

N.J. Nunes et al. (Eds.): <<UML>> 2004 Satellite Activities, LNCS 3297, pp. 246 – 249, 2005.
© Springer-Verlag Berlin Heidelberg 2005

PAMPERO: Precise Assistant for the Modeling Process
in an Environment with Refinement Orientation

Claudia Pons(1) (2), Roxana Giandini(1), Gabriela Pérez(1), Pablo Pesce(1),
Valeria Becker(1), Jorge Longinotti(1), and Javier Cengia(1)

(1) LIFIA – Facultad de Informática, Universidad Nacional de La Plata,
Calle 50 esq. 115. CP 1900. La Plata, Buenos Aires, Argentina

(2) CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)
cpons@info.unlp.edu.ar

1 Introduction

Abstraction [2] facilitates the understanding of complex systems by dealing with the
major issues before getting involved in the detail. Apart from enabling for complexity
management, the inverse of abstraction, refinement, captures the essential relationship
between specification and implementation. Refinement relationship makes it possible
to understand how each business goal relates to each system requirement and how
each requirement relates to each facet of the design and ultimately to each line of the
code. Documenting the refinement relationship between these layers allows develop-
ers to verify whether the code meets its specification or not, trace the impact of
changes in the business goals and execute test assertions written in terms of abstract
model’s vocabulary by translating them to the concrete model’s vocabulary.

Refinement has been studied in many formal notations such as Z [1] and B[4] and
in different contexts, but there is still a lack of formal definitions of refinement in
semi-formal languages, such as the UML. The standard modeling language UML [5]
provides an artifact named Abstraction (a kind of Dependency) to explicitly specify
abstraction/refinement relationship between UML model elements. In the UML meta-
model an Abstraction is a directed relationship from a client (or clients) to a supplier
(or suppliers) stating that the client (the refinement) is dependent on the supplier (the
abstraction). The Abstraction artifact has a meta attribute called mapping designated
to record the abstraction/implementation mappings, that is an explicit documentation
of how the properties of an abstract element are mapped to its refined versions, and on
the opposite direction, how concrete elements can be simplified to fit an abstract
definition. The more formal the mapping is formulated, the more traceable across
refinement steps the requirements are.

Although the Abstraction artifact allows for the explicit documentation of the ab-
straction/refinement relationship in UML models, an important amount of variations
of abstraction/refinement remains unspecified, in general hidden under other nota-
tions. For example UML artifacts such as generalization, composite association, use
case inclusion, among others, implicitly define abstraction/refinement relationship.
The starting point to enable traceability across refinement steps is to discover and
precisely capture the various forms of the abstraction/refinement relationship, in par-
ticular those forms which are hidden in the model.

 Precise Assistant for the Modeling Process in an Environment with Refinement Orientation 247

2 Tool Support

The task of documenting refinement steps needs to be assisted by tools. To experi-
ment, we created a tool integrated in the Eclipse environment [3], called PAMPERO
(Precise Assistant for the Modeling Process in an Environment with Refinement
Orientation), based on the formal definition of refinement [6] [7]. The tool can be
downloaded from http://sol.info.unlp.edu.ar/eclipse; it supports the documentation of
explicit refinements (i.e. Abstractions artifacts with their corresponding mapping
expressions) and the semi-automatic discovering and documentation of hidden re-
finements.

PAMPERO consists of four components: an editor, an abstraction/refinement
translator, an OCL evaluator, and a detective:

The Editor. The editor supports the creation of a number of UML and OCL artifacts,
including Abstractions; see figure 1. Additionally, the editor allows developers to spec-
ify the abstraction mapping attached to Abstraction artifacts, using OCL expressions.

Fig. 1. The PAMPERO tool: Edition of explicit refinement

The abstraction/refinement Translator. The translator takes an OCL expression
attached to a Class and translates it to concrete vocabularies, following the refinement
steps. The translation of expressions attached to elements other than Class, is not
supported yet.

248 C. Pons et al.

The evaluator. The evaluator takes OCL expressions and evaluates them on a given
model. Expressions might be either originally written in the model’s vocabulary or
translated by the translator from another abstraction level. The evaluator was imple-
mented following the design of the USE evaluator [8]. Figure 2 shows the evaluation
of OCL well-formedness rules on the model.

Fig. 2. The PAMPERO tool: Evaluation of OCL constraints

Movement

amount

Account
initialBalance
/ currentBalance 0..*0..*

/currentBalance=initialBalance+
movement ->collect(amount) ->sum()

Account'
initialBalance
currentBalance

Movement

amount

Account
initialBalance
/ currentBalance

0..*0..*

currentBalance=initialBalance+
movement ->collect(amount) ->sum()<<refine>>

(a) (b)

Fig. 3. Refinement hidden under decomposition: (a) Composite Association relationship. (b)
Refinement relationship derived from the Composite

The Detective. This component looks into the model to discover and reveal cases of
hidden refinement. The abstraction mappings automatically generated by the detective
are generally in an immature state and should be completed by the developer. Figure 3

 Precise Assistant for the Modeling Process in an Environment with Refinement Orientation 249

displays and example where a refinement relationship hidden under composite asso-
ciation is discovered and revealed by the tool. In the example the specification of the
derived attribute currentBalance is suggested as mapping making it possible to trans-
late OCL invariants such as (Context Account’ inv: currentBalance>0) to a refined
version such as:

Context Account inv: (initialBalance + movement->collect(amount)->sum()) > 0.

3 Conclusions

To enable traceability of requirements the presence of “undercover refinement”
should be discovered and precisely documented. When the mapping between the
abstract and the concrete models is explicitly (and formally) documented, assertions
written in the abstract model’s vocabulary can be translated, following the representa-
tion mapping, in order to analyze if they hold in the implementation. Alternatively,
instances of concrete models can be abstracted according to the abstraction mapping
so that abstract properties can be tested on them.

The contribution of this article is to clarify the abstraction/refinement relationship
in UML models, providing basis for tools supporting the refinement driven modeling
process. PAMPERO is an evidence of the feasibility of the proposal.

References

1. Derrick, J. and Boiten,E. Refinement in Z and Object-Z. Foundation and Advanced Applica-
tions. FACIT, Springer, 2001

2. Dijkstra, E.W., A Discipline of Programming. Prentice-Hall, 1976.
3. IBM, The Eclipse Project. Home Page. Copyright IBM Corp. and others, 2000-2004.

http://www.eclipse.org/.
4. Lano,K. The B Language and Method. FACIT. Springer, 1996.
5. OMG. The Unified Modeling Language Specification – Version 1.5, UML Specification,

revised by the OMG, http://www.omg.org, March 2003.
6. Pons, C., Pérez,G., Giandini, R., Kutsche, Ralf-D. Understanding Refinement and Speciali-

zation in the UML. 2nd International Workshop on MAnaging SPEcializa-
tion/Generalization Hierarchies (MASPEGHI). In IEEE ASE 2003, Canada.

7. Pons, C., Pérez., G. and Kutsche, R-D. Traceability across refinement steps in UML Model-
ing. Workshop in Software Model Engineering, 7th International Conference on the UML,
October 11, 2004, Lisbon, Portugal.

8. Richters Mark and Gogolla Martin. Validating UML Models and OCL Constraints.
Springer-Verlag, 2000. http://www.db.informatik.uni-remen.de/projects/USE.

