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Abstract 

Although the Abstraction artifact allows for the explicit documentation of the abstraction/refinement relationship in 
UML models, an important amount of variations of this relationship remains unspecified, in general hidden under 
other notations. The starting point to enable traceability of requirements across refinement steps is to discover and 
precisely capture the various forms of the abstraction/refinement relationship, in particular those forms which are 
hidden in the model. In this article we formally describe a number of undercover refinements and present 
PAMPERO, a tool integrated in the Eclipse environment, based on the formal definition of refinement. The tool 
supports the documentation of explicit refinements and the semi-automatic discovering and documentation of 
hidden refinements. 
 
Keywords: Refinement, Modeling Language, Unified Modeling Language, UML, Traceability, Case Tools. 
 

Resumen 

En el lenguaje UML existe un artefacto llamado “Abstraction” que permite la documentación explicita de la relación 
de abstracción/refinamiento entre modelos. Sin embargo, numerosas variantes de esta relación permanecen ocultas 
detrás de otras notaciones. El punto de partida para rastrear requerimientos a través de los pasos de refinamiento 
definidos en el modelo, es descubrir y capturar precisamente las distintas formas de la relación de 
abstracción/refinamiento, en particular aquellas formas que están ocultas en el modelo. 
En este articulo describimos formalmente varias formas de refinamiento encubierto y presentamos a PAMPERO, 
una herramienta de software integrada en el ambiente Eclipse, basada en la definición formal de refinamiento. La 
herramienta soporta la documentación de refinamientos explícitos y  además permite descubrir y documentar 
refinamientos ocultos semi-automáticamente. 
 
Palabras claves: Refinamientos, Lenguajes de Modelado, Unified Modeling Language, UML, Traceability, 
Herramientas Case. 
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Abstraction [6] is the key to mastering complexity. Abstraction facilitates the  understanding of  complex systems by 
dealing with the major issues before getting involved in the detail. Apart from enabling for complexity management, 
the inverse of abstraction, refinement, captures the essential relationship between specification and implementation. 
Refinement relationship makes it possible to understand how each business goal relates to each system requirement 
and how each requirement relates to each facet of the design and ultimately to each line of the code.  
Documenting the refinement relationship between these layers allows developers to verify whether the code meets 
its specification or not, trace the impact of changes in the business goals and execute test assertions written in terms 
of abstract model’s vocabulary by translating them to the concrete model’s vocabulary. 
Refinement has been studied in many formal notations such as Z [4] and B[10] and in different contexts, but there is 
still a lack of formal definitions of refinement in semi-formal languages, such as the UML. The standard modeling 
language UML [11] provides an artifact named Abstraction (a kind of Dependency) to explicitly specify 
abstraction/refinement relationship between UML model elements. In the UML metamodel an Abstraction is a 
directed relationship from a client (or clients) to a supplier (or suppliers) stating that the client (the refinement) is 
dependent on the supplier (the abstraction). The Abstraction artifact has a meta attribute called mapping designated 
to record the abstraction/implementation mappings, that is an explicit documentation of how the properties of an 
abstract element are mapped to its refined versions, and on the opposite direction, how concrete elements can be 
simplified to fit an abstract definition. The more formal the mapping is formulated, the more traceable across 
refinement steps the requirements are.  
Although the Abstraction artifact allows for the explicit documentation of the abstraction/refinement relationship in 
UML models, an important amount of variations of abstraction/refinement remains unspecified, in general hidden 
under other notations. For example UML artifacts such as generalization, composite association, use case inclusion, 
among others, implicitly define abstraction/refinement relationship. The starting point to enable traceability of 
requirements across refinement steps is to discover and precisely capture the various forms of the 
abstraction/refinement relationship, in particular those forms which are hidden in the model. 
To experiment, we created a tool integrated in the Eclipse environment [9], called PAMPERO (Precise Assistant for 
the Modeling Process in an Environment with Refinement Orientation), based on the formal definition of 
refinement. The tool supports the documentation of explicit refinements (i.e. Abstractions artifacts with their 
corresponding mapping expressions) and the semi-automatic discovering and documentation of hidden refinements. 
 In the remainder of this article we will describe a number of undercover refinements in UML modeling. Refinement 
can be established between model elements of either the same kind (e.g. between two classes ) or different kind (e.g. 
between a use case model and a collaboration model) [12] [8] [13]. In this article we restrict our attention to 
relationships between model elements of the same kind, in particular we focus on three UML artifacts: Classes, 
which are described in section 2; Associations presented in section 3 and Use Cases which are analyzed in section 4. 
For each one of these artifacts the discussion comprises two dimensions: intension and extension, where the 
intension of a modeling artifact is equated with its definition or specification, while its extension refers to the set of 
elements that fall under that definition.  
 

�� 
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Classes serve as specifications for the properties of sets of objects that can be treated alike. The intension of a Class 
is defined as a pair (Attr, Ops) where Attr={a1,...an}  is a set of Attribute’s description and Ops= {op1,...opm}  is a set 
of Operation’s description. 
Figure 1a shows the UML artifact specifying abstraction/refinement relationship between Classes. The Catalysis 
methodology [5] mentions that refinement between Classes (or Types) can be realized in two different ways: 
a) Attribute (or model)  Refinement: The refined Class, B, is obtained by adding a new attribute, attrk, to the abstract Class A. 

That is to say,  B = A + ({attrk}, {}). Other case takes place when the  Class B is obtained from Class A=( {a1, ..., ak,..., an} , 
Ops)  by replacing an attribute ak by its refinement, that can be one or more new attributes, ak1, ..., akl. That is to say, B= 
A[ak | ak1, ..., akl ].  For example, figure 1b shows that the attribute length in Class Segment is refined by the attributes xinitial 
and xfinal through the mapping <length =  xfinal – xinitial>. In this case the mapping is expressed in the Object Constraint 
Language (chapter 6 in [11]). Additionaly, addition of Class intension is defined in the usual way: (A,O) + (A’,O’) = 
(A∪A’, O∪O’), while B[y | x1,...,xn ] denotes the replacement of element  y in B by elements x1,.., xn. 

b) Operation Refinement:  The refined Class, B, is obtained by adding a new operation, opk, to the abstract Class A. 
That is to say, B = A + ({}, {opk}). On the other hand the Class B can be obtained from Class A=(Attr, {op1, ..., 
opk,..., opn})  by replacing an operation opk by its refinement, that can be one or more new operations, opk1, ..., 
opkl. That is to say, B= A[opk | opk1, ..., opkl].  For example, figure 1c shows that the operation stretch in Class 
Segment is refined by the operations moveXini and moveXfin through the mapping <stretch(w) =  moveXini(-
w/2) ; moveXfin(w/2)>. The mapping between operations cannot be expressed in OCL, because it involves 
composition of operations, therefore we use the following simple language for mappings between operation: 
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operationMapping ::= <op1 = op2> 
op ::=  f  if p then op1 else op2 fi op1 ; op2 op1 ∪∪∪∪a op2  

 
In this definition f stands for an operation invocation while p for  a Boolean function (OCL expression). The 
conditional composition if p then op1 else op2 fi, specifies that op1 is carried out if p holds in the initial state, and 
op2 otherwise. The sequential composition op1 ; op2 , states that the operation op1 is carried out first, followed by 
op2. The statement op1 ∪ op2 allows for the specification of non deterministic choice. 

 
A refined Class is specified in a language that is richer than the language of its abstraction. However, there exists 
always a mapping from the abstract to the refined language (figure 2a), usually called “implementation mapping” 
[3]. This mapping makes it possible to translate OCL expressions written in the abstract language to the refined 
language, for example, the OCL expression (Context Segment inv self.length > 0) can be translated to the 
expression (Context Segment’ inv self.xfinal – self.xinitial > 0). 
 

(a)

A

B

<<refine>>
mapping=...

(b) 

Segment
length : Number

stretch(k : Integer)

Segment'
xinitial : Number
xfinal : Number

stretch(k : Integer)

length = xfinal - xinitial

<<refine>>

                      
 

(c)              

Segment
length : Number

stretch(k : Integer)

Segment'
xinitial : Number
xfinal : Number

moveXini(w)
moveXfin(w)

stretch(k) = moveXini(-k/2) ; 
                  moveXfin(k/2)<<refine>>

stretch(k)::pre:k>0
post:length=length@pre+k

moveXini(w)::post:xinitial=xinitial@pre+w
moveXfin(w)::post:xfinal=xfinal@pre+w

 
Figure 1: Abstraction/Refinement relationship between Classes.  
(a) UML notation. (b) Attribute refinement. (c) Operation refinement. 
 
 

                                   
 
Figure 2:  Mapping domains. (a) Implementation mapping. (b) Abstraction mapping . 
 
On the semantics side, the extension of a Class is the set of objects meeting its definition:  
 
extension: Class → Set (Object) 
 
The semantics counterpart of the “implementation mapping” is the “abstraction mapping” that transforms each 
refined object to its abstract representation (figure 2b). For example, in the view of Objects as labeled records [1],  
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the mapping attached to the Abstraction artifact in figure 1b, can be defined in the following way:  Φ : Record → 
Record,  
           Φ � (�[xinitial=x, xfinal=y, stretch=m] ) =  [length=y-x, stretch=m] 
In all cases, the refinement is a more constrained specification, meaning that all properties specified for an 
abstraction when translated to its refined language also hold for its refinements, while more properties may hold for 
the refinement. Therefore the refinement is satisfied by a reduced number of objects. The meaning of Class 
refinement is that the extension of an abstraction (the supplier) includes the abstract representation of the extensions 
of all its refinements (the clients): 
 
���������	
�������������	��

������������������������−����������
������������������������−������������������������ �������������
 
So far we have described the ways to explicitly define Abstraction/Refinement relationship between Classes, 
however there are other  cases that remains hidden and should be discovered in order to allow us to formally check 
the refinement relationship and to trace properties from the abstract to the concrete models and backwards. In the 
remainder of this section we describe a number of forms of undercover refinement. 
 
2.1  Refining by Specialization 
The technique of  generalization/specialization, which goes hand in hand with Inheritance [2] [17], is a central issue 
in the object oriented paradigm. It is applied to enable reuse, so that less effort is spent when we re-specify things 
that have already been specified in a more abstract or more general way. In the object oriented paradigm a Class 
describes the structure and behavior of a set of objects, however it does so incrementally by describing extensions 
(increments) to previously defined classes (its parents or superclasses).  
Figure 3 shows the syntactical connection between Generalization and Abstraction. The UML Generalization 
artifact (Figure 3a) relates two classes: the parent and the child. The child is not a self contained model, it is just an 
increment. While, on the other hand the Abstraction relationship (Figure 3b) relates self contained models that are 
obtained by combining the superclass with the increment. 
Two cases of specialization can be distinguished: Specialization without overriding (the subclass adds new features 
without intersection with features in the superclass) and Specialization with method overriding (the subclass refines 
a method of the superclass). We do not consider the case of arbitrary method redefinition, only method refinement 
where the abstract version is replaced by the refined version of the method. 
We define the mapping, reveal: Generalization → Abstraction, with the goal of making up the Abstraction artifact 
which is hidden under each Generalization artifact. In both cases the refinement is obtained by combining the parent 
and the child intension (considering method overriding if it is present): 
 
��������� ����������������	��������	�
�����������
���	��������������������� ��������������������!������������� ���������
��	�	�������������"��# $ $ ������������

��������������# �����������������

�������������# �������������⊕�������!���������
�������% ���% ��������� ������# ����

����������������� ���������# ���Σ, & !���Σ= ��������������'�������
 
Addition of class intension with method overriding is defined in the following way, 
Let A=(Attr, Ops) and A’=(Attr’, Ops’) and Base= Ops.reject(op| Ops’.collect(name).includes(op.name)),   
A ⊕ A’ = ( Attr ∪ Attr’  ,  Base ∪ Ops’ ). On the other hand, the restriction functor �Σ  takes a labeled record  and 

returns a restricted version of the record containing only those labels that are defined in Σ. For example: 
[balance=b, interesRate=r, w-counter=c, deposit=S1, withdraw=S2, payInterest=S3] �{balance, deposit, withdraw} =  

[balance=b, deposit=S1, withdraw=S2]. 
 
The implementation mapping is the identity function (even in the presence of overriding, abstract expressions are 
mapped to themselves because overriding preserves signatures). The abstraction mapping returns an abstract version 
of the refined object by keeping only the features defined in the parent Class while forgetting the rest. 
On the semantics side, the subclass introduces a differentiation between the objects specified by the superclass. That 
is to say, as a consequence of adding more and more detail to the description of a class, a new characteristic that it is 
not present in all the  individuals described by the class, is revealed. Different subsets have different characteristics. 
Consequently, the specialization technique allows modelers to implicitly specify refinement relationship that 
generates a partition of the class’s extension into two or more subsets. For example, let  d be the Abstraction artifact 
derived from the specialization of Class Account into two subclasses, Savings and Checking: 
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(a)

Account
balance

deposit(w)
withdraw(w)

Savings
interestRate
w-counter

payInterest()
withdraw(w)

withdraw(w)::post: 
balance=balance@pre - w

withdraw(w)::post: 
balance=balance@pre - w
w-counter=w-counter@pre+1

<<specialize>>

(b) 

Account
balance

deposit()
withdraw()

Savings
balance
interestRate
w-counter

deposit()
withdraw()
payInterest()

<<refine>>

withdraw(w)::post: 
balance=balance@pre - w

withdraw(w)::post: 
balance=balance@pre - w
w-counter=w-counter@pre+1

 J {balance, deposit, withdraw}

 
 
Figure 3: Refinement hidden under Specialization: (a) Generalization/Specialization relationship. 
(b)Abstraction/Refinement relationship derived from the Generalization. 
 
 
2.2   Refining by Decomposition 
Generally, things are composed by smaller things, and this recursively. Composition is a form of abstraction: the 
composite represents its components in sufficient detail in all contexts in which the fact of being composed is not 
relevant. However, UML (and o-o modeling in general) has no notion of composition as a form of  model 
abstraction. Consequently, the abstraction relationship remains hidden under composite association relationship. 
Figure 4a shows an example, where  Account is a composite object holding a history of Movements. Additionaly the 
class Account has a basic attribute called initialBalance storing the value of the balance at the beginning of a period, 
and a derived attribute recording the current balance. Finally, there is an OCL constraint specifying how the current 
balance is calculated. 
In [16] it is observed that composite association, such as the one in figure 4a, is not a model abstraction relationship, 
which is reflected in the fact that Movement.extension is not included into Account.extension (In fact, there is a type 
mismatch between these two extension sets). Composite association is a relationship at the instance level (figure 5a); 
instances of Account are composed by instances of Movement. 
 

           (a) 

Movement
amount

Account
initialBalance
/ currentBalance 0..*0..*

/currentBalance=initialBalance+ 
movement ->collect(amount) ->sum()

                    (b)       

Account'
initialBalance
currentBalance

Movement
amount

Account
initialBalance
/ currentBalance

0..*0..*

currentBalance=initialBalance+ 
movement ->collect(amount) ->sum()<<refine>>

 
 
Figure 4: Refinement hidden under decomposition: (a) Composite Association relationship. (b) 
Abstraction/Refinement relationship derived from the Composite. 
 
However from a composite associations we can derive a model abstraction relationship called abstractions by 
composition (see figure 5b). In this case the relationship is established between models instead of being established 
between instances; for example, the Class Account’ in figure 4b is an abstraction of the Class Account. Conversely, 
Account is a refined version of Account’, showing more details (i.e. the fact of being a composite). 
 

 

Instance

composition                                                                  

Class

abstraction by composition  
 
Figure 5a: Composite at extension level.                                        Figure 5b: Composite at intension level. 
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We define a mapping, reveal: Association → Abstraction,  that returns the Abstraction artifact which is derived from 
each Composite Association artifact: 
 

�������
��������������	���������	�
����������

���	����������������−���������*�������������# + ��% ������������# ,--�!���������������������% ������--������
���������������������������−���
�����*���"������������ ����������--��!�������������������������������--�
��	�	�������������"��# $ $ ������������

��������������# ��������% ������!���.�����������
�������������# ��������% �������

 

�������
��������������	���% ��������	����������--�������!����% ����������������������!�������������--�
��	�	�������# ���������������−���������*�������������# + ��% �������������������
�

��������������������	�!���.�����	����������--���������������������"�!��������������--�
 
Neither implementation nor abstraction functions can be automatically derived from the composite, because more 
than one design decision can apply. However some hints are provided automatically. In the example in figure 4 the 
specification of the derived attribute currentBalance is suggested as implementation mapping  making it possible to 
translate OCL invariants such as (Context Account’ inv currentBalance>0) to a refined version (Context Account 
inv initialBalance+movements−>collect(amount).sum > 0). 
Regarding the extension sets, if d is an Abstraction resulting from a composite Association, then  
 d.supplier.extension = d.client.extension.collect(d.abstractionMapping), where the abstraction mapping transforms 
each composite object to its abstract representation. For example, the abstraction mapping in figure 4b is defined in 
the following way: 
d.abstractionMapping ( �[initialBalance=b, currentBalance=f, movements=s] ) = 
                                                                                   [initialbalance= b, currentBalance= b + s.collect(amount).sum ] 
 
2.3 Other cases 
Other UML constructs hiding Class refinement are the Interface dependency, the Instantiation relationship, the 
Parameterization construct, among others. Due to space limitation we cannot explain here all these cases, but the 
results are similar to the ones presented above. 
 

�� ����
������������������
The UML provides an artifact named Association to specify relationships between instances of Classifiers. The 
association’s intension contains the declaration of the types involved in the association, as well as other properties 
such as navigability, multiplicity, etc. 
 

                    (a) 

      A

B

                               (b) 

Client Account

*

holds

AccountClient

**

holds'

*

{ordered}
  

 
Figure 6: UML Abstraction/Refinement relationship between Associations. (a) UML notation. (b) Association 
refinement by constraining properties. 
 
During the development process both classes and its relationships are gradually refined. It is usual to zoom in or out 
in both dimensions at the same time. Figure 6a shows the UML artifact to specify Abstraction/Refinement 
relationship between Associations. A form of explicit refinement takes place when an abstract association is 
constrained in some way, for example disallowing navigability, adding the constraint that the elements should be 
ordered, etc. Conversely, the abstraction is obtained by relaxing properties from the refinement. Figure 6b displays 
an example, where holds’ is a refinement of holds.  
Concerning the extension set, Associations are interpreted as relations in the mathematical sense, i.e., as subsets of 
the Cartesian products of the extensions of the involved types. The extensions of an association are sets of tuples 
called links: 
 
���������	�
������������−���(����
��������������������

<<refine>> <<refine>> 
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The refinement is a more constrained specification, therefore it is satisfied by a reduced number of instances.  
Refinement between Association can be explicitly specified, as described above; however there are other cases that 
remains hidden and should be discovered and made explicit. The different forms of undercover 
Abstraction/Refinement relationship between Associations are analyzed in the remainder of this section. 
 
3.1  Refining by Specialization 
Consider that a specialization is applied to the class Account generating two classes: Savings and Checking. At the 
same time, a specialization is applied to Client and a new class comes into existence: YoungClient. In this domain 
YoungClients are allowed to open only Savings while the remaining Clients may hold both Checking and Savings 
accounts (see figure 7a).  

            (a)     

Client Accountholds

YoungClient Savingsholds Checking

                   (b)      

Client Accountholds

YoungClient Savingsholds Checking

 
 
Figure 7: Association refinement hidden under a sub classification: (a) UML Generalization/Specialization 
relationship. (b) UML Abstraction/Refinement relationship. 
 
Generalization between Associations is subtly different from Generalization between other UML artifacts. While 
generalization hierarchies in general reflect incremental development, generalization hierarchy of association is not 
incremental, but restrictive. The child Association frequently is a self contained model not just an increment, adding 
some constraints (e.g. restricting AssociationEnd´s type, disallowing navigability, adding the constraint that the 
elements should be ordered) 
Figure 7 shows the syntactical connection between Generalization and Abstraction. The UML Generalization 
artifact in figure 7a relates two associations: the parent and the child. In this case both are self contained models. 
Therefore, the Generalization artifact can be simply replaced for an Abstraction artifact, see figure 7b, without 
altering the model’s meaning. 
The mapping reveal: Generalization → Abstraction,  returns the Abstraction hidden under the Generalization. 
 

�������� ����������������	���������	�
����������
���	��������������������� ��
�����������������������!������������� ��
������������
��	�	���������������# ������������������������������# �������!����������
����������������������"��# $ $ ��������
 
Semantically, the generalization/specialization relationship between associations denotes an inclusion relation 
between the corresponding extension sets. Additionally, this form of  refinement splits the set of  abstract links into 
two or more subsets. For example, the association Client-holds-Account is partitioned into two refined sub-
associations, as follows:  Client-holds-Account.extension = 
YoungClient-holds-Savings.extension−>union(ElderClient-holds-Account.extension), where ElderClient denotes 
the set of Clients who are not Young clients. Account abstractly denotes the union of both Savings and Checking.  
 
3.2  Refining by Link Decomposition 
A group of semantically related associations can be subsumed by an abstract association. For example Figure 8 
shows two association between Client and Bank: holdsAccount and hasCredit. These two associations can be 
abstracted in a single association, called worksWith. 
 

Client Bank

holdsAccount

hasCredit           

Client Bank
worksWith

 
 
Figure 8: association abstraction. 
 

<<refine>> 
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In the UML Associations cannot be compound (only Classifiers can be compound). However, other languages, such 
as the one proposed by Catalysis [5], enable us to specify composition of Associations; see figure 9a. Composition 
of association is neither a form of model abstraction in the UML. You could feel tempted to use the Abstraction 
artifact to specify composition of Associations, but to declare that hasCredit is a refinement of worksWith is as 
wrong as saying that Movement is a refinement of Account, in model in figure 3, although the type mismatch is not 
so evident in this case. 

 
(a)                 b) 
 
Figure 9: Association refinement hidden under link decomposition: (a) Composite/Component relationship in 
Catalysis.  (b) Abstraction/Refinement relationship derived from the Composite. 
 
In parallel direction to the composition between classes, the composition between associations is a relation at the 
instance level, specifying that each link of the compound association is composed by links of the component 
associations (figure 10a). For example, let (c1,b1) be a link belonging to the extension of worksWith association, 
meaning that a Client c1 works with a Bank b1. We may zoom into this link revealing that the working relationship 
between c1 and b1 actually embraces two relationships: c1 has a credit in b1 and c1 holds an account in b1. That is 
to say, the compound link (c1,b1) contains links of the component associations.   

   

Link

composition

                                                    

Association

abstraction by composition  
 
Figure 10a: composition at the extension level.                         Figure 10b: composition at the intension level. 
 
Once again, from a composition we can derive a model abstraction relationship called abstractions by composition 
(see figure 10b). In this case the relationship is established between models instead of being established between 
instances. For example, the Association worksWith´ is an abstraction of the Association worksWith (see figure 9b). 
Conversely, worksWith is a refined version of worksWith´, showing the fact of being composed by two sub-
associations. 
The mapping, reveal: Association → Abstraction,  returns the Abstraction artifact which can be derived from each 
decomposition of Association. Assuming that the UML metamodel is modified in order to permit the definition of 
Associations between Associations, the mapping is formally defined in the following way: 
 

�������
��������������	���������	�
����������
���	� ���������������−���������*�������������# + ��% ������������# ,--�!�������������� ��� �� ��% ������--��
�������������������−���
�����*���"������������ ��
�������������0��������������������������--�
��	�	�������������"��# $ $ �������������
������������������������# ��������% ������!���.����������������������# ��������% �������
 

�������
��������������	�!���.�����	�
�����������--�������������������������"�!��������������1�
 

�� 	���
���������������
The Use Case construct is used to define the behavior of a system or other entity without revealing the entity’s 
internal state. The intension of a Use Case consists of a pair (Attr, Ops) where Attr=(a1,...an)  is a set of Attribute’s 
description and Ops= (op1,...opm)  is a set of Operation’s description. To simplify we consider only one operation 
because that is the usual case. Operation is defined by pre and  post conditions. 
The extension of a Use Case is a sequence of actions that the entity can perform interacting with actors of the 
system, such that if the precondition holds, after executing the sequence of actions, the post condition is ensured: 
 
���������	�2��������→�(����(��������
(�������# �(�3�
�������
�������������# �4$ �,56 5����*������4$ �,56 5���7��������7�
�

holdsAccount hasCredit 

worksWith 

worksWith 

<<refine>> 

worksWith´ 
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Here < a1,…,an > stands for a sequence of actions executable in some way. Using the formalism of Hoare´s logic we 
say that  a sequence of actions S is correct with respect to precondition p and postcondition q (denoted p{S}q ), 
when starting in any state that satisfies precondition p,  the actions terminates in a state satisfying q. Function pre 
(respectively post) returns the precondition  (respectively postcondition) of the (only) operation of the use case.�
 
Use Case refinement is obtained by refining attributes and/or by constraining the operation specification. Therefore 
the refinement is satisfied by a reduced number of scenarios.  The meaning of use case refinement is that the 
extension of an abstraction includes the abstract representation of the extensions of all its refinements, as usual. 
In the following sections we analyze some forms of hidden Abstraction/Refinement relationship between Use Cases. 
 
4.1  Refining by Action Decomposition  
Action abstraction is the technique of treating an interaction between several participants as one single action. Then 
it is possible to zoom into, or refine, an action to see more detail. What was one single action is now seen to be 
composed of several actions. Each one of these actions can be split again into smaller ones, into as much detail as 
required. 
This form of abstraction remains hidden because of the fact that UML does not consider composition as a form of  
model abstraction. To specify composite actions UML provides a relationship between Use Cases called Include.   
Figure 11a shows an example, where Buy is a composite action holding three constituent parts:  Select,  Pay and 
Collect . 

                 (a)

client ShopGirl

Select Pay

Buy
<<include>>

Collect

<<include>>
<<include>>

                                   (b)

client ShopGirl

Select Pay Collect

                             
<<include>>

<<include>>
<<include>>

client

       

ShopGirl

                           

Buy'

Buy

 
  
Figure 11: Use Case refinement hidden under a decomposition: (a)  Composite/Component relationship.  
                   (b) Abstraction/Refinement relationship. 
 
In the abstract model the action Buy is treated as a single action whereas the refined model shows that the action 
Buy is composed by three sub actions. It should be observed that Use Case inclusion, such as the one in figure 11a, 
is not a model abstraction relationship, but a relationship at the instance level (figure 12). It specifies that each 
UseCaseInstance of the compound Use Case is composed by UseCaseInstances of the component Use Cases For 
example, let <Ana_buys_a_dress> be a UseCaseInstance belonging to the extension of the Buy Use Case. We may 
refine this instance revealing that   actually it includes three instances inside it: <Ana_selects_a_dress>, 
<Ana_pays_for_the_dress > and <Ana_collects_her_dress>. 
 

    

UseCaseInstance
include

                                        

Use Case

abstraction by composition

 
 
Figure 12: UC inclusion at extension level.            Figure 13: UC inclusion at intension level. 
 
However, from a Use Case inclusion we can derive  a model abstraction relationship called abstractions by 
composition (figure 13). In this case the relationship is established between models instead of being established 
between instances. For example, the Use Case Buy’ is an abstraction of the Use Case Buy (see figure 11b. 
Conversely, Buy is a refined version of Buy’, showing the fact of being composed by three sub Use Cases. 
 
The mapping, reveal: Include −> Abstraction, is defined to return the Abstraction artifact which can be derived from 
each Include artifact,  
 

<<refine>> 
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������������������	���������	�
����������
��	�	�������������"��# $ $ ���������������������������# �����������!���.�������������
������������������������# ������������
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4.2   Refining by Specialization 
Use Cases are GeneralizableElements, so a Use Case may specialize a more general one. Figure 14a shows a general 
use case and its specialization. The general Use Case describes a Payment, while the specialization describes a 
particular   kind of payment: PaybyCreditCard. 
The inheritance mechanism allows modelers to describe Use Cases  incrementally by describing extensions 
(increments) to previously defined Use Cases (its parents). Reusing in this way the more general specification. 
The Figure 14 shows the connection between generalization/specialization relationship and abstraction/refinement 
relationship between Use Cases. The UML Generalization artifact in figure 14a relates two Use Cases: the parent, 
Pay, and the child, PayByCreditCard. The child is not a self contained model, it is just an increment of its parent. 
While, on the other hand the abstraction/refinement relationship in figure 14b relates self contained models that are 
obtained by combining the parent Use Case with the child Use Case.  Attributes, preconditions as well as post 
conditions are combined. 
The mapping, reveal: Generalization → Abstraction, is defined to return the Abstraction artifact which is hidden 
under each Generalization artifact. The refinement is obtained by combining the parent and the child intension: 
 
��������� ����������������	��������	�
�����������
���	��������������������� ��2�������������������!������������� ��2����������
��	�	���������������"��# $ $ ���������������������������# �����������������

�������������������������# �������������⊕�������!���������
����������������������������� ���������# ���Σ , & !���Σ= ��������������'�������
�
Addition of Use Case intension with operation overriding is defined in the following way: let U=(Attr, (preop, postop) ) 
and U’= (Attr’,(preop’, postop’))  then U⊕U’=(Attr∪Attr’, (preop or preop’ , postop and postop’) ); while the restriction functor �Σ  
takes an Scenario and returns a restricted version of the scenario containing only those actions that are defined in Σ. 
 
The abstraction mapping returns an abstract version of the object by keeping only the features defined in the parent 
Class while forgetting the rest.  The implementation mapping displayed in figure 14b is not automatically produced. 
The designer is asked to specify the relation between the attributes of the abstract use Case (i.e. amountDue, 
resources and availability) and the attributes of the refined Use Case (i.e. amountDue, creditLimit, expended and 
expirationDate). 

(a)

  

    

<<specialize>>

Pay

PayByCreditCard

Pre: amountDue<resources 
          and availability=true
Post: amountDue=0 and 
resources=resources@pre
                - amountDue@pre

                                 (b)

  

    

<<refine>>

Pre: amountDue<resources
         and availability=true
Post: amountDue=0 and 
resources=resources@pre
                - amountDue@pre

Pre: amountDue<creditLimit
                          - expended
       and expirationDay<Today
Post: amountDue=0 and 
expended=expended@pre
            +amountDue@pre

resources=creditLimit-expended
availability=expirationDay<Today

Pay

PayByCreditCard

 
  
Figure 14: Use Case Refinement hidden under a Generalization: (a) Generalization/Specialization relationship. (b) 
Abstraction/Refinement relationship.  
 
On the semantics side, as a consequence of the differentiation introduced by the specialization, the extension set of 
the abstract Use Case becomes partitioned in two or more sub sets, for example, let d be the abstraction artifact 
derived from the specialization of the use case Pay by the sub use cases PayByCheck and PayByCreditCard; 
Pay.extension is equal to  
�.�"8"������������������−�������.�"8"�!��)���������������−������������������������ ������������
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The task of documenting refinement steps needs to be assisted by tools. We are building PAMPERO [14] that is a 
plug-in to the Eclipse development environment [9]. It consists of four components: an UML editor, an 
abstraction/refinement translator, an evaluator, and a detective: 
 - The Editor. The editor supports the creation of a number of UML artifacts, including Abstractions; see figure 15. 
Additionally, the editor allows developers to specify the abstraction mapping attached to Abstraction artifacts, using 
OCL expressions.  
 - The abstraction/refinement Translator.  The translator takes an OCL expression attached to a Class and translates 
it to concrete vocabularies, following the refinement steps. The translation of expressions attached to elements other 
than Class, is not supported yet. 
 - The evaluator. The evaluator takes OCL expressions and evaluates them on a given model (see figure 16). 
Expressions might be either originally written in the model’s vocabulary or translated by the translator from another 
abstraction level. The evaluator was implemented following the design of the USE evaluator [15]. 
  - The Detective. This component looks into the model to discover and reveal cases of hidden refinement. The 
abstraction mappings automatically generated by the detective are generally in an immature state and should be 
completed by the developer. 
 

 
Figure 15. The PAMPERO tool:  Edition of explicit refinement. 
Additional components, such as the Refinement Checker,  are being currently designed to enhance the tool;  the 
Refinement Checker will be able to prove the existence of a formal refinement relationship between model elements, 
for instance given an operation refinement, the checker will prove that the precondition of the abstract operation 
implies the precondition of its refinement and the postcondition of the abstract operation is implied by the 
postcondition of its refinement. 
 

�� 
��
	������
The traditional purpose of refinement is to show that an implementation meets the requirements set out in an initial 
specification. Armed with such a methodology, program development can then begin  with an abstract specification 
and proceed via a number of steps, each step producing a slightly more detailed design which is shown to be a 
refinement of the previous specification. 
Although the UML allows for the explicit documentation of the abstraction/refinement relationship, an important 
amount of variations of this relationship remains unspecified, in general hidden under other notations. To enable 
traceability of requirements the presence of “undercover refinement” should be discovered and precisely 
documented. 
When the mapping between the abstract and the concrete models is explicitly (and formally) documented, assertions 
written in the abstract model’s vocabulary can be translated, following the representation mapping, in order to 
analyze if they hold in the implementation. Alternatively, instances of concrete models can be abstracted according 
to the abstraction mapping so that abstract properties can be tested on them. 
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Figure 16. The PAMPERO tool:  Evaluation of OCL constraints. 
 
The contribution of this article is to clarify the abstraction/refinement relationship in UML models, providing basis 
for tools supporting the refinement driven modeling process.  PAMPERO, the tool reported in this article, is an 
evidence of the feasibility of the proposal, although its application to industrial cases is a pending task which is 
essential to determine its scalability and practical advantages.  
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