

Traceability Across Refinement Steps in UML Modeling

C. Pons1 ,2 and R-D Kutsche 3

1 LIFIA – Laboratorio de Investigación y Formación en Informática Avanzada,

Universidad Nacional de La Plata, calle 50 y 115 - 1900 Buenos Aires, Argentina

2 UAI – Universidad Abierta Interamericana, Facultad de Tecnología Informática
Chacabuco 90 - 1° Piso, Ciudad de Buenos Aires, Argentina

cpons@info.unlp.edu.ar

3CIS Computation and Information Structures CIS, Technical
University of Berlin, Faculty IV, Berlin, Germany

rkutsche@cs.tu-berlin.de

ABSTRACT. Documenting the refinement
relationship between layers allows developers to verify
whether the code meets its specification or not, trace the
impact of changes in the business goals and execute test
assertions written in terms of abstract model’s
vocabulary by translating them to the concrete model’s
vocabulary. Refinement has been studied in many
formal notations such as Z and B and in different
contexts, but there is still a lack of formal definitions of
refinement in semi-formal languages, such as the UML.
The contribution of this article is to clarify the
abstraction/refinement relationship between UML
models, providing basis for tools supporting the
refinement driven modeling process. We formally
describe a number of refinement patterns and present
PAMPERO, a tool integrated in the Eclipse
environment, based on the formal definition of model
refinement.

1. Introduction

The refinement relationship [Dijkstra, , 1976] makes
it possible to understand how each business goal relates
to each system requirement and how each requirement
relates to each facet of the design and ultimately to each
line of the code.

Documenting the refinement relationship between
these layers allows developers to verify whether the
code meets its specification or not, trace the impact of
changes in the business goals and execute test assertions
written in terms of abstract model’s vocabulary by
translating them to the concrete model’s vocabulary.

Refinement has been studied in many formal
notations such as Z [Derrick and Boiten, 2001] and

B[Lano, 1996] and in different contexts, but there is still
a lack of formal definitions of refinement in semi-formal
languages, such as the UML. The standard modeling
language UML [OMG, 2001] provides an artifact named
Abstraction (a kind of Dependency) to explicitly specify
abstraction/ refinement relationship between UML
model elements. In the UML metamodel an Abstraction
is a directed relationship from a client (or clients) to a
supplier (or suppliers) stating that the client (the
refinement) is dependent on the supplier (the
abstraction). The Abstraction artifact has a meta
attribute called mapping designated to record the
abstraction/implementation mappings, that is an explicit
documentation of how the properties of an abstract
element are mapped to its refined versions, and on the
opposite direction, how concrete elements can be
simplified to fit an abstract definition. The more formal
the mapping is formulated, the more traceable across
refinement steps the requirements are.

Although the Abstraction artifact allows for the
explicit documentation of the abstraction/refinement
relationship in UML models, an important amount of
variations of abstraction/refinement remains unspecified,
in general hidden under other notations. For example
UML artifacts such as generalization, composite
association, use case inclusion, among others, implicitly
define abstraction/refinement relationship. The starting
point to enable traceability of requirements across
refinement steps is to discover and precisely capture the
various forms of the abstraction/refinement relationship,
in particular those forms which are hidden in the model.

To experiment, we created a tool integrated in the
Eclipse environment [IBM, 2003], called PAMPERO
(Precise Assistant for the Modeling Process in an
Environment with Refinement Orientation), based on

the formal definition of refinement. The tool supports
the documentation of explicit refinements (i.e.
Abstractions artifacts with their corresponding mapping
expressions) and the semi-automatic discovering and
documentation of hidden refinements.

 In the remainder of this article we will describe a
number of undercover refinements in UML modeling.
Refinement can be established between model elements
of either the same kind (e.g. between two classes) or
different kind (e.g. between a use case model and a
collaboration model) [Pons et al. 2000; Giandini and
Pons, 2002; Pons et al.,2003]. In this article we restrict
our attention to relationships between model elements of
the same kind, in particular we focus on two UML
artifacts: Classes, which are described in section 2 and
Use Cases which are analyzed in section 3. For each one
of these artifacts the discussion comprises two
dimensions: intension and extension, where the
intension of a modeling artifact is equated with its
definition or specification, while its extension refers to
the set of elements that fall under that definition.

2. Class Refinement

Classes serve as specifications for the properties of
sets of objects that can be treated alike. The intension of
a Class is defined as a pair (Attr, Ops) where Attr is a
mapping from Attribute’s name to Attribute’s
description and Ops is a mapping from Operation’s
name to Operation’s description.

On the semantics side, in the view of Objects as
labeled records [Abadi and Cardelli, 1996], the
extension of a Class is the set of records meeting its
definition: extension: Class → Set (Object) .

Figure 1a shows the UML artifact specifying
abstraction/refinement relationship between Classes.
The Catalysis methodology (d’Souza and Wills, 1998)
mentions that refinement between Classes (or Types)
can be realized in two different ways:

a) Attribute (or model) Refinement: it can be obtained in
two ways, on one hand the refined Class, B, is
obtained by adding a new attribute, attrk, to the
abstract Class A. Other case takes place when the
Class B is obtained from Class A by replacing an
attribute ak by its refinement, that can be one or more
new attributes, ak1, ..., akl.. For example, figure 1b
shows that the attribute length in Class Segment is
refined by the attributes xinitial and xfinal.

b) Operation Refinement: it can be obtained in two
ways, on one hand the refined Class, B, is obtained
by adding a new operation, opk, to the abstract Class

A. On the other hand the Class B can be obtained
from Class A by replacing an operation opk by its
refinement, that can be one or more new operations,
opk1, ..., opkl. For example, figure 1c shows that the
operation stretch in Class Segment is refined by the
operations moveXini and moveXfin.

 (a)

A

B

<<refine>>
mapping=...

(b)

Segment
length : Number

stretch(k : Integer)

Segment'
xinitial : Number
xfinal : Number

stretch(k : Integer)

length = xfinal - xinitial

<<refine>>

Segment
length : Number

stretch(k : Integer)

Segment'
xinitial : Number
xfinal : Number

moveXini(w)
moveXfin(w)

stretch(k) = moveXini(-k/2) ;
 moveXfin(k/2)<<refine>>

stretch(k)::pre:k>0
post:length=length@pre+k

moveXini(w)::post:xinitial=xinitial@pre+w
moveXfin(w)::post:xfinal=xfinal@pre+w

(c)

Figure 1: Abstraction/Refinement relationship between
Classes. (a) UML notation. (b) Attribute refinement. (c)
Operation refinement.

A refined Class is specified in a language that is
richer than the language of its abstraction. The relation
between the abstract and the refined specifications is
usually called “implementation mapping” [Cardelli and
Wegner, 1985] or “retrieve relation” [Derrick and
Boiten, 2001]. This mapping makes it possible to
translate OCL expressions written in the abstract
language to the refined language, for example, the OCL
expression (Context Segment inv self.length > 0) can be
translated to the expression (Context Segment’ inv
|self.xfinal – self.xinitial| > 0).

The counterpart of the “implementation mapping” is
the “abstraction mapping” that transforms each refined
object to its abstract representation.

The retrieve relation R between Segment and
Segment’ is given by

�s,s’�(s,s’)�R � s.length=|xfinal-xinitial|
For example, the abstract object given by

�length==5� is related to the concrete object
�xinitial==2, xfinal==7� among others.

In all cases, the refinement is a more constrained
specification, meaning that all properties specified for
an abstraction when translated to its refined language
also hold for its refinements, while more properties may
hold for the refinement. Therefore the refinement is
satisfied by a reduced number of objects. The meaning
of Class refinement is that the extension of an
abstraction (the supplier) includes the abstract
representation of the extensions of all its refinements
(the clients):

Context d:Abstraction inv:

 d.supplier.extension −> includesAll (d.client.extension
 −>collect(e�d.mapping(e)))

So far we have described the ways to explicitly define

Abstraction/Refinement relationship between Classes,
however there are other cases that remains hidden and
should be discovered in order to allow us to formally
check the refinement relationship and to trace properties
from the abstract to the concrete models and backwards.
In the remainder of this section we describe a number of
forms of undercover refinement.

2.1 Refining by Specialization

The technique of generalization/specialization which
goes hand in hand with Inheritance [Booch, 91]
[Wegner and Zdonik, 88], is a central issue in the object
oriented paradigm. It is applied to enable reuse, so that
less effort is spent when we re-specify things that have
already been specified in a more abstract or more
general way. In the object oriented paradigm a Class
describes the structure and behavior of a set of objects,
however it does so incrementally by describing
extensions (increments) to previously defined classes
(its parents or superclasses).

Figure 2 shows the syntactical connection between
Generalization and Abstraction. The UML
Generalization artifact (Figure 2a) relates two classes:
the parent and the child. The child is not a self contained
model, it is just an increment. While, on the other hand
the Abstraction relationship (Figure 2b) relates self

contained models that are obtained by combining the
superclass with the increment.

Two cases of specialization can be distinguished:
Specialization without overriding (the subclass adds
new features without intersection with features in the
superclass) and Specialization with method overriding
(the subclass refines a method of the superclass). We do
not consider the case of arbitrary method redefinition,
only method refinement where the abstract version is
replaced by the refined version of the method.

 (a)

Account
balance

deposit(w)
withdraw(w)

Savings
interestRate
w-counter

payInterest()
withdraw(w)

withdraw(w)::post:
balance=balance@pre - w

withdraw(w)::post:
balance=balance@pre - w
w-counter=w-counter@pre+1

<<specialize>>

(b)

Account
balance

deposit()
withdraw()

Savings
balance
interestRate
w-counter

deposit()
withdraw()
payInterest()

<<refine>>

withdraw(w)::post:
balance=balance@pre - w

withdraw(w)::post:
balance=balance@pre - w
w-counter=w-counter@pre+1

 J {balance, deposit, withdraw}

Figure 2: Refinement hidden under Specialization: (a)
Generalization/Specialization relationship. (b)
Abstraction/Refinement relationship derived from the
Generalization.

We define the mapping, reveal: Generalization →
Abstraction, with the goal of making up the Abstraction
artifact which is hidden under each Generalization
artifact. In both cases the refinement is obtained by
combining the parent and the child intension
(considering method overriding if it is present).

Context Generalization def: reveal(): Abstraction
pre: self.parent.oclIsKindOf(Class) and

self.child.oclIsKindOf(Class)
post: result.stereotype=<<refine>> and
 result.supplier = self.parent and

 result.client = (self.parent ⊕ self.child)1 and
 result.mapping=�o,o’�(o,o’)�R �

�f�Sig� o.f=o’.f, where Sig=self.parent.allAttributes

The implementation mapping is the identity function

(even in the presence of overriding, abstract expressions
are mapped to themselves because overriding preserves
signatures). The abstraction mapping returns an abstract
version of the refined object by keeping only the
features defined in the parent Class while ignoring the
rest. For example, the abstract object given by
�balance==100� is related to the concrete object
�balance==100, interestRate==0.5,w-counter==3�among
others.

On the semantics side, the subclass introduces a
differentiation between the objects specified by the
superclass. That is to say, as a consequence of adding
more and more detail to the description of a class, a new
characteristic that it is not present in all the individuals
described by the class, is revealed. Different subsets
have different characteristics. Consequently, the
specialization technique allows modelers to implicitly
specify refinement relationship that generates a partition
of the class’s extension into two or more subsets. For
example, let d be the Abstraction artifact derived from
the specialization of Class Account into two subclasses,
Savings and Checking:

Account.extension = Savings.extension −>
collect (s�d.mapping(s)) −>
 union (Checking.extension −>
collect (c�d.mapping(c)))

2.2 Refining by Decomposition

Generally, things are composed by smaller things,
and this recursively. Composition is a form of
abstraction: the composite represents its components in
sufficient detail in all contexts in which the fact of being
composed is not relevant. However, UML (and o-o
modeling in general) has no notion of composition as a
form of model abstraction. Consequently, the
abstraction relationship remains hidden under composite
association relationship. Figure 3a shows an example,
where Account is a composite object holding a history
of Movements. Additionaly the class Account has a
basic attribute called initialBalance storing the value of
the balance at the beginning of a period, and a derived

1 Addition of class intension with method overriding is defined in the

following way: A ⊕ A’ = (A.Attr ⊕ A’Attr , A.Ops ⊕ A’.Ops).
Where ⊕ stands for relational overriding.

attribute recording the current balance. Finally, there is
an OCL constraint specifying how the current balance is
calculated.

In [Steimann et al., 2003] it is observed that
composite association, such as the one in figure 3a, is
not a model abstraction relationship, which is reflected
in the fact that Movement.extension is not included into
Account.extension (In fact, there is a type mismatch
between these two extension sets). Composite
association is a relationship at the instance level (figure
4(a)); instances of Account are composed by instances
of Movement.

 (a)

Movement
amount

Account
initialBalance
/ currentBalance 0..*0..*

/currentBalance=initialBalance+
movement ->collect(amount) ->sum()

Account'
initialBalance
currentBalance

Movement
amount

Account
initialBalance
/ currentBalance

0..*0..*

currentBalance=initialBalance+
movement ->collect(amount) ->sum()<<refine>>

(b)

Figure 3: Refinement hidden under decomposition: (a)
Composite Association relationship. (b)
Abstraction/Refinement relationship derived from the
Composite.

However from a composite associations we can
derive a model abstraction relationship called
abstractions by composition (see figure 4(b)). In this
case the relationship is established between models
instead of being established between instances; for
example, the Class Account’ in figure 3b is an
abstraction of the Class Account. Conversely, Account
is a refined version of Account’, showing more details
(i.e. the fact of being a composite).

We define a mapping, reveal: Association →
Abstraction, that returns the Abstraction artifact which
is derived from each Composite Association artifact:

context Association def: reveal() : Abstraction
pre: self.connection−>select(e|

e.aggregation=#composite).size=1--the
association is a composite-- and
self.connection−>forAll

(e|e.type.oclIsKindOf(Class)) -- the association
connects classes --

post: result.stereotype=<<refine>> and
result.supplier = self.compound.hideParts and
result.client = self.compound

context Association def: compound (): Classifier --
returns the composite participant of the
association--

post: result =self.connection−>detect(e|
e.aggregation=#composite).participant

(a)

Instance

composition

 (b)

Class

abstraction by composition

Figure 4: (a)Composite at extension level. (b)Composite at
intension level.

Neither implementation nor abstraction functions can
be automatically derived from the composite, because
more than one design decision can apply. However some
hints are provided automatically. In the example in
figure 3 the specification of the derived attribute
currentBalance is suggested as implementation mapping
making it possible to translate OCL invariants such as

(Context Account’ inv currentBalance>0) to a refined
version

 (Context Account inv
 initialBalance+ (movements−>collect(amount)->sum > 0).

The retrieve relation R between Account and

Account’ is given by
�a,a’�(a,a’)�R � a.initialBalance=a’.initialBalance
 and a.currentBalance= a’.initialBalance +

a’movements->collect(amount)->sum

For example, the abstract object given by

�initialBalance==100, currentBalance=500� is related to
the concrete object �initialBalance==100,
currentBalance=500,movements= <�amount=400�> �
among others.

Regarding the extension sets, if d is an Abstraction
resulting from a composite Association, then

 d.supplier.extension = d.client.extension->collect(o|
d.mapping(o)), where the abstraction mapping
transforms each composite object to its abstract
representation.

2.3 Other cases

Other UML constructs hiding Class refinement are
the Interface dependency, the Instantiation relationship,
the Parameterization construct, among others. Due to
space limitation we cannot explain here all these cases,
but the results are similar to the ones presented above

3. Use Case Refinement

The Use Case construct is used to define the behavior
of a system or other entity without revealing the entity’s
internal state. The intension of a Use Case consists of a
pair (Attr, Ops) where Attr is a mapping from
Attribute’s name to Attribute’s description and Ops is is
a mapping from Operation’s name to Operation’s
description. To simplify we consider only one operation
because that is the usual case. Operation is defined by
pre and post conditions.

The extension of a Use Case is a sequence of actions
that the entity can perform interacting with actors of the
system, such that if the precondition holds, after
executing the sequence of actions, the post condition is
ensured:

extension: Use Case → Set (Scenario)
Scenario = Seq(Action)
uc.extension ={<a1,…,an> | uc.pre{<a1,…,an>}uc.post }2

Use Case refinement is obtained by refining attributes

and/or by constraining the operation specification.
Therefore the refinement is satisfied by a reduced
number of scenarios. In the following sections we
analyze some forms of hidden Abstraction/Refinement
relationship between Use Cases.

3.1 Refining by Action Decomposition

Action abstraction is the technique of treating an
interaction between several participants as one single
action. Then it is possible to zoom into, or refine, an
action to see more detail. What was one single action is
now seen to be composed of several actions. Each one

2 Here < a1,…,an > stands for a sequence of actions executable

in some way. Using the formalism of Hoare´s logic we say
that a sequence of actions S is correct with respect to
precondition p and postcondition q (denoted p{S}q), when
starting in any state that satisfies precondition p, the actions
terminates in a state satisfying q. Function pre (respectively
post) returns the precondition (respectively postcondition)
of the (only) operation of the use case.

of these actions can be split again into smaller ones, into
as much detail as required.

This form of abstraction remains hidden because of
the fact that UML does not consider composition as a
form of model abstraction. To specify composite
actions UML provides a relationship between Use Cases
called Include. Figure 5a shows an example, where
Buy is a composite action holding three constituent
parts: Select, Pay and Collect .

(a)

client ShopGirl

Select Pay

Buy
<<include>>

Collect

<<include>>
<<include>>

(b)

client ShopGirl

Select Pay Collect

<<include>>

<<include>>
<<include>>

client

ShopGirl

Buy'

Buy

Figure 5: Use Case refinement hidden under a decomposition:
(a) Composite/Component relationship. (b)
Abstraction/Refinement relationship.

In the abstract model the action Buy is treated as a
single action whereas the refined model shows that the
action Buy is composed by three sub actions. It should
be observed that Use Case inclusion, such as the one in
figure 5a, is not a model abstraction relationship, but a
relationship at the instance level (figure 6a). It specifies
that each UseCaseInstance of the compound Use Case is
composed by UseCaseInstances of the component Use
Cases For example, let <Ana_buys_a_dress> be a
UseCaseInstance belonging to the extension of the Buy
Use Case. We may refine this instance revealing that
actually it includes three instances inside it:
<Ana_selects_a_dress>, <Ana_pays_for_the_dress >
and <Ana_collects_her_dress>.

However, from a Use Case inclusion we can derive a
model abstraction relationship called abstractions by
composition (figure 6b). In this case the relationship is
established between models instead of being established
between instances. For example, the Use Case Buy’ is

an abstraction of the Use Case Buy (see figure 5b.
Conversely, Buy is a refined version of Buy’, showing
the fact of being composed by three sub Use Cases.

The mapping, reveal: Include −> Abstraction, is
defined to return the Abstraction artifact which can be
derived from each Include artifact,

context Include def: reveal() : Abstraction
post: result.stereotype=<<refine>> and

result.supplier = self.base.hideParts() and
result.client = self.base

context UseCase def: hideParts(): UseCase -- returns

an abstraction of the use case by hiding its parts--

(a)

UseCaseInstance
include

 (b)

Use Case

abstraction by composition

Figure 6: (a) UseCase inclusion at extension level.
(b) UseCase inclusion at intension level.

3.2 Refining by Specialization

Use Cases are GeneralizableElements, so a Use Case
may specialize a more general one. Figure 7a shows a
general use case and its specialization. The general Use
Case describes a Payment, while the specialization
describes a particular kind of payment:
PaybyCreditCard.

The inheritance mechanism allows modelers to
describe Use Cases incrementally by describing
extensions (increments) to previously defined Use Cases
(its parents). Reusing in this way the more general
specification.

The Figure 7 shows the connection between
generalization/specialization relationship and
abstraction/refinement relationship between Use Cases.
The UML Generalization artifact in figure 7a relates two
Use Cases: the parent, Pay, and the child,
PayByCreditCard. The child is not a self contained
model, it is just an increment of its parent. While, on the
other hand the abstraction/refinement relationship in
figure 7b relates self contained models that are obtained
by combining the parent Use Case with the child Use
Case. Attributes, preconditions as well as post
conditions are combined.

<<refine>>

 (a)

<<specialize>>

Pay

PayByCreditCard

Pre: amountDue<resources
 and availability=true
Post: amountDue=0 and
resources=resources@pre
 - amountDue@pre

(b)

<<refine>>

Pre: amountDue<resources
 and availability=true
Post: amountDue=0 and
resources=resources@pre
 - amountDue@pre

Pre: amountDue<creditLimit
 - expended
 and expirationDay<Today
Post: amountDue=0 and
expended=expended@pre
 +amountDue@pre

resources=creditLimit-expended
availability=expirationDay<Today

Pay

PayByCreditCard

Figure 7: Use Case Refinement hidden under a
Generalization: (a) Generalization/Specialization relationship.
(b) Abstraction/Refinement relationship.

The mapping, reveal: Generalization → Abstraction,
is defined to return the Abstraction artifact which is
hidden under each Generalization artifact. The
refinement is obtained by combining the parent and the
child intension.

Context Generalization def: reveal(): Abstraction
pre: self.parent.oclIsKindOf(UseCase)
 and self.child.oclIsKindOf(UseCase)
post: result.stereotype=<<refine>> and

result.supplier = self.parent and
 result.client = (self.parent ⊕ self.child)

The abstraction mapping returns an abstract version

of the UseCase by keeping only the features defined in
the parent UseCase while forgetting the rest. On the
other hand, the implementation mapping displayed in
figure 7b is not automatically produced. The designer is
asked to specify the relation between the attributes of
the abstract use Case (i.e. amountDue, resources and
availability) and the attributes of the refined Use Case
(i.e. amountDue, creditLimit, expended and
expirationDate), in the following way;

�u,u’�(u,u’)�R � (u.amountDue=u’.amountDue
 and resources=creditLimit – expended
and availability= expirationDate<Today

On the semantics side, as a consequence of the

differentiation introduced by the specialization, the
extension set of the abstract Use Case becomes
partitioned in two or more sub sets, for example, let d be

the abstraction artifact derived from the specialization of
the use case Pay by the sub use cases PayByCheck and
PayByCreditCard; Pay.extension is equal to
(PayByCreditCard.extension−>union(PayByCheck.exte
nsion)) −>collect(e�d.mapping(e))

4. Tool support

The task of documenting refinement steps needs to be
assisted by tools. We created PAMPERO [Pons et al.,
2004] that is a plug-in to the Eclipse development
environment [IBM, 2003]. It consists of four
components: an UML editor, an abstraction/refinement
translator, an evaluator, and a detective:

The Editor. The editor supports the creation of a
number of UML artifacts, including Abstractions; see
figure 8. Additionally, the editor allows developers to
specify the abstraction mapping attached to Abstraction
artifacts, using OCL expressions.

The abstraction/refinement Translator. The
translator takes an OCL expression attached to a Class
and translates it to concrete vocabularies, following the
refinement steps. The translation of expressions attached
to elements other than Class, is not supported yet.

Figure 8. The PAMPERO tool: Edition of explicit
refinement

The evaluator. The evaluator takes OCL expressions

and evaluates them on a given model. Expressions might
be either originally written in the model’s vocabulary or
translated by the translator from another abstraction
level. The evaluator was implemented following the
design of the USE evaluator [Richters and Gogolla,
2000].

The Detective. This component looks into the model
to discover and reveal cases of hidden refinement. The
abstraction mappings automatically generated by the
detective are generally in an immature state and should
be completed by the developer.

5. Conclusions

The traditional purpose of refinement is to show that
an implementation meets the requirements set out in an
initial specification. Armed with such a methodology,
program development can then begin with an abstract
specification and proceed via a number of steps, each
step producing a slightly more detailed design which is
shown to be a refinement of the previous one.

Although the UML allows for the explicit
documentation of the abstraction/refinement
relationship, an important amount of variations of this
relationship remains unspecified, in general hidden
under other notations. To enable traceability of
requirements the presence of “undercover refinement”
should be discovered and precisely documented.

When the mapping between the abstract and the
concrete models is explicitly (and formally)
documented, assertions written in the abstract model’s
vocabulary can be translated, following the
representation mapping, in order to analyze if they hold
in the implementation. Alternatively, instances of
concrete models can be abstracted according to the
abstraction mapping so that abstract properties can be
tested on them.

The contribution of this article is to clarify the
abstraction/refinement relationship in UML models,
providing basis for tools supporting the refinement
driven modeling process. PAMPERO, the tool reported
in this article, is an evidence of the feasibility of the
proposal.

References

Abadi, Martin and Cardelli, Luca. A Theory of Objects,
Monographs in Computer Science, Springer, 1996.

Booch, G.. Object Oriented Analysis and Design with
Applications. Benjamin Cummings, 1991.

Cardelli, L.,Wegner P. On Understanding Types, Data
Abstraction and Polymorphism. Computing Surveys,
17(4). 1985.

Derrick, J. and Boiten,E. Refinement in Z and Object-Z.
Foundation and Advanced. Applications. FACIT, Springer,
2001

D´ Souza, Desmond and Wills, Alan. Objects, Components
and Frameworks with UML.Addison-Wesley. 1998.

Dijkstra, E.W., A Discipline of Programming. Prentice-Hall,
1976.

Eric, H. and.Sernadas, A. Algebraic Implementation of
Objects over Objects. In stepwise Refinement of
Distributed. Systems, Models, Formalism. . LNCS 430.
1989.

Giandini, R., Pons, C., Pérez,G. Use Case Refinements in the
OO Software Development Process. Proceedings of CLEI
2002, ISBN 9974-7704-1-6, Uruguay. 2002.

Richters Mark and Gogolla Martin. Validating UML Models
and OCL Constraints. Springer-Verlag, 2000.
http://www.db.informatik.uni-bremen.de/projects/USE.

IBM, The Eclipse Project. Home Page. Copyright IBM Corp.
and others, 2000-2003. http://www.eclipse.org/.

Lano,K. The B Language and Method. FACIT. Springer,
1996.

OMG. The Unified Modeling Language Specification –
Version 1.5, UML Specification, revised by the OMG,
http://www.omg.org, March 2003

Pons, C., Giandini R. and Baum G.. Specifying Relationships
between models through the SD process, Tenth
International Workshop on Software specification and
Design, IEEE Computer Society Press. Nov. 2000.

Pons, C., Pérez,G., Giandini, R., Kutsche, Ralf-D.
Understanding Refinement and Specialization in the UML.
In. 2nd Int. Workshop on MAnaging SPEcialization
/Generalization Hierarchies. In IEEE ASE 2003, Canada.

Pons, C., Giandini, R, Pérez., G., Pesce, P., Becker, V.,
Longinotti,J., Cengia,J., Kutsche, R-D., C.Neil. The
PAMPERO Project: “Formal Tool for the Evolutionary
Software Development Process”. Home page:
http://sol.info.unlp.edu.ar/eclipse. 2004.

Steimann,F., Göβner,J, Mück,T. On the key rol of
compositioning object oriented modelling. Proceedings of
the 6th Int. Conference <<UML 2003>>. LNCS 2863.
Springer. 2003.

Wegner, P and Zdonik, S, Inheritance as an Incremental
Modification Mechanism or What like is an isn’t like. in
proceedings 3rd European Conference on Object-Oriented
Programming (ECOOP’88), Springer, 1988.

