.2. Experimentation

In this section, a possible implementation of the
integration suggested above is described, aimed at
showing its application in a real system.

An energy control system with the typical
requirements of the fog computing model is used
[15, 16].

To integrate both platforms, a Raspberry PI 3 B+
was used as a server, with the Ubuntu operating
system, on which the Thinger.io and Node-RED
instances were deployed. A server developed as
part of the “Intelligent Distributed System for
Energy Control” project was also installed.

It should be noted that, despite the fact that there is
currently a plug-in that allows running Node-RED
within the Thinger.io platform, it is not used in this
development (and this does notchange thenature of
the integration).

The nodes used are Espressif ESP8266 micro-
controllers, each connected to a DHT22
temperature and humidity sensor, an HC-SR501
motion sensor, a real-time clock (RTC), two relays,
and an infrared emitting LED to simulate shutdown
by aremote control. The Thinger.io library is used
for communication with the platform.

The system consists of a large number of nodes,
distributed throughout the various environments of
the buildings to be controlled. These nodes generate
regular readings on the use of electronic devices,
temperature, humidity and presence of people in
each ofthe environments. In addition to this, they
can be used to control these devices, either with
programmed responses based on the readings
mentioned above, orin real time, by local orremote
systemusers. To facilitate their control, devices are
organized into configurable groups (CG) in each
environment, the most common being lights and
ACUs.

Specifically, with the use of the integration
proposed here, we hope to obtain real-time
information such as number of groups in use by
type ofdevice, number ofindividual devices in use
by howthey are controlled, number of CGs turned

- 113 -

on despite no people being detected in the room,
total operation hours per CG for all environments,
average temperature and humidity in the building,
and operation hours per environment.

The evolution of this information throughout the
day is also useful to optimize environment use.
The node registration mechanism described above
was implemented, which is responsible for creating
the device model and data buckets to store
information. For this purpose, a Node-RED flow is
built, which starts by receiving a TCP message
from the new node to be registered. After this, a
randomidentifier forthe node and a credential are
generated, which are usedto build a JSON package
and send the request to the Thinger.io API to
registerthe device, usingthe HTTP Request node.
If this request is successful, a second call is made,
which creates a data bucket corresponding to the
node. In parallel, the new credentials are sent to the
node. Figure 2 shows the implementation in Node-
RED.

Once the nodeknows its credentials, it connects to
Thinger.io and defines its interface using the
following resources:

- group_status: This contains information about
the status ofeach group ofdevices in the room,
which can be on, off, or in standby (ie.,
temporarily turned offuntilsomeone is detected
in the room). In addition, the package contains
information about thenumber of devices turned
on, grouped by those controlled by relays and
those controlled by infrared emitters.

- ambient_status: This contains roomtemperature
and humidity readings, ora notification in case
of'sensor failure.

- motion_report: It indicates if movement was
detected in the roomsincethe lastreport sent; it
also includes the configured time range for the
reports.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

Background tasks & Group use time Group use time
Global Group Status -
Group Stafus Group Fiiter Global Actuator Status
Global Device State
Ambient Status 1 Ambient Filter Global Ambiert Average
\
Motion Report (- Mation fiter Room Use Data
Response Ack

Fig. 3 - Data processing implementation in Node-RED.

Alltheseresources also attach the corresponding
device IDs, which is useful for processing in Node-
RED. Each of these will be periodically
transmitted, stored in the databucket corresponding
to thenode,andsentto Node-RED for processing.
Specifically, the information corresponding to
groups anddevices is temporarily stored in orderto
group all the rooms and calculate the number of
groups in use of each type, their usage time, the
groups that are turned on in empty rooms, and the
number of devices currently in use.

Temperature and humidity readings receive a
similar treatment, calculating an average or
generating a notificationifany undesirable value is
reported, for example, to optimize the use of ACUs.
The information generated by the motion detector is
used in combination with the groups to calculate
device usage time in empty rooms.

At the same time, Node-RED allows scheduling
tasks to be carried out periodically for example, to
continually update group usage hours.

Figure 3 demonstrates the implementation for data
reception, processing and storage in Node-RED.

Grupes suspendidos Grupos encendidos

6 | 52

Temperatura y humedad promedio
= Sin presencia

5o WL e S e o pefity 1 O

Grupes por hora

B <

Shehs W 5 A

BA_ o AR i

-114-

Dispositivos actives

.. . \;"\'\Jfﬂ 9 NMM,»«I‘\\ V %—-,-"‘-,IV .F**“\V ."V '\.IIU II.?\,/“-»

Grupas encendidos

w8 R

Afterthe information is processed, it is sent to
Thinger.io forstorageand display. Write nodes are
used in data buckets to keep a historical record of
all data,and there is some flexibility for displaying
it.

Finally, a dashboard was built on Thinger.io for
monitoring the entire building. This dashboarduses
the information stored in the databuckets and
displays it in real time and shows its evolution
throughout theday. Device use, groupuseand
room temperature were displayed as daily
evolution, while the rest ofthe information was
displayedin real time. Figure 4 shows the finished
dashboard.

5. Conclusions and Future Work

The features to be considered for fog computing
platforms were presented and the integration oftwo
separate platforms was carried out aimed at
providing a basis for future developments related to

::\{)\J\?‘f'Iv“"_a—"ﬂ.“(\’"*‘&“fv‘u"‘_’-.ﬂﬁﬁ\‘{bw?“'.‘f\f’\j

Luces encendidas [« .. Ares

26 | 8 18

Computadoras Aires

Horas dewso Horasde uso Horas dewsa

1542 | £5

Figugrhe 4. Building dashboard in Thinger.io.

132

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

fog computing. This integrationis used formeeting
the requirements of this type of applications:

- Device management: Thinger.io administration
is complemented with an automatic registration
mechanism in Node-RED, crucial for the
deploymentof systems with a large number of
nodes.

- Data processing: Data processing is
implemented using JavaScript, generating
information and responseto events in real time,
which allows monitoring the systemon different
levels.

- Security: The secure communication features
provided by Thinger.io are used to communicate
with devices, processing is done locally, and
dedicated Node-RED nodes are used for
communication with the cloud, protecting
connection security.

- Gateway: Thinger.io's proprietary
communication protocol is used, as well as its
packet encryption, which provides efficiency
and flexibility. A variety of devices can be
connected, including Espressif ESP8266,
ESP32, Arduino and Raspberry Pi, among
others.

In the future, thedeployment of several integration
instances communicated using some specific cloud
service will be studied, and tests with higher
volumes of data and architecture stress tests will
also be performed. On the other hand, an
increasingly common feature in this type of
systems, and offered by most loT platforms in the
cloud, is using machine learning predictions on the
data generated by the nodes. Node-RED provides
this option through different dedicated node
libraries, capable of making predictions based on a
modeltrained in the cloud, taking advantage of its
greater processing capacity. This option is one of
the features planned foraddition tothis integration
in the future.

Competing interests

The authors have declared that no competing interests
exist.

Authors’ contribution

JA and SM conceived and developed the integration.
All authors analyzed the results, wrote, revised and
approved the manuscript.

-115-

References

[1] P. Mell and T. Grance, “The NIST Definition of
Cloud Computing”. Special Publication 800-145,
National Institute of Standards and Technology,
U.S. Department of Commerce, 2010.

[2] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, “Fog
Computing and Its Role in the Internet of Things”,
in MCC '12: Proceedings of the first edition of the
MCC workshop on Mobile cloud computing.
Association for Computing Machinery, New York,
NY, United States, 2012.

[3] M. Asemani, F. Jabbari, F. Abdollahei and P.
Bellavista, ”A Comprehensive Fog-enabled
Architecture for [oT Platforms”, High-Performance
Computing and Big Data Analysis. TopHPC 2019.
Communications in Computer and Information
Science, vol 891. Springer, Cham, 2019.

[4] M. Cruz, J. Rodriguez, A. K. Sangaiah, J. Al-
Muhtadi and V. Korotaev, “Performance evaluation
of IoT middleware”, Journal of Network and
Computer Applications, Volume 109, 2018.

[5] “Thingboard Open Source IoT Platform”. Available
at: https://thingsboard.io/. Accessed on 2020-10-10.

[6] T. L. Scott and A. Eleyan, “CoAP based IoT data
transfer from a Raspberry Pi to Cloud”.
International Symposium on Networks, Computers
and Communication (ISNCC2019), Istanbul, Turkey,
pp. 1-6, 2019.

[7] “Mainflux Open Source [oT Platform” . Available
at: https://www.mainflux.com/. Last accessed: 2020-
10-10.

[8] “SiteWhere Open Source Internet of Things
Platform”. Available at: https://sitewhere.io/. Last
accessed: 2020-10-10.

[9] A. L. Bustamante, M. A. Patricio and J. M. Molina,
“Thinger.io: An Open Source Platform for
Deploying Data Fusion Applications in IoT
Environments”, Sensors 2019,19 (5), 1044, MDPI,
2019.

[10] A. A. Rodriguez Aya, J. A. Figueredo Luna and J.
A. Chica Garcia, “Sistema de control y telemetria de
datos mediante una aplicacion movil en Android
basado en [oT para el monitoreo de datos”. Espacios
39(22):30, Espacios Inc., 2018.

[11] L. Aghenta and T. Igbal, “Low-Cost, Open Source
IoT-Based SCADA System Design Using
Thinger.IO and ESP32 Thing”, Electronics 2019,
8(8), 822, MDPI, 2019.

[12] W. S. Aung and S. Aung Nyein Oo, “Monitoring
and Controlling Device for Smart Greenhouse by
using Thinger.io IoT Server”. International Journal
of Trend in Scientific Research and Development,
2019.

[13] Dr. S. K. Selvaperumal, W. Al-Gumaei, R. Abdulla
and V. Thiruchelvam, “Integrated Waireless
Monitoring System Using LoRa and Node-Red for
University Building”. Journal of Computational and
Theoretical Nanoscience, Volume 16, Number 8,
American Scientific Publishers, 2019.

https://thingsboard.io/
https://www.mainflux.com/
https://sitewhere.io/

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

[14] S. Sicari, A. Rizzardi and A. Coen-Porisini, “Smart
Transport and Logistics: a Node-RED
implementation”, Internet Technology Letters,
Volume 2, Issue 2, John Wiley & Sons, 2019.

[15] Proyecto “Unidad Inteligente para Controlde
Consumo Eléctrico (UICCE)”, Convocatoria
"Vinculacion Tecnologica. Agregando Valor
2017" Secretaria de Politicas Universitarias
(SPU). Approved andfinanced by SPU and
UNLP, Supervision: Dra. Laura De Giusti,
2017.

[16] M. Pi Puig, J. M. Paniego, S. Medina, S. Rodriguez
Eguren, L. Libutti, J. Lanciotti, J. de Antueno, C.
Estrebou, F. Chichizola and L. De Giusti,
“Intelligent Distributed System for Energy Efficient
Control”, Cloud Computing and Big Data. JCC&BD
2019. Communications in Computer and

- 116 -

Information Science, vol 1050. Springer, Cham,
2019.

Citation: J. de Antueno, S. Medina, L. De
Giusti and A. De Giusti. Analysis, Deployment
and Integration of Platforms for Fog
Computing. Journal of Computer Science &
Technology, vol. 20, no. 2, pp. 108-116, 2020.
DOI: 10.24215/16666038.20.e12.

Received: June 1, 2020 Accepted: October 10,
2020.

Copyright: This article is distributed under the
terms of the Creative Commons License CC-

@-NC. /

