
An Efficient Implementation for Broadcasting Data in Parallel Applications over
Ethernet Clusters

Fernando G. Tinetti, Andrés Barbieri
LIDI - CeTAD, Computer Science School - Engineering School, UNLP

fernando@ada.info.unlp.edu.ar, barbieri@lidi.info.unlp.edu.ar

Abstract

This paper introduces a natural implementation for
broadcasting data on Ethernet based clusters used for
parallel computing. Initially, it will be shown that
libraries for Message Passing between processes such as
PVM and implementations of MPI do not implement
efficiently this operation or there is no reliability in terms
of its performance. An implementation for broadcast
messages is presented, taking into account the Ethernet
based hardware layer found in most of the clusters used
for parallel computing. The proposed implementation for
broadcasting data is compared with the broadcast
message available in PVM and LAM/MPI. Also, some
comments are made about the proposed broadcast
messages when the hardware layer is not Ethernet based.
Finally, it will be shown by experimentation how the
proposed broadcast message is used in the context of
parallel linear algebra operations, specifically for
parallel matrix multiplication.

1. Introduction

Although PVM [4] (Parallel Virtual Machine) and
some free implementations of MPI [5] (Message Passing
Interface) are the most widely used libraries for parallel
processing in networks of workstations [5], they do not
seem to be specifically designed and/or implemented to
take advantage of Ethernet broadcast to optimize
communication performance.

The idea underlying the present work is not to replace
PVM or the chosen implementation of MPI, but to add an
optimized broadcast message to these libraries for overall
performance improvement. In some way, this implies a
loss in portability at the source code level. However, for
computer clusters used for parallel processing it also
implies: a) a better communication performance for
broadcasting , and b) parallelization flexibility (given that
many times broadcast messages are avoided due to
performance penalties).

In the context of cluster computing, where the message
passing model is usually adopted as the programming
model, the performance of (collective) communications
has a direct impact on the performance of the whole
parallel application as well as on the parallel algorithm to

be selected. Moreover, communication performance
implicitly defines the minimum granularity (computing/
communication ratio) without loss of overall parallel
computing performance.

Many parallel algorithms are based on broadcasts, (e.
g. matrix multiplication) developed to be used on specific
interconnection networks of multicomputer architectures
[2]. Most of these algorithms have been modified and/or
adapted to be used on clusters. On the other hand, it is
possible to develop optimized communication routines
and parallel algorithms taking into account the hardware
available in computers clusters.

The most important factors affecting (communication)
performance will be analyzed later in this paper, such as
data bandwidth and startup (latency) communication times
for parallel processes messages. Startup time in local area
networks are relatively much longer (sometimes measured
in order/s of magnitude) than in the parallel computers
interconnection networks, and thus, special considerations
need to be made for parallel computing in clusters.

2. Broadcast Messages and Performance

It is rather usual to identify some classes of
communication routines,such as point-to-point operations,
and collective operations. Point-to-point operations
involve two processes in a data transmission, where the
primitives are send and receive. Collective operations
involve communicating more than two processes. Many
collective operations (or communications) have been
proposed (and sometimes used) -broadcast and multicast
messages are among the most accepted ones.

Collective communications can be built on top of the
point-to-point routines, which is commonly found in
parallel programming environments for clusters such as
PVM and implementations of MPI (LAM/MPI [7],
MPICH [MPICH]). Even when this approach simplifies
libraries development and maintenance, it usually implies
poor performance for collective communication routines.
Each call to a collective routine implies -at lower level-
many point-to-point executed routines.

The natural collective communication routines to be
dealt with for optimization in the context of computer
clusters are broadcast and multicast (which is very similar
to broadcast). Ethernet networks are based on a logical

Proceedings of the17 th International Conference on Advanced Information Networking and Applications (AINA’03)
0-7695-1906-7/03 $17.00 © 2003 IEEE

bus which can be reached from any attached workstation.
The method to access the bus is known as random access.
Basically, in every data transference, the sender floods the
bus, and only the destination/s will take the information
from the channel. The destination/s might be a group of
workstations and, in this case, the sender uses a
multicast/broadcast address, sending data only once. All
the referenced computers will take the data from the
channel. at the same time.

The time to transmit n data units is usually determined
by the equation

t(n) = stup + n dr (1)

Where stup is the communication startup time or
latency and dr is the data rate directly related to
communication channel data bandwidth, which are well
known in Ethernet LANs at the hardware level. However,
it is very difficult to characterize and quantify the
overheads involved in communicating processes of a
parallel application, such as: 1) Operating system: data
movement through the memory hierarchy, NIC handling
(e.g. interrupts), etc., 2) General parallel software library
implementation: protocol usage (TCP/IP), protocol
packets handling (Maximum Transfer Unit: MTU), etc.,
and 3) Routines specific implementation, which is directly
related to the (Ethernet-logical bus) hardware.

Communication performance at the user's level process
is usually measured by experimentation. In addition, more
than two processes are involved in every collective
communication, and this fact has to be carefully measured
in the experimental work.

3. Experimentation

PVM (Parallel Virtual Machine) and LAM/MPI [7]
(Local Area Multicomputer/Message Passing Interface)
were chosen as the software libraries for communicating
processes of a parallel application. The communication
hardware was a switched 100 Mb/s Ethernet 100BaseTx
The cluster included eight PCs (PIII 700 MHz, Linux
2.2.12-20, 64 MB).

Given the asynchronous definition of the broadcast
operation in PVM and MPI and the highly distributed
parallel architecture (without any kind of synchronization),
time measurements were carried out by the following
method:
1. Every process synchronizes with a barrier operation,

just before beginning the broadcast.
2. Then, each takes time locally.
3. The broadcast operation is carried out. The sender

process (which is unique) is usually called the root for
the operation.

4. Once broadcast message is finished (when every
process has received its data), each process takes time
locally again, calculates the local elapsed time, and
sends it back to the root process.

5. The root process receives all the elapsed times and

evaluates the maximum value. This is considered as
the total time of the collective operation.
Since there are many ways of making broadcasts in

PVM and LAM/MPI, all of them are measured. The
various configurations depend on the routing method
(daemon-to-daemon or task-to-task) and the data encoding
(XDR or none). Every experimentation was carried out
without any other traffic on the local network in order to
avoid any unexpected behavior (performance loss) due to
a busy local area network.

Different message lengths were analyzed to identify any
performance dependence on the number of transferred
bytes. Also, every message length was measured with
increasing number of receivers (from two to seven).

4. PVM-LAM/MPI Broadcast Performance

Fig. 1 shows the best measured times for PVM
broadcast messages (pvm_bcast). Times measured using
PVM multicast routine (pvm_mcast) are almost the same.
The elapsed time is shown in a logarithmic scale, and
dependent on message length (8, 100, 1000, 60000, 106

bytes respectively) and number of receivers (from 2 to 7
receivers). In general, for every message length, the time
needed to complete the broadcast operation is proportional
to the number of receivers.

Figure 1: PVM Broadcast Performance (Time).

In addition, from Fig. 1 it is clear that for message
lengths ranging from 0 to 1000 bytes, the whole elapsed
time is dominated by the communications startup time.
Fig. 2 shows the same experimentation but in terms of
MB/s, where two characteristics of performance can be
pointed out: 1) For message lengths between 8 and 1000
bytes, startup time implies poor performance (below 25%
the optimum network data bandwidth - 100 Mb/s)
independently of the number of receivers, and 2)
Broadcast performance is strongly dependent on the
number of receivers. Performance is below 1 MB/s (below
10% of the hardware data rate) for more than 3 receivers
independently of the message length.

8 100 1000 60000 1000000

0 .0001

0 .001

0 .01

0 .1

1

2 rec . 3 rec . 4 rec . 5 rec . 6 rec . 7 rec .

M essage L ength (bytes)

lo
g

(s
ec

.)

Proceedings of the17 th International Conference on Advanced Information Networking and Applications (AINA’03)
0-7695-1906-7/03 $17.00 © 2003 IEEE

Figure 2: PVM Broadcast Performance (MB/s).

The LAM/MPI library has much better performance
values: a) LAM/MPI startup time is about one order of
magnitude below the PVM startup time, and b) LAM/MPI
data rate is about twice PVM data rate.

Even when the LAM/MPI documentation explicitly
states that broadcast implementation is made by
constructing binomial spanning trees with nodes involved
in the collective data communication, there are several
points that should be taken into account: 1) Spanning trees
are useful only when only one Ethernet switches is used
for interconnecting the whole network, and 2) Spanning
trees reduce time complexity at the most to logarithmic
scale (which is considered good enough most of the
times), but logarithmic time complexity is considerably
worse than the constant time complexity which can be
obtained, at least theoretically, by taking into account the
logical Ethernet bus.

In general, MPI implementations do not necessarily
have to optimize broadcast performance and/or optimize
the availability of the Ethernet logical bus since the MPI
standard itself does not impose any restriction and/or
characteristic on any of the routines it defines.

5. UDP Broadcast Performance

A broadcast message was implemented directly on top
of the UDP protocol, which makes use of the Ethernet
broadcasting facility. Some consequences of this approach
are: a) Portability (since the UDP protocol is available on
every computer), b) User level communication routine (it
is not necessary to modify the operating system kernel or
to impose any special or root level priority), and c) If
Ethernet is not found at the hardware level for
communications, the UDP protocol tends to optimize the
hardware capabilities. On ATM networks for example, it
is likely that the UDP broadcasting facility will be better
than every user-designed broadcast message. One of the
main reasons for this assumption is that the UDP protocol
is specifically oriented to obtain the best available
performance.

Fig 3 shows the measured times for the proposed UDP
implementation of broadcast messages, which can be
compared with the values in Fig. 1 for the PVM broadcast
message. Fig. 4 shows the same values in terms of MB/s,
which can be compared with those in Fig. 2.

Figure 3: UDP-based Broadcast Performance (t).

Figure 4: UDP-based Broadcast (MB/s).

The implemented broadcast routine requires
significantly less memory space than the PVM broadcast,
and some experiments were carried out for message
lengths of 107 bytes (about 10 MB).

The proposed implementation has startup times
significantly worse than those found with PVM. However,
for message lengths equal to 106 bytes or greater, three
very important performance characteristics are found: 1)
Broadcast elapsed time is almost independent of the
number of receivers, thus a “constant” communication
time for a given message length is obtained, 2)
Performance is near optimal for 10 MB/s Ethernet used.
The theoretical optimum is 1.25 MB/s in 10Mb/s Ethernet
networks, and 3) If latency time is reduced, then the two
previous characteristics will be found in the messages
performance for lengths of less than 106 bytes.

From the performance point of view, the UDP-based
implementation for broadcasting data is far better than

8 1 0 0 1 0 0 0 6 0 0 0 0 1 0 0 0 0 0 0

0

1

2

3

4

5

6

2 re c . 3 re c . 4 re c . 5 re c . 6 re c . 7 re c .

M e ssa g e L e n g th (b y te s)

M
B

/s

8 1 0 0 1 0 0 0 6 0 0 0 0 1 0 ^6 1 0 ^7

0

2

4

6

8

1 0

1 2

2 rec . 3 rec . 4 rec . 5 rec . 6 rec . 7 rec .

M essa g e L en g th (b y tes)

M
B

/s

8

0 .0 0 1

0 .0 1

0 .1

1

2 rec . 3 rec . 4 rec . 5 rec . 6 rec . 7 rec .

M essa g e L en g th (b y tes)

lo
g

(s
)

Proceedings of the17 th International Conference on Advanced Information Networking and Applications (AINA’03)
0-7695-1906-7/03 $17.00 © 2003 IEEE

PVM and LAM/MPI routines for message lengths equal to
60000 bytes or greater.

6. Broadcast-Based Matrix Multiplication

Linear algebra applications are extensively and
intensively solved taking advantage of the parallel
architecture provided by clusters. The SPMD (Single
Program - Multiple Data) processing model is followed by
most of the parallel algorithms in this area. Also,
broadcast messages are very useful in many of the
algorithms in order to reduce their complexity and/or
communication requirements. Many parallel matrix
multiplication algorithms have been proposed and many of
them have been adapted to

Fig. 5 shows experimental performance values of a
parallel matrix multiplication algorithm based on the
broadcast message. Square matrices of order 3200
elements were multiplied. The speedup obtained with the
PVM as well as the UDP-based broadcast are shown for
every number of computers.

Figure 5: Speedup Values for Matrix Multiplication.

As Fig. 5 shows, even when the optimal values
(corresponding to the straight line y = x) are not obtained,
the algorithm using UDP-based broadcast renders some
satisfactory characteristics for the speedup values: 1)
Performance grows as the number of computers grows, 2)
The difference between obtained speedup values and the
optimal ones is mainly due to the low granularity of the
problem. Better values can be obtained increasing the
matrices order according to the number of computers

very simple problem (matrix
multiplication) and with a low granularity, the obtained
speedup values are near 20% of the optimal ones.

7. Conclusions and Further Work

Collective communications can be directly translated to
the most commonly found network interconnection
hardware on local area networks: Ethernet 10/100 Mb/s.

Many algorithms can use the optimized performance of a
specifically implemented broadcast over these networks.
However, the software libraries for parallel computing on
networks of workstations are not designed for optimal
usage of any communication hardware.

It was shown by experimental work that PVM has very
low broadcast communication performance on a real local
area network. LAM/MPI takes advantage of switching
networks building a binomial tree for distributing data, but
the reached performance is very low compared with the
physical network bandwidth. A preliminary

implemented over UDP/IP has proven to
be successful in achieving near optimal broadcast
communication performance for message lengths of about
106 bytes or larger. Broadcast time for message sizes
ranging from 8 to 106 bytes is mainly dominated by the
high latency, and the resulting performance can be
considered as poor.

Some preliminary optimizations to the UDP-based
broadcast message has shown a dramatic improvement in
startup time of about 1 order of magnitude in some cases.
This implies to improve overall communication
performance as well as decreasing the parallel processing
granularity in an order of magnitude too.

The optimized broadcast message should be used for
other parallel linear algebra algorithms such as the matrix
factorizations included in libraries like LAPACK [1] and
ScaLAPACK [3].

8. References

[1] Anderson E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.
DuCroz, A. Greenbaum, S. Hammarling, A. McKenney, D.
Sorensen, LAPACK: A Portable Linear Algebra Library for
High-Performance Computers, Proceedings of Supercomputing
'90, pages 1-10, IEEE Press, 1990.
[2] Choi J., “A New Parallel Matrix Multiplication Algorithm on
Distributed-Memory Concurrent Computers”, Proceedings of the
High-Performance Computing on the Information
Superhighway, IEEE, HPC-Asia '97.
[3] Choi J., J. Dongarra, R. Pozo, D. Walker, “ScaLAPACK: A
Scalable Linear Algebra Library for Distributed Memory
Concurrent Computers”, Proc. 4th Symposium on the Frontiers
of Massively Parallel Computation, Ieee Computer Society
Press, pp. 120-127, 1992.
[4] Dongarra J., A. Geist, R. Manchek, V. Sunderam, Integrated
PVM framework supports heterogeneous network computing,
Computers in Physics, (7)2, pp. 166-175, April 1993.
[5] Message Passing Interface Forum, MPI: A Message Passing
Interface standard, International Journal of Supercomputer
Applications, Volume 8 (3/4), 1994.
[6] Wilkinson B., Allen M., Parallel Programming: Techniques
and Applications Using Networking Workstations, Prentice-
Hall, Inc., 1999.
[7] G. Burns, R. Daoud, and J. Vaigl, LAM: An Open Cluster
Environment for MPI. Ohio Supercomputer Center, May 1994.
LAM/MPI is available at University of Notre Dame
(http://www.mpi.nd.edu/lam) - 1998-2001
[MPICH] MPICH Home Page http://wwwunix.mcs.anl.gov/
mpi/mpich/

2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

P V M B cast U D P B cast

N u m b er o f C o m p u ters

8
U
J
J
I
Z
U

Proceedings of the17 th International Conference on Advanced Information Networking and Applications (AINA’03)
0-7695-1906-7/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

