A Component Model

for Field Devices

Oscar NierstraszGabriela ArévaIS,Stéphane Ducass&oel Wuyts*, Andrew Black,
Peter Miiller;” Christian Zeidlef, Thomas Genssléf, and Reinier van den Bdrh

Abstract. Component-based software development is becoming mainstream
for conventional applications. However, components can be difficult to deploy
in embedded systems because of non-functional requiremeatssiB a col-
laborative project between industrial and research partners that seeks to enable
component-based technology for a class of embedded systems known as “field
devices”. In this paper we introduce a component model for field devices that
captures a range of non-functional properties and constraints. We report on the
current status of #0s including the Bcos composition language, language
mappings to Java and C++, and industrial case studies.

1 Introduction

The software engineering landscape is far less developed for embedded systems than
for other application areas. Software for embedded systems is typically monolithic and
platform-dependent. These systems are hard to maintain, upgrade and customize, and
they are almost impossible to port to other platforms. Component-based software engi-
neering would bring a number of advantages to the embedded systems world such as
faster development times, the reuse of existing components, and the ability for domain
experts to interactively compose and adapt sophisticated embedded systems software.

Unfortunately component-based software development (CBSD) cannot yet be ap-
plied to embedded systems development. Until now, the mainstream IT players have
not paid very much attention to the (so far) relatively small embedded systems market,
and consequently there exists little component-based technology or tools for embedded
systems. This situation is understandable if we consider the technical obstacles that em-
bedded systems pose for CBSD: their software must typically fulfil stringent non-func-
tional requirements imposed by the run-time environment, such as severely limited
CPU power, and memory, and by the application domain, such as hard real-time con-

* This is an extended version of a paper presented at CD 2002, Berlin.

T Software Composition Group, Institut fir Informatik und Angewandte Mathematik,
University of Bern, Switzerland — {oscar,ducasse,wuyts}@iam.unibe.ch —
www.iam.unibe.ch/~scg/.

T Department of Computer Science & Engineering, Oregon Health & Science University
— black@cse.ogi.edu — www.cse.ogi.edu/~blawligiting SCG.

** ABB Research Center, Germany — {peter.o.mueller, christian.zeidler}@de.abb.com
— www.abb.com.

1 FZI Research Center for Information Technologies, Germany — genssler@fzi.de —
www.fzi.de.

11 OTI, The Netherlands — Reinier_van_den_Born@oti.com — www.oti.com.

http://www.iam.unibe.ch/~scg/
http://www.cse.ogi.edu/~black/
http://www.abb.com
http://www.fzi.de/
http://www.oti.com/

A Component Model for Field Devices 2

straints. Current CBSD approaches typically assume generous run-time environments
and all but ignore non-functional requirements such as timing.

The rapidly expanding market in embedded systems, however, makes CBSD for
such systems not only viable but also essential. In order for industry to benefit from in-
creasingly powerful and less expensive hardware, there is a great need to be able to de-
velop and port embedded software more quickly and at acceptable costs. Vendors of
embedded devices would benefit by being able to offer scalable product families, whose
functionality could be tailored by replacing or reconfiguring software components. The
key technical questions remain:

e Component modelsivhat kind of component models are needed to support
CBSD for embedded systems software?

* Non-functional requirementsHow can we reason about non-functional con-
straints of systems based on properties of their constituent components?

¢ Tools: What tools are need to specify, compose, validate and compile embedded
systems applications built from components?

The PEcosprojecf aims to enable component-based software development for em-
bedded systems. In order to achieve concrete results within a limited freous i
driven by a case study in the domairiiefd deviceswhich are field deployable control
devices further described in section 2. Section 3 presents a running example, and sec-
tion 4 introduces thedeosfield device component model, focusing on the structural
aspects. In section 5 we present the execution semantics of the component model, by
translation to Petri nets. By extending this interpretation to time Petri nets [13], we in-
tend to reason about real-time constraints and automatically generate real-time sched-
ules. Section 6 illustrates how the component model will be applied by meao€of
a composition language [8] that can be used to configure and compose components. Fi-
nally, in section 7, we summarize the current state of the project, which is still in
progress.

2 PEcos

ABB'’s Instruments business unit develops a large number of difféeddhtdevices

such as temperature, pressure, and flow sensors, actuators, and positioners. As field de-
vices turn into commodities, the software increasingly determines the competitiveness
of the devices. As the market demands new functionality in shorter time cycles, soft-
ware begins to dominate the development and maintenance costs of field devices.

Software for field devices is currently monolithic, and does not exploit CBSD for
the reasons outlined above. The high cost of developing the software, the long develop-
ment cycles, the high degree of architectural and implementation duplication, as well as

* Funded by the European Commission as project IST-1999-20398 and by the Swiss
government as BBW 00.0170. The partners are Asea Brown Boveri AG (ABB,
Germany), Forschungzentrum Informatik an der Universitat Karlsruhe (FZI,
Germany), Object Technology International AG (OTI Netherlands), Institut fir
Informatik und Angewandte Mathematik, University of Bern (UNIBE, Switzerland).

A Component Model for Field Devices 3

the inflexibility of current systems, offer a compelling case for attempting to apply
CBSD to field devices.

2.1 Field devices

A field devicds a reactive, embedded system. Field devices make use of sensors to con-
tinuously gather data, such as temperature, pressure or rate of flow. They analyse this
data, and react by controlling actuators, valves or motors. To minimize cost, field de-
vices are implemented using the cheapest available hardware that is up to the task. A
typical field device may contain a 16-bit microprocessor with only 256kB of ROM and
40kB of RAM.

The software for a typical field device,
such as the TZID pneumatic positione
shown in figure 1, is monolithic, and is sep
arately developed for each kind of field de
vice. This results in a number of problems

¢ Duplicated functionality:the same
functionality €.g, Nonvolatile Mem- -
ory-Manager, Fieldbus Driver, OFigure 1 Pneumatic positioner TZID
FFT-algorithm) is re-implemented at
different development locations in different ways for different field devices.

¢ Plug-incompatibility: functions and modules are implemented for a specific en-
vironment without standardized interfacesy(Interrupt-Driven, Port 1/O)

¢ Long development timeghe software for each project is developed from scratch
without reuse of standardized architectures or components. This takes far too long

« Inflexibility: monolithic software is hard to maintain, extend or customize.

When considering how to apply CBSD to the software for field devices, there are a
number of requirements, resource constraints and current implementation practices that
must be considered.

e Limited power:the available power is very limited. For some devices only
100mW is available; this limits the choice of CPU.

« Limited memory:field devices typically have about 40 kilobytes of RAM.

« Standard architecturethe software architecture is driven by the fieldbus archi-
tecture, which is based on function blocks.

< Cooperating tasksthe software is implemented as a set of tasks, most of which
run sequentially, although some are logically concurrent. Some tasks share data.

e Cyclic Executivethe software in the device runs according to a pre-defined cy-
clic schedule; events are also handled within the cycle.

* Real-time constraintsParts of the softwaree(g, control loops, and fieldbus
function blocks) must complete within real-time deadlines.

¢ Operating SystemThe operating systems used in field devices are not general-
purpose, but completely dedicated. They typically offer only basic scheduling.

A Component Model for Field Devices 4

« Programming language:the implementation language today is C. C++ or Em-
bedded C++ [2] may become an option if compilers become available for the low-
power micro-controllers used in the devices.

» Static configuration:the device has a static software configuratioa, the
firmware can only be replaced in its entirety. Functionality is not dynamically
downloadable (though this may need to change in the future).

» Certification: many field devices are used in safety-critical applications, such as
chemical plants. Costly certification procedures are required for such devices.

< Long lifetime: the typical lifetime of a field device is about 10 years.

2.2 PEcos goals

The goal of Bcosis to enable CBSD for embedded systems by providing an environ-
ment that supports the specification, composition, configuration checking, and deploy-
ment of embedded systems built from software components.

By focusing on the field device case studgcBsintends to deliver a demonstrator
that validates CBSD for embedded systems. Specificalyp®intends to deliver both
a component modeduitable for characterizing software components for field devices,
and acomposition environmeffior expressing, validating and compiling compositions
of components conforming to the model.

Component model

The field device component model presupposearalnitectural stylefor field device
software. The model must therefore characterize components that conform to this style
in terms of theiinterfacesandproperties Furthermore, the model must be capable of
expressing how components ammposedor “connected”), and provide ways of rea-
soning about properties of compositions.

Specifically, the field device component model must:
¢ express functionahterfaces(e.g, procedural interfaces);

« express non-functiongropertiesand constraints such as worst-case execution
time and memory consumption;

« gpecify component connections and containment relations, as an architectural style;
e exprescompositionof components conforming to a style;

e supportreasoningabout the behaviour of compositions, specifically concerning
plug-compatibility concurrency and synchronizatioreal-time schedulesand
code generation.

Composition Environment

The composition environment enables engineers to express and validate high-level
compositions of components conforming to the component model. Specifically, it must:

« supportspecificationof high-level compositions (textually or visually);

» checkthat compositions conform to the constraints of an architectural s&ge (
the composition rules) or of a specific applicatierg(real-time constraints);

A Component Model for Field Devices 5

manipulated
variable
setpoint, error Control 2 Controlled
., g Algorithm ¥ System = i
. I | @ Demonstrator Board ~® Pulse sensor on the worm shaft
) i | @ Frequency Converter ® Profibus Plug
a) ! | | @ Motor @ Ethernet Plug
! actual value 1 | @ Gear ® Debugging Interface
1

b)

Ticks 1 Power Line (3x230V/AC)

Figure 2 Pecos demonstrator field device

e generateadaptation and wiring code from the high-level specification: it must
“compile” the specification into executable code.

3 PEcos Case Study

In order to validate CBSD for embedded systems, dwo®project is developing the
hardware and software for a demonstration field device. The task c¢hsfreld de-

vice is to control a three-phase motor connected to a valve (see figure 2). The motor is
driven by a frequency converter which can be controlled bogtbusfrom the field

device. The motor can be coupled to a valve either directly via a worm shaft or using
additional gearing (4). A pulse sensor on the shaft (5) detects its speed and the direction
of rotation. The Bcosboard (1) is equipped with a web-based control panel (7) with
some basic elements for local operation and display. The demonstrator can be integrat-
ed in a control system via the fieldbus communication proteoafibus PA(6). The

device is compliant to the profibus specification for Actuators [5][6].

3.1 Running Example

We will use the following example to illustrate thed®scomponent model and com-
position language.

Part of the Bcoscase study is concerned with setting a valve at a specific position
betweeropenandclosed.Figure 3 illustrates three connectegtBscomponents that
collaborate to set the valve position; the desired position is determined by other compo-
nents not shown here. In order to set and keep the valve at a certain position, a control
loop is used to continuously monitor and adjust the valve.

* The ModBus component is responsible for interfacing to a piece of hardware
called therequency convertewhich determines the speed of the motor. The fre-
quency to which the motor should be set is obtained frorartivessApplication
componentModBus outputs this value over a serial line to the frequency convert-
er using the ModBus protocol (hence its name). NlbéBus component runs in

A Component Model for Field Devices 6

| setPoint | ProcessApplication | actualPosition
velocity |
| setPoint I

| actualPosition

setFrequency

ModBus O

Figure 3 FQD Control loop example
its own thread, because it blocks waiting for a (slow) response from the frequency

converter.

« TheFQD (Fast Quadrature Decoder [9]) component is responsible for capturing
events from the motor. This component abstracts from a micro-controller module
that does FQD in hardware. It provides EhecessApplication with both the ve-
locity and the position of the valve.

« The componerkrocessApplication obtains the desired position of the valset{
Point) and reads the current state of the valve fronfF@@ component. This in-
formation is then used to compute a frequency for the motor. Once the motor has
opened the valve sufficiently, ascertained by the next reading from the FQD, the
motor must be slowed or stopped. This repeated adjustment and monitoring con-
stituted the control loop.

This example illustrates several key points concerning the field device domain.

« Cyclic behaviour:each component is responsible for a single task, which is re-
peatedly executed.

« Information flow through ports:components communicate by means of shared
data. The interface of a component consists of a set of shared data ports.

« Threading: some components are passive, while others have their own thread of
control.

» Separate schedulecontrol flow is separately specified by a scheduler for the
composite component.

4 A Component Model for Field Devices

The component model presented here has been especially tailored to the domain of field
devices. Although it may have broader implications for other classes of embedded sys-
tems, we do not make that claim here.

A Component Model for Field Devices 7

The Fecosfield device component

Propert;
model has been defined to reflectaan . il Port
chitectural stylefor field devices [10]. |vae pe
As such, we define a vocabulary « | direction
range

componentsports and connectorsand [PropertyBundiq
the rules governing their composition | uame

As in related approach_es, componel T il Connector
may only be connected if their provide —menory e
and required ports are compatible [12 s

components

In figure 4 we see an overview ¢

the component modelComponents | _ |
. Event Active Passive

may contain one or more subcomp m{cDmponent Component | | Component
nents. There are three kinds of comf e | e
nents:passive active and event Each Figure 4 The PEcosComponent Model
component has thrgeroperty bundles
(for schedulingmemoryandinitialisation), and a set gforts Connectorscan be used
to connect the ports of a component.

We now consider each of these elements in detail.

4.1 Elements of the Component Model

Components. A componenis a computational element witmame a number of
property bundlesindports and abehaviour Theports of a component represent data

that may be shared with other components. Bdteaviourof a component consists of

a procedure that reads and writes data available at its ports, and may produce effects in
the physical world.

A leaf componeris a “black-box” not further defined by model, but instead directly
implemented in the host programming language. It has an interface consisting of a set
of ports, and properties specified by its property bundles.

A composite componenbntains a number of connected subcomponents, the ports
of which form thanternal portsof the composite. A composite component alscelxas
ternal ports,which are the only ones that are externally visible. The external ports are
connectedo appropriate internal ports. The subcomponents are not visible outside the
composite that contains them.

From the point of view of a client, there is no visible difference between a compos-
ite component and a leaf component. The software of a field device can be modelled as
acomponent hierarchy.e., a tree of components, with a single active composite com-
ponent at its root.

The field device domain requires three kinds of components.

« Passive Componentdo not have their own thread of control. A passive compo-
nent is explicitly scheduled by the active component that is its nearest ancestor in
the component hierarchy (its active ancestor). Passive components are typically
used to encapsulate a piece of behaviour that executes synchronously and com-
pletes in a short time-cycle.

A Component Model for Field Devices 8

» Active Componentgdo have their own thread of control; they are used to model
ongoing or longer-lived activities that do not complete in a short time-cycle.

« Event Componentsare those whose behaviour is triggered by an event. They are
used to model pieces of hardware that frequently emit events, such as motors that
give their rotation speed, or timers that emit a timing event when a certain dead-
line has passed. Whenever the event fires, the behaviour is executed immediately.

Ports. A portis a shared variable that allows a component to communicate with other
componentsgonnectegorts represent theameshared variable. A port specifies:

< aname which has to be unique within the component;
* atype characterizing the data that it holds;

e arangeof values (defined by a minimum and maximum value) that can be passed
on this port; and

e adirection (“in”, “out” or “inout”) indicating whether the component reads,
writes, or reads and writes the data. An inout port behaves exactly like a pair uni-
directional ports, one in, and the other out.

Ports ofpeer componentsan only be connected if they have the same type and their
direction iscomplementary.e., an in port can only be connected to an out puxrnal
ports of a composite component can only be connected éxtigxmalports if they have
the same type and their directiorcganpatiblee.g, an internal in port can be connected
to an external in port. Internal ports may be left unconnected, so it is allowed to connect
an internal inout port to an external out port.

Connectors. A connectorspecifies a data-sharing relationship between ports. It
has aname atype and a list oportsit connects. (Here we consider only binary con-
nectors.)

Properties. A propertyis a tagged value. The tag is an identifier, and the value is
typed. Properties characterise components.

Property bundles. A property bundles a named group of properties. Property
bundles are used to characterize aspects of components, such as timing or memory us-
age.

4.2 Example revisited

Returning to the example of figure 3, we see H@D is an event componeriyoces-
sApplication is a passive component akiddBus is an active component. The compo-
sition will be modelled as a composite component.

FQD has “out” portsactualPosition andvelocity, connected to “in” ports of the same
name belonging tBrocessApplication. The in porketPoint belonging tdProcessAppli-
cation is shared with the composite component that encapsulates this composition. It is
not yet connected to a compatible “out” port. Finally, the “out” petfrequency is
connected to the “in” port of the same name belongingotiBus.

What is not yet specified is how the threads@b andModBus synchronize their
access to the shared ports. That is the topic of the next section.

A Component Model for Field Devices 9

5 Synchronization and Timing

Two issues must be addressed to complete the model: first, how read/write and write/
write conflicts are avoided on the (shared) external ports, and second, how components
are scheduled to meet deadlines.

We will do this using a Petri net interpretation of valid compositions. Using plain
Petri nets we can model concurrent activities of component compositions, scheduling
of components, and synchronization of shared ports. This part of the model is reasona-
bly well-understood. Using time Petri nets we hope to reason about timing constraints,
and generate real-time schedules; this topic is still under investigation.

5.1 Synchronization

Our Petri net procedures of the field device component model makes use of three dif-
ferent kinds of places and tokens gta placesmodel ports; each data place has a sin-

gle token representing the shared data available at that pagbiiijol placesare used

to schedule components. Each active component has its own independent control subnet
to model its schedule; there is exactly one token in each control subnEugi)plac-
esmodel the generation of an event.

A component is modelled as a Petri net

i) start end
fragment with a single control place that can
. . control places I ,T\
be used testart it, and a singleend place to
A Component

signal that it has terminated (figure 5). When

components are composedséhedulemust

be generated that somehow moves the token

from theendplace of a component to thgart P

place of the next one to be scheduled.
Thebehaviourof the component is a sub-

net that has read and write access to its da{gyre 5 Components as nets

ports. The nature of these subnets depends on

the kind of component.

Passive leaf components are particularly simple to mod-
el. Their behaviour consists of a singleectransition

: A that reads or write the data places (figure 6).
Passive \l,)
_L exec Because two passive components that share a port must
éj‘ be serialized, synchronization problems can arise only

when active components are connected to other compo-
nents. Active components compete for their external data
ports with their surrounding environment. To address this
problem, wesplit the external ports of active components
Figure 6 Passive leaf into two parts: amuter port to which the outside world

components has free access, and mmer port to which the active
component has access.

A Component Model for Field Devices 10

These two ports are synchronized by copy-
ing the data from one to the other (depending
on the direction of the port) in a spec#in-
chronization methodor “sync method”). This
method may be generated or specially tailored.
We model this by aynctransition that reads
and writes the inner and outer ports and is trigje Pors
gered by thestart control place.

Itis important to realize that tivener ports
are actually thehared resourcesince they are
the only ones exposed to concurrent accesseigure 7 Synchronization of
(i.e., from thesynctransition and from the in- inner and outer ports
ternal behaviour of the active components).

Theouterports are never exposed to concurrent accesses, because they are only acces-
sible from the transitions of the outer control net, which contains only a single token.

The behaviour of an active leaf component is modelled as a separate control subnet
consisting of a&ritical section which may access the inner ports, and a non-critical sec-
tion. The control subnet of an active component is a loop containing a single control to-
ken.

Active

inner ports

An event component is similar to an active
component, except that its control subnet

| A . does not cycle, but is triggered by an external
Active y gg y
event. To model this, we introduce anent
————— N\ placewhich is the target of a special transi-
® \ tion that is fired when the event occurs.
a Y
/
—_—

cs
The behaviour of an event component is im-
plemented by ithandler The consequences
- of handling an event must, of course, be syn-
chronized with its enclosing environment, as
Figure 8 Active schedule with with active components. The event handler
critical section consumes and restores a token from a dedi-

cated control place. This represents the fact
that an event component runs in its own thread when an event is handled. At most one
instance of a given handler is running at any time.

To modelcomposite componentae simply event
coalesce all the connected data places, and we
connect the start and end control places of the sub- | & event place
components according to the required schedule. | Event
figure 10 we see that a schedule is represente% / hander -
a separate control subnet. If the composition is)
tive, this subnet will take the form of a loop wit °
its own token; if it is passive, the subnet will have -~_ _

start and end control places, through which it will
acquire a token when it is scheduled. Figure 3 Event components

A Component Model for Field Devices 11

—— = Data ports may be connected to represent

/ \ dataflow, or to represent the fact that a port

schedule subnet . -

\ / of a composite component is exported from
/477‘— —\E one of its constituent components. For the
Petri net procedures, there is no

distinction—in both cases, the connected

| | A ports represent tteameshared variable and

A

are therefore modelled by the same, coa-

lesced data place.

We can see this in figure 11. Connected out-
Figure 10 Composing components er ports of all the components are each rep-

resented by a single, shared data place. This

holds not only for the dataflow e€locity andactualPosition from FQD to ProcessAp-
plication but also for theetPoint port which is visible from the outside. Inner and outer
ports of active and event components, on the other handotrealesced, since they
must be explicitly synchronized.

The figure also illustrates how composite components schedule their parts. The
schedule, which is triggered by thtart place of the composite, first firé®D, then
ProcessApplication, and finallyModBus. SinceFQD andModBus have independent be-
haviour (.e,, triggered by an event or running in a separate thread), the schedule is re-
sponsible only for synchronizing the data ports.

Note that, aside from event places, the generated Petri net is always conservative,
i.e,, the number of tokens remains constant. This means that it is equivalent to a finite
state automatonWe could make the net strictly conservative by recycling event tgkens.

The constructed net is also clearly deadlock-free: the only conflicts between simul-
taneously enabled transitions occur where sync transitions compete with critical sec-
tions of active components. Since each of these transitions lock all the required data
ports simultaneously, n@aits-forcycles are possible, and hence no deadlock can arise.

5.2 Timing

To construct a schedule for a composition of components, certain scheduling informa-
tion must be associated with each subcomponent; this includes the worst-case execution
time of the subcomponent and the desired cycle time. For an active subcomponent, this
information must be provided separately for $gacandexecmethods. It is also be
necessary to specify a (partial) ordering for the execution of the subcomponents in a
composition.

The simplest form of schedule is a cyclic executive, in which components are wired
together directly, such that each passes control to the next. Such schedules are very ef-
ficient, but are feasible only for the very simplest of compositions. Such a schedule can
be represented in the Petri net model by inserting transitions between the end place of
one component and the start place of the next.

If a more complex schedule is desired, we introduce a separate scheduler network,
which makes scheduling decisions and then implements them by placing tokens on the
start places of the components. This arrangement also has the advantage that the sched-

A Component Model for Field Devices

start

end

FQD event P‘ ’

schedu

le

ProcessApplication

=y,

=

subnet end start
]
— " FQD
- synch
start end
A -
exec / k actualPosition I
(L) |
|
([) hand/e
Vé|00|ty velocny\ -7
L
setPoint \ start
end
(G |
synch ModBus
JA oW
C o

KEI

—— — —

setFrequency \

Figure 11 Petri net model of control loop example

uler is factored out of the design; it is a subnet separate from that of the components
themselves, and with a standard interface, as shown in figure 10. These are exactly the
conditions that promote reuse.

So long as the schedule can be computed entirely statically, there is no need to ex-
plicitly represent the scheduling information for the components: it is represented im-
plicitly in the schedule itself, but that schedule can be calculated off-line. However, it
may still be desirable to verify the scheduler produced in this way. We have been inves-
tigating the use of time Petri nets [14] to represent the schedulers, and various Petri net
tools such as Poses++ [3] and TPTPN [11] to assist in their analysis. We have also been
investigating the use of hierarchical constraint solvers (such as Cassowary [1]), to cap-
ture the timing requirements and partial ordering of components and check the feasibil-

ity of schedules, or even to generate them when this is possible.

12

A Component Model for Field Devices 13

If static scheduling is infeasible, as it often will be in applications in which the av-
erage case is very much better than the worst case, then dynamic scheduling will be nec-
essary. This means that the scheduler must make scheduling decisions while the appli-
cation is running, in real time. As a consequence, the scheduling parameters for all of
the components that must also be available in real time.

In his PhD thesis [4], Naedele proposes a modular approach to capturing this infor-
mation. Associated with the Petri net that represents the structure of each component is
a timing subnet that represents the scheduling information. The timing subnet is also re-
sponsible for mediating communication between the component and the scheduler; this
allows the scheduler to communicate with the components using a broadcast network,
rather than requiring separate communication channels with each component. This
greatly simplifies the wiring between the scheduler and the components, in the same
way that a broadcast network like Ethernet simplifies inter-computer communication,
compared to point-to-point wiring. In particular, the structure of the scheduler does not
have to be modified when an additional component is added to the application; such a
change is instead captured by adding additional tokens containing scheduling informa-
tion. This arrangement promotes modularity, and permits different kinds of schedulers
to be plugged in.

6 The Composition Language CoCo

CoCo [8] is the syntactic representation @fent conmponent F@D
the model described in section 4. The ldn- .
guage is intended to be used for both thegm H gg: \"’/‘g} gg: f‘;_s'“ on,
specification ocomponentand the specifi- property cycl Tl e = 100
cation of field deviceapplicationsbuilt as property execTine = 10;
compositions. These specifications are then
used as a basis for reasoning about applR@ti ve conponent MdBus
tions and their constraints, cor_nputing sch d—i n float setFrequency;
uI_ers that meet these constraints, and genersy operty cycl eTi ne :1’00;
ating code. property execTi ne =50;
Although a complete description of o
CoCo is beyond the scope of this paperc@TPonent ProcessApplication
brief summary will help us to explain how ; | oat set Poi nt:
the field device component model is applied i n f| oat act ual Positi on;

to develop applications. in float velocity;
CoCo supports the key elements of thePr OPerty cycl li me =100;

. . property execTi ne =20;
component model introduced earlieom- .t f| oat set Fr equency
ponents propertiesand ports In addition, }
instancesand connectorsare used to buildFigure 12 FQD control loop in CoCo
composite components.

A Component Model for Field Devices 14

In figure 12 we Posi t i onval
see our running exam¢°mPonent Fosi tionval ve

ple as it would be im-" j y f| gat set Foi nt:

plemented in CoCo. NbdBus nodbus;

CoCo distinguishes FD fad;

the same component ProcessAppl i cati on processappl i cation;

connect or cl (setPoint,
types as component processappl i cati on. set Foi nt);

model does. Inourex- connect or c2 (fqd. act ual Posi ti on,

ample we see an ac- processappl i cati on. act ual Posi tion);
tive component connector c3 (fqd. velocity,
(marked with the key- processappl i cati on. vel oci ty);

connect or c4 (processapplication. set Frequency,

word active) an event nodbus. set Frequency) ;

component (keyword,
event) and two pastigure 13 A composite component in CoCo
sive components.
Components model units of computation. In analogy to the object model, components
play the role of classes. A component defines a scope in the same way as a class. Com-
ponents can be instantiated, that is, one can create an instance of a component with a
unique identity.

Composite components likositionValve contain instances of other components.
An entire application is modelled as a composite component. Instances of components
have a component type and a name that is unique within the scope of the enclosing com-
ponent. All instances are created at system start-up, that is, thereig statement to
dynamically create new instances. Hence all instances are known at compile time; this
allows for a number of static checks as well as for automatic scheduler generation.

Ports, such asetPoint) denote data flow into or out of a component and are the only
means to interact with a particular component. On can think of the set of ports of a com-
ponent as the interface to a procedure that is executed cyclically or in response to a cer-
tain event in order to compute output values depending on the current input values and/
or the internal state of the component. The actual behaviour of this “procedure” is not
specified by CoCo but is hidden in the implementation of the component; the only in-
formation available about it is the worst-case time taken to perform the computation
(propertyexecTime) and the interval between these computations (propgsigTime).

Ports are assigned both a data flow direction (in, out, or inout) and a data type. Connec-
tion of components is achieved through the use of conne&gysqonnectorcl in
componenPositionValve). Connectors connect a list of ports defined either in the cur-
rent component (like port setPoint in connector c1) or by one of the contained instances
(that is, instances in the same scope).

A system specified in CoCo can relatively easily be translated into target languages
such as C++ or Java. The component structure from the CoCo specification can be
mapped directly to an identical class structure in the target language. Any local func-
tionality of components, as specified by the user in the target language, can be simply
incorporated. Instances map to statically initialized instance variables, and connectors
represent shared instance variables in the enclosing object. Ports map to set- and get-
methods that read from or write to these shared instance variables, as determined by the

A Component Model for Field Devices 15

connectors. Every read/write operation to the same data location is serialized so there is
no need for locking.

When generating code from a CoCo specification, special attention needs to be giv-
en to the efficiency, measured both in execution time and in memory consumption, be-
cause of the requirements imposed by the field device domain. More information on
these issues can be found in the relevant Pecos deliverable[7].

7 Status and Future Work

ABB'’s Business Unit “Instruments” (BUI) develops a large number of different field
devices, such as transmitters for measuring temperature, pressure and flow, and actua-
tors and positioners for transmitting a torque to a valve. There is a general trend to move
more and more intelligence from the higher levels of the control system to the level of
the individual field devices. Such intelligent field devices provide built-in features for
measuring, tracking and reacting to instrument performance, status and maintenance
history. For example, the new Asset Optimization approach supports preventive main-
tenance through early detection of degrading functionality. Furthermore, features to
support configuration, maintenance and rapid set-up, using remote access as well as lo-
cal user interfaces, are becoming increasingly important for the market success of field
devices.

By using the PBcosCBSD approach for developing field-devices ABB’s BUI ex-
pects to:

» serve the field device market with value-added features in a cost-effective way
(i.e., by adding new features like advanced maintenance triggers);

* break up the close link between hardware and software and therefore encourage
the reuse of components, not only within but across families of field-devices; and

« drastically reduce the testing phase when modifying devieesaxhen adding a
new component or exchanging an existing one).

In this paper we have presented some intermediate results ehsgPoject. The
component model developed foedds addresses the requirements identified for the
case study outlined above. Ongoing activities include: (i) formalization of the compo-
nent model, (ii) investigation of various techniques, such as time Petri nets and hierar-
chical constraint solvers, to generate real-time schedules, (iii) implementation of com-
ponents to support thee@oscase study demonstrator, (iv) implementation of the lan-
guage mapping to generate executable code from CoCo specifications of component
compositions.

8 References

[1] GregJ. Badros and Alan Borning, “The Cassowary Linear Arithmetic Constraint Solving
Algorithm: Interface and Implementation,” Technical Report, no. UW Technical Report
98-06-04, University of Washington, 1998.

[2] Embedded C++ home page, www.caravan.net/ec2plus
[8] Gesellschaft fir ProzeRautomation & Consulting bH home page, www.gpc.de.

http://www.caravan.net/ec2plus
http://www.gpc.de/

A Component Model for Field Devices 16

(4]
(5]
(6]
(7]
(8]
9]

(10]

(11]
(12]

(13]
(14]

Martin Naedele, “On the Modeling and Evaluation of Real-Time Systems,” Ph.D. thesis,
Swiss Federal Institute of Technology (ETHZ), 2000.

PROFIBUS International, PA General Requirements, Version 3.0 (www.profibus.org)
PROFIBUS International, Device Data Sheet for Actuators, Version 3.0

Bastiaan Schonhage, “Model mapping to C++ or Java-based ultra-light environment”, Pe-
cos Deliverable D2.2.9-1, www.pecos-project.org

Benedikt Schulz, Thomas Genssler, Alexander Christoph, Michael Winter, “Requirements
for the Composition Environment”, Pecos Deliverable D3.1, www.pecos-project.org

Semiconductor Motorola Programming Note, Fast Quadrature Decode TPU Function
(FQD), TPUPNO2/D.

Mary Shaw and David GarlaBoftware Architecture: Perspectives on an Emerging Dis-
cipline, Prentice-Hall, 1996.

TPTPN home page, www.diit.unict.it/users/scava/tptpn.html.

Rob van Ommering, Jeff Kramer, Jeff Magee, “The Koala Component Model for Consum-
er Electronics Software”, IEEE Computer, March 2000, Vol. 33, No. 3, pp. 78-85.

Jiacun WangTimed Petri NetsKluwer Academic Publishers, 1998.

B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using
time Petri nets. IEEE Transactions on Software Engineering, 17(3), pp. 259-273, 1991.

http://www.profibus.org/
http://www.pecos-project.org/
http://www.pecos-project.org/
http://www.diit.unict.it/users/scava/tptpn.html

	A Component Model for Field Devices
	1 Introduction
	2 Pecos
	2.1 Field devices
	2.2 Pecos goals

	3 Pecos Case Study
	3.1 Running Example

	4 A Component Model for Field Devices
	4.1 Elements of the Component Model
	4.2 Example revisited

	5 Synchronization and Timing
	5.1 Synchronization
	5.2 Timing

	6 The Composition Language CoCo
	7 Status and Future Work
	8 References

