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ABSTRACT. Documenting the refinement 
relationship between layers allows developers to verify 
whether the code meets its specification or not, trace the 
impact of changes in the business goals and execute test 
assertions written in terms of abstract model’s 
vocabulary by translating them to the concrete model’s 
vocabulary. Refinement has been studied in many 
formal notations such as Z and B and in different 
contexts, but there is still a lack of formal definitions of 
refinement in semi-formal languages, such as the UML. 
The contribution of this article is to clarify the 
abstraction/refinement relationship between UML 
models, providing basis for tools supporting the 
refinement driven modeling process.  We formally 
describe a number of refinement patterns and present 
PAMPERO, a tool integrated in the Eclipse 
environment, based on the formal definition of model 
refinement. 

1.  Introduction 

The refinement relationship [Dijkstra, , 1976] makes 
it possible to understand how each business goal relates 
to each system requirement and how each requirement 
relates to each facet of the design and ultimately to each 
line of the code.  

Documenting the refinement relationship between 
these layers allows developers to verify whether the 
code meets its specification or not, trace the impact of 
changes in the business goals and execute test assertions 
written in terms of abstract model’s vocabulary by 
translating them to the concrete model’s vocabulary. 

Refinement has been studied in many formal 
notations such as Z [Derrick and Boiten, 2001] and 

B[Lano, 1996] and in different contexts, but there is still 
a lack of formal definitions of refinement in semi-formal 
languages, such as the UML. The standard modeling 
language UML [OMG, 2001] provides an artifact named 
Abstraction (a kind of Dependency) to explicitly specify 
abstraction/ refinement relationship between UML 
model elements. In the UML metamodel an Abstraction 
is a directed relationship from a client (or clients) to a 
supplier (or suppliers) stating that the client (the 
refinement) is dependent on the supplier (the 
abstraction). The Abstraction artifact has a meta 
attribute called mapping designated to record the 
abstraction/implementation mappings, that is an explicit 
documentation of how the properties of an abstract 
element are mapped to its refined versions, and on the 
opposite direction, how concrete elements can be 
simplified to fit an abstract definition. The more formal 
the mapping is formulated, the more traceable across 
refinement steps the requirements are. 

Although the Abstraction artifact allows for the 
explicit documentation of the abstraction/refinement 
relationship in UML models, an important amount of 
variations of abstraction/refinement remains unspecified, 
in general hidden under other notations. For example 
UML artifacts such as generalization, composite 
association, use case inclusion, among others, implicitly 
define abstraction/refinement relationship. The starting 
point to enable traceability of requirements across 
refinement steps is to discover and precisely capture the 
various forms of the abstraction/refinement relationship, 
in particular those forms which are hidden in the model. 

To experiment, we created a tool integrated in the 
Eclipse environment [IBM, 2003], called PAMPERO 
(Precise Assistant for the Modeling Process in an 
Environment with Refinement Orientation), based on 



  

the formal definition of refinement. The tool supports 
the documentation of explicit refinements (i.e. 
Abstractions artifacts with their corresponding mapping 
expressions) and the semi-automatic discovering and 
documentation of hidden refinements. 

 In the remainder of this article we will describe a 
number of undercover refinements in UML modeling. 
Refinement can be established between model elements 
of either the same kind (e.g. between two classes ) or 
different kind (e.g. between a use case model and a 
collaboration model) [Pons et al. 2000; Giandini and 
Pons, 2002; Pons et al.,2003]. In this article we restrict 
our attention to relationships between model elements of 
the same kind, in particular we focus on two UML 
artifacts: Classes, which are described in section 2 and 
Use Cases which are analyzed in section 3. For each one 
of these artifacts the discussion comprises two 
dimensions: intension and extension, where the 
intension of a modeling artifact is equated with its 
definition or specification, while its extension refers to 
the set of elements that fall under that definition.  

2.   Class Refinement 

Classes serve as specifications for the properties of 
sets of objects that can be treated alike. The intension of 
a Class is defined as a pair (Attr, Ops) where Attr is a 
mapping from Attribute’s name to Attribute’s 
description and Ops is a mapping from Operation’s 
name to Operation’s description.  

On the semantics side, in the view of Objects as 
labeled records [Abadi and Cardelli, 1996], the 
extension of a Class is the set of records meeting its 
definition:  extension: Class → Set (Object) . 

Figure 1a shows the UML artifact specifying 
abstraction/refinement relationship between Classes. 
The Catalysis methodology (d’Souza and Wills, 1998) 
mentions that refinement between Classes (or Types) 
can be realized in two different ways: 

a) Attribute (or model)  Refinement: it can be obtained in 
two ways, on one hand the refined Class, B, is 
obtained by adding a new attribute, attrk, to the 
abstract Class A. Other case takes place when the  
Class B is obtained from Class A by replacing an 
attribute ak by its refinement, that can be one or more 
new attributes, ak1, ..., akl.. For example, figure 1b 
shows that the attribute length in Class Segment is 
refined by the attributes xinitial and xfinal. 

b) Operation Refinement:  it can be obtained in two 
ways, on one hand the refined Class, B, is obtained 
by adding a new operation, opk, to the abstract Class 

A. On the other hand the Class B can be obtained 
from Class A by replacing an operation opk by its 
refinement, that can be one or more new operations, 
opk1, ..., opkl. For example, figure 1c shows that the 
operation stretch in Class Segment is refined by the 
operations moveXini and moveXfin. 

 

 (a)

A

B

<<refine>>
mapping=...

 

(b)  

Segment
length : Number

stretch(k : Integer)

Segment'
xinitial : Number
xfinal : Number

stretch(k : Integer)

length = xfinal - xinitial

<<refine>>

                      
 

Segment
length : Number

stretch(k : Integer)

Segment'
xinitial : Number
xfinal : Number

moveXini(w)
moveXfin(w)

stretch(k) = moveXini(-k/2) ; 
                  moveXfin(k/2)<<refine>>

stretch(k)::pre:k>0
post:length=length@pre+k

moveXini(w)::post:xinitial=xinitial@pre+w
moveXfin(w)::post:xfinal=xfinal@pre+w

(c)               

Figure 1: Abstraction/Refinement relationship between 
Classes. (a) UML notation. (b) Attribute refinement. (c) 
Operation refinement. 

A refined Class is specified in a language that is 
richer than the language of its abstraction. The relation 
between the abstract and the refined specifications is 
usually called “implementation mapping” [Cardelli and 
Wegner, 1985] or “retrieve relation” [Derrick and 
Boiten, 2001]. This mapping makes it possible to 
translate OCL expressions written in the abstract 
language to the refined language, for example, the OCL 
expression (Context Segment inv self.length > 0) can be 
translated to the expression (Context Segment’ inv 
|self.xfinal – self.xinitial| > 0). 



  

The counterpart of the “implementation mapping” is 
the “abstraction mapping” that transforms each refined 
object to its abstract representation. 

The retrieve relation R between Segment and 
Segment’ is given by  

�s,s’�(s,s’)�R � s.length=|xfinal-xinitial| 
For example, the abstract object given by 

�length==5� is related to the concrete  object 
�xinitial==2, xfinal==7� among others. 

In all cases, the refinement is a more constrained 
specification, meaning that all properties specified for 
an abstraction when translated to its refined language 
also hold for its refinements, while more properties may 
hold for the refinement. Therefore the refinement is 
satisfied by a reduced number of objects. The meaning 
of Class refinement is that the extension of an 
abstraction (the supplier) includes the abstract 
representation of the extensions of all its refinements 
(the clients): 

 
Context d:Abstraction inv:  

    d.supplier.extension −> includesAll ( d.client.extension 
                                                     −>collect(e�d.mapping(e)) ) 

 
So far we have described the ways to explicitly define 

Abstraction/Refinement relationship between Classes, 
however there are other  cases that remains hidden and 
should be discovered in order to allow us to formally 
check the refinement relationship and to trace properties 
from the abstract to the concrete models and backwards. 
In the remainder of this section we describe a number of 
forms of undercover refinement. 

2.1  Refining by Specialization 

The technique of  generalization/specialization which 
goes hand in hand with Inheritance [Booch, 91] 
[Wegner and Zdonik, 88], is a central issue in the object 
oriented paradigm. It is applied to enable reuse, so that 
less effort is spent when we re-specify things that have 
already been specified in a more abstract or more 
general way. In the object oriented paradigm a Class 
describes the structure and behavior of a set of objects, 
however it does so incrementally by describing 
extensions (increments) to previously defined classes 
(its parents or superclasses).  

Figure 2 shows the syntactical connection between 
Generalization and Abstraction. The UML 
Generalization artifact (Figure 2a) relates two classes: 
the parent and the child. The child is not a self contained 
model, it is just an increment. While, on the other hand 
the Abstraction relationship (Figure 2b) relates self 

contained models that are obtained by combining the 
superclass with the increment. 

Two cases of specialization can be distinguished: 
Specialization without overriding (the subclass adds 
new features without intersection with features in the 
superclass) and Specialization with method overriding 
(the subclass refines a method of the superclass). We do 
not consider the case of arbitrary method redefinition, 
only method refinement where the abstract version is 
replaced by the refined version of the method. 

 (a)

Account
balance

deposit(w)
withdraw(w)

Savings
interestRate
w-counter

payInterest()
withdraw(w)

withdraw(w)::post: 
balance=balance@pre - w

withdraw(w)::post: 
balance=balance@pre - w
w-counter=w-counter@pre+1

<<specialize>>

 

(b)

Account
balance

deposit()
withdraw()

Savings
balance
interestRate
w-counter

deposit()
withdraw()
payInterest()

<<refine>>

withdraw(w)::post: 
balance=balance@pre - w

withdraw(w)::post: 
balance=balance@pre - w
w-counter=w-counter@pre+1

 J {balance, deposit, withdraw}

 

Figure 2: Refinement hidden under Specialization: (a) 
Generalization/Specialization relationship.  (b) 
Abstraction/Refinement relationship derived from the 
Generalization. 

We define the mapping, reveal: Generalization → 
Abstraction, with the goal of making up the Abstraction 
artifact which is hidden under each Generalization 
artifact. In both cases the refinement is obtained by 
combining the parent and the child intension 
(considering method overriding if it is present). 
 

Context Generalization def: reveal(): Abstraction  
pre: self.parent.oclIsKindOf(Class)  and 

self.child.oclIsKindOf(Class) 
post: result.stereotype=<<refine>> and 
     result.supplier = self.parent  and 



  

     result.client = (self.parent ⊕ self.child)1 and 
     result.mapping=�o,o’�(o,o’)�R �  

�f�Sig� o.f=o’.f, where Sig=self.parent.allAttributes 
 
The implementation mapping is the identity function 

(even in the presence of overriding, abstract expressions 
are mapped to themselves because overriding preserves 
signatures). The abstraction mapping returns an abstract 
version of the refined object by keeping only the 
features defined in the parent Class while ignoring the 
rest. For example, the abstract object given by 
�balance==100� is related to the concrete  object 
�balance==100, interestRate==0.5,w-counter==3�among 
others. 

On the semantics side, the subclass introduces a 
differentiation between the objects specified by the 
superclass. That is to say, as a consequence of adding 
more and more detail to the description of a class, a new 
characteristic that it is not present in all the  individuals 
described by the class, is revealed. Different subsets 
have different characteristics. Consequently, the 
specialization technique allows modelers to implicitly 
specify refinement relationship that generates a partition 
of the class’s extension into two or more subsets. For 
example, let  d be the Abstraction artifact derived from 
the specialization of Class Account into two subclasses, 
Savings and Checking: 

 
Account.extension  = Savings.extension −>  
collect (s�d.mapping(s)) −> 
                    union (Checking.extension −>  
collect (c�d.mapping(c))) 

2.2   Refining by Decomposition 

Generally, things are composed by smaller things, 
and this recursively. Composition is a form of 
abstraction: the composite represents its components in 
sufficient detail in all contexts in which the fact of being 
composed is not relevant. However, UML (and o-o 
modeling in general) has no notion of composition as a 
form of  model abstraction. Consequently, the 
abstraction relationship remains hidden under composite 
association relationship. Figure 3a shows an example, 
where  Account is a composite object holding a history 
of Movements. Additionaly the class Account has a 
basic attribute called initialBalance storing the value of 
the balance at the beginning of a period, and a derived 

                                                           
1 Addition of class intension with method overriding is defined in the 

following way: A ⊕ A’ = (A.Attr ⊕ A’Attr  , A.Ops ⊕ A’.Ops ). 
Where ⊕ stands for relational overriding. 

attribute recording the current balance. Finally, there is 
an OCL constraint specifying how the current balance is 
calculated. 

In [Steimann et al., 2003] it is observed that 
composite association, such as the one in figure 3a, is 
not a model abstraction relationship, which is reflected 
in the fact that Movement.extension is not included into 
Account.extension (In fact, there is a type mismatch 
between these two extension sets). Composite 
association is a relationship at the instance level (figure 
4(a)); instances of Account are composed by instances 
of Movement. 
 

 (a)

Movement
amount

Account
initialBalance
/ currentBalance 0..*0..*

/currentBalance=initialBalance+ 
movement ->collect(amount) ->sum()

             
    

 

Account'
initialBalance
currentBalance

Movement
amount

Account
initialBalance
/ currentBalance

0..*0..*

currentBalance=initialBalance+ 
movement ->collect(amount) ->sum()<<refine>>

  
(b)  

Figure 3: Refinement hidden under decomposition: (a) 
Composite Association relationship. (b) 
Abstraction/Refinement relationship derived from the 
Composite. 

However from a composite associations we can 
derive a model abstraction relationship called 
abstractions by composition (see figure 4(b)). In this 
case the relationship is established between models 
instead of being established between instances; for 
example, the Class Account’ in figure 3b is an 
abstraction of the Class Account. Conversely, Account 
is a refined version of Account’, showing more details 
(i.e. the fact of being a composite). 

We define a mapping, reveal: Association → 
Abstraction,  that returns the Abstraction artifact which 
is derived from each Composite Association artifact: 

 
context Association def: reveal() : Abstraction 
pre:     self.connection−>select(e| 

e.aggregation=#composite).size=1--the 
association is a composite-- and 
self.connection−>forAll 



  

(e|e.type.oclIsKindOf(Class)) -- the association 
connects classes -- 

post: result.stereotype=<<refine>> and 
result.supplier = self.compound.hideParts  and   
result.client = self.compound  

context Association def: compound (): Classifier -- 
returns the composite participant of the 
association-- 

post: result =self.connection−>detect(e| 
e.aggregation=#composite).participant 

(a) 

Instance

composition  

     (b)

Class

abstraction by composition
 

Figure 4: (a)Composite at extension level. (b)Composite at 
intension level. 

Neither implementation nor abstraction functions can 
be automatically derived from the composite, because 
more than one design decision can apply. However some 
hints are provided automatically. In the example in 
figure 3 the specification of the derived attribute 
currentBalance is suggested as implementation mapping  
making it possible to translate OCL invariants such as  

(Context Account’ inv currentBalance>0) to a refined 
version 

 (Context Account inv 
 initialBalance+ (movements−>collect(amount)->sum > 0). 

 
The retrieve relation R between Account and 

Account’ is given by  
�a,a’�(a,a’)�R � a.initialBalance=a’.initialBalance 
    and a.currentBalance= a’.initialBalance + 

a’movements->collect(amount)->sum  
 
For example, the abstract object given by 

�initialBalance==100, currentBalance=500� is related to 
the concrete  object �initialBalance==100,  
currentBalance=500,movements= <�amount=400�> � 
among others. 

Regarding the extension sets, if d is an Abstraction 
resulting from a composite Association, then  

 d.supplier.extension = d.client.extension->collect(o| 
d.mapping(o)), where the abstraction mapping 
transforms each composite object to its abstract 
representation.  

2.3 Other cases 

Other UML constructs hiding Class refinement are 
the Interface dependency, the Instantiation relationship, 
the Parameterization construct, among others. Due to 
space limitation we cannot explain here all these cases, 
but the results are similar to the ones presented above 

3. Use Case Refinement 

The Use Case construct is used to define the behavior 
of a system or other entity without revealing the entity’s 
internal state. The intension of a Use Case consists of a 
pair (Attr, Ops) where Attr is a mapping from 
Attribute’s name to Attribute’s description and Ops is is 
a mapping from Operation’s name to Operation’s 
description. To simplify we consider only one operation 
because that is the usual case. Operation is defined by 
pre and  post conditions. 

The extension of a Use Case is a sequence of actions 
that the entity can perform interacting with actors of the 
system, such that if the precondition holds, after 
executing the sequence of actions, the post condition is 
ensured: 

 
extension: Use Case → Set (Scenario) 
Scenario = Seq(Action) 
uc.extension ={<a1,…,an> | uc.pre{<a1,…,an>}uc.post }2 

 
Use Case refinement is obtained by refining attributes 

and/or by constraining the operation specification. 
Therefore the refinement is satisfied by a reduced 
number of scenarios.  In the following sections we 
analyze some forms of hidden Abstraction/Refinement 
relationship between Use Cases. 

3.1  Refining by Action Decomposition  

Action abstraction is the technique of treating an 
interaction between several participants as one single 
action. Then it is possible to zoom into, or refine, an 
action to see more detail. What was one single action is 
now seen to be composed of several actions. Each one 

                                                           
2 Here < a1,…,an > stands for a sequence of actions executable 

in some way. Using the formalism of Hoare´s logic we say 
that  a sequence of actions S is correct with respect to 
precondition p and postcondition q (denoted p{S}q ), when 
starting in any state that satisfies precondition p,  the actions 
terminates in a state satisfying q. Function pre (respectively 
post) returns the precondition  (respectively postcondition) 
of the (only) operation of the use case. 

 



  

of these actions can be split again into smaller ones, into 
as much detail as required. 

This form of abstraction remains hidden because of 
the fact that UML does not consider composition as a 
form of  model abstraction. To specify composite 
actions UML provides a relationship between Use Cases 
called Include.   Figure 5a shows an example, where 
Buy is a composite action holding three constituent 
parts:  Select,  Pay and Collect .  

(a)

client ShopGirl

Select Pay

Buy
<<include>>

Collect

<<include>>
<<include>>

                  

(b)

client ShopGirl

Select Pay Collect

                             
<<include>>

<<include>>
<<include>>

client

       

ShopGirl

                           

Buy'

Buy

 

Figure 5: Use Case refinement hidden under a decomposition: 
(a)  Composite/Component relationship. (b) 
Abstraction/Refinement relationship. 

In the abstract model the action Buy is treated as a 
single action whereas the refined model shows that the 
action Buy is composed by three sub actions. It should 
be observed that Use Case inclusion, such as the one in 
figure 5a, is not a model abstraction relationship, but a 
relationship at the instance level (figure 6a). It specifies 
that each UseCaseInstance of the compound Use Case is 
composed by UseCaseInstances of the component Use 
Cases For example, let <Ana_buys_a_dress> be a 
UseCaseInstance belonging to the extension of the Buy 
Use Case. We may refine this instance revealing that   
actually it includes three instances inside it: 
<Ana_selects_a_dress>, <Ana_pays_for_the_dress > 
and <Ana_collects_her_dress>. 

However, from a Use Case inclusion we can derive  a 
model abstraction relationship called abstractions by 
composition (figure 6b). In this case the relationship is 
established between models instead of being established 
between instances. For example, the Use Case Buy’ is 

an abstraction of the Use Case Buy (see figure 5b. 
Conversely, Buy is a refined version of Buy’, showing 
the fact of being composed by three sub Use Cases. 

The mapping, reveal: Include −> Abstraction, is 
defined to return the Abstraction artifact which can be 
derived from each Include artifact,  

 
context Include def: reveal() : Abstraction 
post: result.stereotype=<<refine>> and  

result.supplier = self.base.hideParts()  and   
result.client = self.base  

 
context UseCase def: hideParts(): UseCase -- returns 

an abstraction of the use case by hiding its parts-- 
 

(a)     

UseCaseInstance
include

 

  (b)    

Use Case

abstraction by composition

 

Figure 6:  (a) UseCase inclusion at extension level.                                             
(b) UseCase inclusion at intension level. 

3.2   Refining by Specialization 

Use Cases are GeneralizableElements, so a Use Case 
may specialize a more general one. Figure 7a shows a 
general use case and its specialization. The general Use 
Case describes a Payment, while the specialization 
describes a particular   kind of payment: 
PaybyCreditCard. 

The inheritance mechanism allows modelers to 
describe Use Cases  incrementally by describing 
extensions (increments) to previously defined Use Cases 
(its parents). Reusing in this way the more general 
specification. 

The Figure 7 shows the connection between 
generalization/specialization relationship and 
abstraction/refinement relationship between Use Cases. 
The UML Generalization artifact in figure 7a relates two 
Use Cases: the parent, Pay, and the child, 
PayByCreditCard. The child is not a self contained 
model, it is just an increment of its parent. While, on the 
other hand the abstraction/refinement relationship in 
figure 7b relates self contained models that are obtained 
by combining the parent Use Case with the child Use 
Case.  Attributes, preconditions as well as post 
conditions are combined. 

<<refine>> 



  

   (a)

  

    

<<specialize>>

Pay

PayByCreditCard

Pre: amountDue<resources 
          and availability=true
Post: amountDue=0 and 
resources=resources@pre
                - amountDue@pre

      

(b)

  

    

<<refine>>

Pre: amountDue<resources
         and availability=true
Post: amountDue=0 and 
resources=resources@pre
                - amountDue@pre

Pre: amountDue<creditLimit
                          - expended
       and expirationDay<Today
Post: amountDue=0 and 
expended=expended@pre
            +amountDue@pre

resources=creditLimit-expended
availability=expirationDay<Today

Pay

PayByCreditCard

 

Figure 7: Use Case Refinement hidden under a 
Generalization: (a) Generalization/Specialization relationship. 
(b) Abstraction/Refinement relationship.  

The mapping, reveal: Generalization → Abstraction, 
is defined to return the Abstraction artifact which is 
hidden under each Generalization artifact. The 
refinement is obtained by combining the parent and the 
child intension. 
 

Context Generalization def: reveal(): Abstraction  
pre: self.parent.oclIsKindOf(UseCase) 
        and self.child.oclIsKindOf(UseCase)   
post:  result.stereotype=<<refine>> and  

result.supplier = self.parent  and 
        result.client = (self.parent ⊕ self.child) 
    
The abstraction mapping returns an abstract version 

of the UseCase by keeping only the features defined in 
the parent UseCase while forgetting the rest.  On the 
other hand, the implementation mapping displayed in 
figure 7b is not automatically produced. The designer is 
asked to specify the relation between the attributes of 
the abstract use Case (i.e. amountDue, resources and 
availability) and the attributes of the refined Use Case 
(i.e. amountDue, creditLimit, expended and 
expirationDate), in the following way; 

�u,u’�(u,u’)�R � (u.amountDue=u’.amountDue  
 and      resources=creditLimit – expended  
and       availability= expirationDate<Today 
 
On the semantics side, as a consequence of the 

differentiation introduced by the specialization, the 
extension set of the abstract Use Case becomes 
partitioned in two or more sub sets, for example, let d be 

the abstraction artifact derived from the specialization of 
the use case Pay by the sub use cases PayByCheck and 
PayByCreditCard; Pay.extension is equal to  
(PayByCreditCard.extension−>union(PayByCheck.exte
nsion))  −>collect(e�d.mapping(e))  

4. Tool support 

The task of documenting refinement steps needs to be 
assisted by tools. We created PAMPERO [Pons et al., 
2004] that is a plug-in to the Eclipse development 
environment [IBM, 2003]. It consists of four 
components: an UML editor, an abstraction/refinement 
translator, an evaluator, and a detective: 

The Editor. The editor supports the creation of a 
number of UML artifacts, including Abstractions; see 
figure 8. Additionally, the editor allows developers to 
specify the abstraction mapping attached to Abstraction 
artifacts, using OCL expressions.  

The abstraction/refinement Translator.  The 
translator takes an OCL expression attached to a Class 
and translates it to concrete vocabularies, following the 
refinement steps. The translation of expressions attached 
to elements other than Class, is not supported yet.  

 

Figure 8. The PAMPERO tool:  Edition of explicit 
refinement 

 
The evaluator. The evaluator takes OCL expressions 

and evaluates them on a given model. Expressions might 
be either originally written in the model’s vocabulary or 
translated by the translator from another abstraction 
level. The evaluator was implemented following the 
design of the USE evaluator [Richters and Gogolla, 
2000]. 



  

The Detective. This component looks into the model 
to discover and reveal cases of hidden refinement. The 
abstraction mappings automatically generated by the 
detective are generally in an immature state and should 
be completed by the developer.  

5. Conclusions 

The traditional purpose of refinement is to show that 
an implementation meets the requirements set out in an 
initial specification. Armed with such a methodology, 
program development can then begin  with an abstract 
specification and proceed via a number of steps, each 
step producing a slightly more detailed design which is 
shown to be a refinement of the previous one. 

Although the UML allows for the explicit 
documentation of the abstraction/refinement 
relationship, an important amount of variations of this 
relationship remains unspecified, in general hidden 
under other notations. To enable traceability of 
requirements the presence of “undercover refinement” 
should be discovered and precisely documented. 

When the mapping between the abstract and the 
concrete models is explicitly (and formally) 
documented, assertions written in the abstract model’s 
vocabulary can be translated, following the 
representation mapping, in order to analyze if they hold 
in the implementation. Alternatively, instances of 
concrete models can be abstracted according to the 
abstraction mapping so that abstract properties can be 
tested on them. 

The contribution of this article is to clarify the 
abstraction/refinement relationship in UML models, 
providing basis for tools supporting the refinement 
driven modeling process.  PAMPERO, the tool reported 
in this article, is an evidence of the feasibility of the 
proposal. 
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