

- ORIGINAL ARTICLE -

Analysis, Deployment and Integration of Platforms for
Fog Computing

Análisis, Despliegue e Integración de Plataformas para Fog Computing

Joaquín de Antueno , Santiago Medina1 , Laura De Giusti12 and Armando De Giusti13
1 Instituto de Investigación en Informática III LIDI, Facultad de Informática, Universidad Nacional de La

Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
2 CICPBA - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina

3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
{jdeantueno, smedina, ldegiusti, degiusti}@lidi.info.unlp.edu.ar

Abstract

In IoT applications, data capture in a sensor
network can generate a large flow of information
between the nodes and the cloud, affecting response
times and device complexity but, above all,
increasing costs. Fog computing refers to the use of
pre-processing tools to improve local data
management and communication with the cloud.
This work presents an analysis of the features that
platforms implementing fog computing solutions
should have. Additionally, an experimental work
integrating two specific platforms used for
controlling devices in a sensor network, processing
the generated data, and communicating with the
cloud is presented.

Keywords: Cloud Computing, Fog Computing,
Internet of Things, IoT Platforms.

Resumen

En las aplicaciones de IoT la captación de datos en
una red de sensores puede generar un gran flujo de
información entre los nodos y el cloud,
condicionando los tiempos de respuesta, la
complejidad en los dispositivos y por sobre todo
incrementando los costos. Fog Computing se
refiere a la utilización de herramientas de pre-
procesamiento para mejorar el manejo de datos
locales y la comunicación con la nube. En este
trabajo se presenta el análisis de las características
que deben tener las plataformas que implementan
soluciones de Fog Computing. Adicionalmente se
presenta un trabajo experimental que integra dos
plataformas específicas, aplicadas al control de
dispositivos en una red de sensores, el
procesamiento de los datos generados y la
comunicación con la nube.

Palabras claves: Cloud Computing, Fog
Computing, Internet de las Cosas, Plataformas de
IoT.

1. Introduction

The cloud computing model is designed to provide
remote, on-demand access to a shared set of
resources, such as servers, networks, storage, or
other services. These resources can be acquired and
released with minimal effort on the part of the user,
regardless of the infrastructure required to use
them, and with reduced interaction with the service
provider [1].

As a result of the proliferation of Internet-of-Things
(IoT) applications in recent years, cloud service
providers are turning more and more attention to
developing platforms for the deployment of such
applications. The challenge lies in the new needs
that some IoT systems pose, which the cloud has
difficulties covering, including communication with
a large number of nodes maintaining a low response
time and receiving large volumes of information
recorded by sensors to be analyzed, stored and
ultimately displayed to the user. This last aspect is
of particular interest, given that the traffic that goes
to the cloud in this type of applications is one of the
main costs generated.
In response to this problem, a new model, called
fog computing, was proposed, which consists of an
intermediate processing, storage and connectivity
layer for IoT nodes, located close to them, on the
edge of the network [2]. In this model,
communication load with all nodes is distributed
among several geographically distributed servers,
with the goal of providing shorter response times

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 108 -

and managing the volume of data generated locally.
This intermediate layer, in turn, interacts with the
cloud, and delegates to it only the tasks for which a
greater computational capacity, storage or a global
vision of the system is required. This model also
reduces the flow of data to the cloud, acting as a
filter or by preprocessing the information, thus
reducing communication costs.

The main goals are:
▪ Integration of a platform (Node Red) that is a

flow based programming tool designed to
manage and handle MQTT topics which allows
communication with cloud platforms and an
IoT platform (Thinger.io) that provides
communication with system nodes, storage,
data visualization and other features as efficient
data transmission for real time communication.

▪ Experimentation with one possible
implementation of the integration, in the
context of a real life Fog Computing system.

This work is formed by 5 sections, the first of
which is this introduction. Section 2 provides a
definition for the Fog Computing model as well as
for the main attributes of applications that follow
the model. In section 3 the different functionalities
to be provided by an IoT platform to be used in Fog
Computing are described, and it is analyzed which
of them and how they are implemented by
Thinger.io and Node-RED. In section 4 an
integration of these two platforms is proposed and
analyzed, and an example implementation of the
integration in the context of a real Fog Computing
application is described. Finally, section 5 examines
how the necessary functionalities for the
development of Fog Computing systems are
provided by the proposed integration and describes
related future work.

2. Fog Computing

The fog computing model comes as a response to
an emerging wave of developments related to the
Internet of Things, originally conceived by Bonomi
[2]. These developments have characteristics that
make their development more complex using cloud
computing technologies exclusively, but still
benefit from their use. Fog computing then consists
of an intermediate platform that provides
processing, storage and network communication
services between edge devices that collect
information and data centers in the cloud. The
defining characteristics of this model are:

- Real-time applications.
- Wide geographic distribution.

- Large number of nodes.
- Node heterogeneity.
- Mobility.
- Predominantly wireless communication

network.
- Low latency and location awareness.

At the same time, it should be noted that this
architecture does not work as a replacement for the
cloud, but interaction with it is crucial, with limited
resources available at the edge of the network.

3. IoT Platforms Applied to Fog
Computing

In [3], Assemani et al. identify the main
functionality that should be offered by a fog
computing-oriented IoT platform that is
implemented as the middle layer of the model.
Their goal was to define a model architecture for
these platforms and have an evaluation framework
for the different existing platforms.

In particular, the following components or
functionality to be offered by the fog layer in the
platform are specified:

- Device management: It provides real-time
communication, identification and response to
devices at the edge of the network.

- Data processing: It is responsible for sending
data to the cloud, as well as local processing,
which includes storage, filtering and analysis. It
can also respond to events generated by devices
in real time.

- Security: This includes both communications
security and edge devices authentication, as well
as controlling access to these devices and their
data and establishing secure communication
with the cloud.

- Gateway features: Protocol translation and
managing devices with various characteristics.

- Application life cycle management: Application
development, distribution, deployment and
updates.

This set of components, derived from 10 platforms
in use in the market, allows defining the needs that
a fog computing-oriented system should cover, as
well as having a clear criterion to assess results.

Additionally, the implementation priority for each
of the components is defined, based on the order in
which they were incorporated into the main market
platforms. Device management, data processing,
and gateway features are the highest priorities for
these platforms, followed by security measures and,

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 109 -

finally, application life cycle management, which is
offered only by a handful of the platforms in the
market.

Related works evaluating and comparing different
IoT platform’s features exist, both in the context of
Fog Computing and outside of it [3, 4]. To the
author’s knowledge no previous works exist
regarding integrations between IoT platforms
similar to the one described in this paper.

Our work began in 2018 using Node-RED extended
functionality to communicate with cloud platforms.
In this paper we present the required integration
with a Thinger.io to provide efficient
communication with system nodes. The result is a
Fog Computing platform that allows new cloud
services for IoT applications.

Different IoT platforms were considered, including
Thinger.io, Thingsboard [5, 6], Mainflux [7] and
SiteWhere [8]. Our choice of integrating Node-
RED with Thinger.io was based on the features this
platform provides for communication with external
services, and the third party Node-RED libraries
specifically designed to work with Thinger.io.

The features of Thinger.io and Node-RED, the
platforms to be used for this integration, are
described below. Also, some missing features that
are required to adapt to the model described are
pointed out.

3.1. Thinger.io

Thinger.io [9] is an open source IoT platform that
follows the cloud computing model, providing
communication with system nodes, storage and data
visualization, among other features. It places
special emphasis on efficient data transmission,
real-time two-way communication, interoperability,
and deployment simplicity.

Specifically, Thinger.io provides the following
features:

- Device models: Each node is modeled by a
device on Thinger.io, and is identified by a
unique credential that allows connecting to the
platform securely.

- Resources: These are a complement to device
model, representing the information that flows
from or to the nodes. They are defined in a
simple way in the node code, and are encoded
using Protoson, a proprietary library, to reduce
packet size.

- Data Buckets: These are a chronologically
ordered form of storage in which devices can

publish information, to which a timestamp is
added when it gets to the platform.

- Endpoints: These allow devices to communicate
with services external to Thinger, either through
HTTP requests or by sending e-mails. These
communications may include resources defined
by the devices in JSON format, or they may use
a different format that incorporates this
information as necessary.

- Dashboards: These consist of a configurable
user interface that allows graphically
representing data in real time from the devices
or extracting historical information from the
buckets.

- REST API: It allows interaction with Thinger
from external services, either to manage
buckets, endpoints, devices or dashboards, or to
communicate directly with the nodes.

This platform is used in various IoT applications;
[10, 11, 12] are some examples of systems
implemented using Thinger.io.

3.2. Node-RED

Node-Red is a flow-based open source
programming tool, originally designed to manage
and handle MQTT topics. It is ultimately a general
purpose tool, although nowadays it is strongly
oriented towards the development of IoT
applications [13, 14]. The different features of the
platform are modularized into "nodes" that
interconnect to create the application,
communicating with each other through JSON
packages. The main nodes used in this work are:

- HTTP In: It allows creating an HTTP access
point through which other platforms can
communicate. As output, it produces a packet
with the body of the request and other data used
to send a response.

- HTTP Request: It allows sending an HTTP
request to an external service, producing as
output a raw buffer or a JSON object.

- Function Nodes: These are general-purpose
nodes that run JavaScript code every time they
receive a package from another node, generating
a JSON object as output or stopping the flow if
necessary.

- Bucket Write: It allows writing the contents of
the object received as input to a Thinger.io data
bucket.

- TCP In: It allows establishing a TCP connection
to a remote server, or accepting incoming
connections, returning as output the packets
received together with connection
characteristics.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 110 -

- TCP Out: It allows replying to messages
received through the TCP In node.

Node-RED functionality can also be extended
through numerous libraries. For the purposes of our
work, the most relevant ones are those that allow
communication with other cloud platforms,
including Thinger.io, AWS IoT and IBM Watson,
among others.

3.3. Feature Analysis

After considering the use of Thinger.io as a fog
computing platform, based on the criteria
mentioned above, it is found that it only partially
fulfills the required functionality:

- When it comes to device management,
Thinger.io provides efficient, real-time
communication through its device models and
resources. We noted the need for automatic
device registration, crucial for scalability and
ease of deployment on systems with a large
number of nodes.

- Data processing is the biggest flaw we found on
the platform, since it only allows storage
through data buckets, which can be displayed on
dashboards. That is, data cannot be locally
analyzed to obtain the information that is more
useful for the user, nor to respond to node
events.

- Additionally, the only mechanism to connect
with external services, the endpoint, only
facilitates the direct transfer from a device to a
service via HTTP, which excludes the
application of any type of platform filters or
pre-processing if the data are sent to the cloud.

- Regarding security, Thinger.io provides
encrypted communications using TLS for
connections to nodes. As already mentioned,
communication with the cloud would occur
through endpoints, which do not provide any
type of security feature.

- As regards gateway features, protocol
compatibility is solved by using Thinger.io's
proprietary one, built directly on TCP. In turn,
libraries are provided that allow connecting to a
variety of hardware devices, regardless of their
characteristics, through the defined resources.

- The platform does not currently provide the
necessary functionality for application life cycle
management.

Node-RED complements the features offered by
Thinger.io, with the possibility of assembling
processing flows that work with the data buckets
that store the data. In addition, it allows secure
interaction with cloud services through dedicated
nodes.

The complete analysis of Node-RED features is
beyond the scope of this work, since it is a general-
purpose tool. For this reason, we will only discuss
the features that are useful for our development.

4. Model Architecture and Integration

Having described the features of each platform and
their deficiencies in the context of a Fog Computing
application, we proceed to describe the integration
between them, conceived with the objective of
solving these deficiencies.

The model architecture would then include all the
edge devices, each equipped with their respective
sensors and actuators. These devices are distributed
over a wide geographic area and they may be
provided with mobility. The intermediary servers
are deployed near to them in order to fulfill the low
latency requirements and analyze the data the edge
devices generate. Each of the servers runs an
instance of both Node-RED and Thinger.io, which
complement their capabilities to accomplish all
required tasks. These servers are only responsible
for tasks with limited resource requirements. The
rest of the tasks, which demand more processing or
storage capacity than the intermediary servers can
offer and are not limited by the same time
constraints, are performed by the cloud. This
reduces its usage and the volume of data it receives
to the minimum levels. Figure 1 demonstrates the
interaction between the three layers of the model. It
is important to notice how each intermediary server
only manages the (relatively reduced) group of
edge devices deployed nearest to it.

4.1. Integration

In this section we will describe how the integration
between Thinger.io and Node-RED works, in a way
that allows them to complement their functionalities
and provides us with a platform for developing Fog
Computing applications.

The first point to solve is edge device registration
on Thinger.io, which is required to communicate
with the platform. By default, this must be done
manually, which is very limiting in terms of
deployment and scalability in a system with many

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 111 -

Fig. 1 - Architecture with platform integration.

devices. The proposed solution consists of using the
Thinger.io API in Node-RED to create both the
device model and the data buckets that are used to
store data, dashboards to display data or tokens to
access the data remotely, depending on the
requirements of the specific system. The devices
are then responsible for connecting with Node-RED
through TCP only once, receiving in response the
credentials they will have to use for all
communications with Thinger.io from then
onwards.

After this first connection, all communications with
the devices will be established through Thinger.io,
taking advantage of its transport efficiency and data
encoding features.

Thus, each device will define its interface using
Thinger.io resources, periodically transmitting
information that can be stored in data buckets.

The second aspect to be considered is the analysis
of these data by the intermediary servers. To
communicate with Node-RED, Thinger.io HTTP
endpoints are used, creating one for each type of
package that needs to be sent, depending on
application requirements. An API is built in Node-
RED to receive the packets using HTTP-In nodes.
This provides a communication mechanism
between the devices and Node-RED. The latter is in
charge of processing all information, storing it
temporarily, grouping it and filtering it before
sending it to the cloud, responding to events with a
reduced response time compared to that of the
cloud and generating statistics and useful

information from the system to local level, which
will be sent to Thinger.io through the dedicated
nodes to be written in data buckets and shown to
the user in dashboards.

At this point, the flexibility of Node-RED when
acting on this information should be highlighted.
The most basic processing, and the one
implemented as part of this work, is carried out by
function nodes, which run JavaScript.

In turn, the possibility of using the Thinger.io API
from Node-RED in a dynamic way should be
considered, allowing the creation and modification
of data buckets and dashboards to improve how
information is presented to the end user
automatically from the information collected.

Beyond local collaboration with Thinger.io, Node-
RED meets the other important requirement for this
type of systems – the interaction with the cloud.
This can be carried out using several dedicated
node packages, which include using services from
Amazon Web Services, Google Cloud, IBM
Watson and Microsoft Azure, among others. Using
a Thinger.io cloud instance integrated with Node-
RED is also a possibility, although this
implementation will differ from that used on
intermediary servers.

Finally, cloud services are responsible for tasks that
do not have low latency requirements; for example,
analyzing information, generating statistics at a
global level, and allowing the implementation of
system-wide operational policies.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 112 -

Fig. 2 - Node registration implementation in Node-RED.

4.2. Experimentation

In this section, a possible implementation of the
integration suggested above is described, aimed at
showing its application in a real system.
An energy control system with the typical
requirements of the fog computing model is used
[15, 16].
To integrate both platforms, a Raspberry PI 3 B+
was used as a server, with the Ubuntu operating
system, on which the Thinger.io and Node-RED
instances were deployed. A server developed as
part of the “Intelligent Distributed System for
Energy Control” project was also installed.
It should be noted that, despite the fact that there is
currently a plug-in that allows running Node-RED
within the Thinger.io platform, it is not used in this
development (and this does not change the nature of
the integration).
The nodes used are Espressif ESP8266 micro-
controllers, each connected to a DHT22
temperature and humidity sensor, an HC-SR501
motion sensor, a real-time clock (RTC), two relays,
and an infrared emitting LED to simulate shutdown
by a remote control. The Thinger.io library is used
for communication with the platform.
The system consists of a large number of nodes,
distributed throughout the various environments of
the buildings to be controlled. These nodes generate
regular readings on the use of electronic devices,
temperature, humidity and presence of people in
each of the environments. In addition to this, they
can be used to control these devices, either with
programmed responses based on the readings
mentioned above, or in real time, by local or remote
system users. To facilitate their control, devices are
organized into configurable groups (CG) in each
environment, the most common being lights and
ACUs.
Specifically, with the use of the integration
proposed here, we hope to obtain real-time
information such as number of groups in use by
type of device, number of individual devices in use
by how they are controlled, number of CGs turned

on despite no people being detected in the room,
total operation hours per CG for all environments,
average temperature and humidity in the building,
and operation hours per environment.
The evolution of this information throughout the
day is also useful to optimize environment use.
The node registration mechanism described above
was implemented, which is responsible for creating
the device model and data buckets to store
information. For this purpose, a Node-RED flow is
built, which starts by receiving a TCP message
from the new node to be registered. After this, a
random identifier for the node and a credential are
generated, which are used to build a JSON package
and send the request to the Thinger.io API to
register the device, using the HTTP Request node.
If this request is successful, a second call is made,
which creates a data bucket corresponding to the
node. In parallel, the new credentials are sent to the
node. Figure 2 shows the implementation in Node-
RED.

Once the node knows its credentials, it connects to
Thinger.io and defines its interface using the
following resources:
- group_status: This contains information about

the status of each group of devices in the room,
which can be on, off, or in standby (i.e.,
temporarily turned off until someone is detected
in the room). In addition, the package contains
information about the number of devices turned
on, grouped by those controlled by relays and
those controlled by infrared emitters.

- ambient_status: This contains room temperature
and humidity readings, or a notification in case
of sensor failure.

- motion_report: It indicates if movement was
detected in the room since the last report sent; it
also includes the configured time range for the
reports.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 113 -

Fig. 3 - Data processing implementation in Node-RED.

All these resources also attach the corresponding
device IDs, which is useful for processing in Node-
RED. Each of these will be periodically
transmitted, stored in the data bucket corresponding
to the node, and sent to Node-RED for processing.
Specifically, the information corresponding to
groups and devices is temporarily stored in order to
group all the rooms and calculate the number of
groups in use of each type, their usage time, the
groups that are turned on in empty rooms, and the
number of devices currently in use.
Temperature and humidity readings receive a
similar treatment, calculating an average or
generating a notification if any undesirable value is
reported, for example, to optimize the use of ACUs.
The information generated by the motion detector is
used in combination with the groups to calculate
device usage time in empty rooms.
At the same time, Node-RED allows scheduling
tasks to be carried out periodically for example, to
continually update group usage hours.

Figure 3 demonstrates the implementation for data
reception, processing and storage in Node-RED.

After the information is processed, it is sent to
Thinger.io for storage and display. Write nodes are
used in data buckets to keep a historical record of
all data, and there is some flexibility for displaying
it.
Finally, a dashboard was built on Thinger.io for
monitoring the entire building. This dashboard uses
the information stored in the data buckets and
displays it in real time and shows its evolution
throughout the day. Device use, group use and
room temperature were displayed as daily
evolution, while the rest of the information was
displayed in real time. Figure 4 shows the finished
dashboard.

5. Conclusions and Future Work

The features to be considered for fog computing
platforms were presented and the integration of two
separate platforms was carried out aimed at
providing a basis for future developments related to

Figure 4. Building dashboard in Thinger.io.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 114 -

fog computing. This integration is used for meeting
the requirements of this type of applications:

- Device management: Thinger.io administration
is complemented with an automatic registration
mechanism in Node-RED, crucial for the
deployment of systems with a large number of
nodes.

- Data processing: Data processing is
implemented using JavaScript, generating
information and response to events in real time,
which allows monitoring the system on different
levels.

- Security: The secure communication features
provided by Thinger.io are used to communicate
with devices, processing is done locally, and
dedicated Node-RED nodes are used for
communication with the cloud, protecting
connection security.

- Gateway: Thinger.io's proprietary
communication protocol is used, as well as its
packet encryption, which provides efficiency
and flexibility. A variety of devices can be
connected, including Espressif ESP8266,
ESP32, Arduino and Raspberry Pi, among
others.

In the future, the deployment of several integration
instances communicated using some specific cloud
service will be studied, and tests with higher
volumes of data and architecture stress tests will
also be performed. On the other hand, an
increasingly common feature in this type of
systems, and offered by most IoT platforms in the
cloud, is using machine learning predictions on the
data generated by the nodes. Node-RED provides
this option through different dedicated node
libraries, capable of making predictions based on a
model trained in the cloud, taking advantage of its
greater processing capacity. This option is one of
the features planned for addition to this integration
in the future.

Competing interests

The authors have declared that no competing interests
exist.

Authors’ contribution

JA and SM conceived and developed the integration.
All authors analyzed the results, wrote, revised and
approved the manuscript.

References

[1] P. Mell and T . Grance, “The NIST Definition of
Cloud Computing”. Special Publication 800-145,
National Institute of Standards and Technology,
U.S. Department of Commerce, 2010.

[2] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, “Fog
Computing and Its Role in the Internet of Things”,
in MCC '12: Proceedings of the first edition of the
MCC workshop on Mobile cloud computing.
Association for Computing Machinery, New York,
NY, United States, 2012.

[3] M. Asemani, F. Jabbari, F. Abdollahei and P.
Bellavista, ”A Comprehensive Fog-enabled
Architecture for IoT Platforms”, High-Performance
Computing and Big Data Analysis. TopHPC 2019.
Communications in Computer and Information
Science, vol 891. Springer, Cham, 2019.

[4] M. Cruz, J. Rodriguez, A. K. Sangaiah, J. Al-
Muhtadi and V. Korotaev, “Performance evaluation
of IoT middleware”, Journal of Network and
Computer Applications, Volume 109, 2018.

[5] “Thingboard Open Source IoT Platform”. Available
at: https://thingsboard.io/. Accessed on 2020-10-10.

[6] T. L. Scott and A. Eleyan, “CoAP based IoT data
transfer from a Raspberry Pi to Cloud”.
International Symposium on Networks, Computers
and Communication (ISNCC2019), Istanbul, Turkey,
pp. 1-6, 2019.

[7] “Mainflux Open Source IoT Platform” . Available
at: https://www.mainflux.com/. Last accessed: 2020-
10-10.

[8] “SiteWhere Open Source Internet of Things
Platform”. Available at: https://sitewhere.io/. Last
accessed: 2020-10-10.

[9] A. L. Bustamante, M. A. Patricio and J. M. Molina,
“Thinger.io: An Open Source Platform for
Deploying Data Fusion Applications in IoT
Environments”, Sensors 2019,19 (5), 1044, MDPI,
2019.

[10] A. A. Rodriguez Aya, J. A. Figueredo Luna and J.
A. Chica García, “Sistema de control y telemetría de
datos mediante una aplicación móvil en Android
basado en IoT para el monitoreo de datos”. Espacios
39(22):30, Espacios Inc., 2018.

[11] L. Aghenta and T . Iqbal, “Low-Cost, Open Source
IoT-Based SCADA System Design Using
Thinger.IO and ESP32 Thing”, Electronics 2019,
8(8), 822, MDPI, 2019.

[12] W. S. Aung and S. Aung Nyein Oo, “Monitoring
and Controlling Device for Smart Greenhouse by
using Thinger.io IoT Server”. International Journal
of Trend in Scientific Research and Development,
2019.

[13] Dr. S. K. Selvaperumal, W. Al-Gumaei, R. Abdulla
and V. Thiruchelvam, “Integrated Wireless
Monitoring System Using LoRa and Node-Red for
University Building”. Journal of Computational and
Theoretical Nanoscience, Volume 16, Number 8,
American Scientific Publishers, 2019.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 115 -

https://thingsboard.io/
https://www.mainflux.com/
https://sitewhere.io/

[14] S. Sicari, A. Rizzardi and A. Coen-Porisini, “Smart
Transport and Logistics: a Node-RED
implementation”, Internet Technology Letters,
Volume 2, Issue 2, John Wiley & Sons, 2019.

[15] Proyecto “Unidad Inteligente para Control de
Consumo Eléctrico (UICCE)”, Convocatoria
"Vinculación Tecnológica. Agregando Valor
2017", Secretaría de Políticas Universitarias
(SPU). Approved and financed by SPU and
UNLP, Supervision: Dra. Laura De Giusti,
2017.

[16] M. Pi Puig, J. M. Paniego, S. Medina, S. Rodriguez
Eguren, L. Libutti, J. Lanciotti, J. de Antueno, C.
Estrebou, F. Chichizola and L. De Giusti,
“Intelligent Distributed System for Energy Efficient
Control”, Cloud Computing and Big Data. JCC&BD
2019. Communications in Computer and

Information Science, vol 1050. Springer, Cham ,
2019.

Citation: J. de Antueno, S. Medina, L. De
Giusti and A. De Giusti. Analysis, Deployment
and Integration of Platforms for Fog
Computing. Journal of Computer Science &
Technology, vol. 20, no. 2, pp. 108-116, 2020.
DOI: 10.24215/16666038.20.e12.
Received: June 1, 2020 Accepted: October 10,
2020.
Copyright: This article is distributed under the
terms of the Creative Commons License CC-
BY-NC.

Journal of Computer Science & Technology, Volume 20, Number 2, October 2020

- 116 -

