
A P2P Groupware Framework based on Operational Transformations

Leandro Quiroga, Alejandro Fernandez
LIFIA, Facultad de Informática, UNLP

leandro.quiroga, alejandro.fernandez @lifia.info.unlp.edu.ar

Abstract - Groupware applications deal with propagation of

changes to networked users, consistency maintenance on

concurrent access, and provision of awareness. We have built a

P2P groupware framework for the sub-domain of synchronous

groupware. The framework is based on the concept of

operational transformations to provide transparent change

propagation and consistency maintenance. This paper provides

an overview of the framework design and illustrates how to use

it to build an application.

I. INTRODUCTION

Groupware applications help groups of people to collaborate, for

example, to achieve a common goal. Using synchronous groupware,

such as a shared whiteboard, group members collaborate in real time

[11].

Building effective groupware is challenging. Correctly specifying

the functionality of a groupware system is difficult because the very

nature of working together continually changes as a consequence of

changing work needs, but also as a consequence of how the systems

themselves tend to change work relationships and processes. This

phenomenon is known as co-adaptation [24].

Besides providing functionality for the task at hand (e.g., creating

whiteboard documents), groupware applications must deal with other

complex concerns such as propagation of changes to networked

users, consistency maintenance on concurrent access and provision

of awareness. Several applications may share requirements for

change propagation, consistency maintenance and awareness.

Object-oriented groupware frameworks [27, 28, 29] hide complexity

and foster reuse (both of design and of implementation) thus

reducing the effort of developing groupware.

Most groupware systems (and therefore, most groupware

frameworks) rely on a centralized, client-server architecture. In a

centralized architecture there is a distinguished entity (the server) in

charge of coordination. This distinguished entity provides the

advantage of simplifying concurrency control algorithms. However,

having a central server implies having a single point of failure. Any

server failure will disable the complete system. Moreover, the

system’s scalability is limited by the server’s performance.

Lately, attention has moved toward peer to peer applications. Peer

to peer groupware applications have a decentralized architecture.

That is to say, they do not require singular components for its

operation as a client-server architecture would. On the contrary, they

enhance the availability of services by distributing them among a

great number of nodes, which are not assumed to fail all at the same

time. A peer to peer system is a self organizing system of equal,

autonomous entities (peers) which aims for the shared usage of

distributed resources in a networked environment avoiding central

services [25].

Although building P2P groupware is becoming more common,

support for building P2P applications is rare. There are few libraries

or components that facilitate P2P groupware development. One of

these is JXTA [9]. It is a set of open protocols that allow any

connected device on the network (ranging from cell phones and

wireless PDAs to PCs and servers) to communicate and collaborate

in a P2P manner.

We have built a P2P groupware framework for the sub-domain of

synchronous groupware. The framework is based on the concept of

operational transformations to solve the problems of change

propagation and consistency maintenance. This paper provides an

overview of the framework with insight to the design and

implementation of the operational transformation engine.

The paper is organized as follows. The next section explores the

issues of repeatedly having to implement a concurrency control

algorithm for facing peer to peer groupware applications consistency

troubles. Section 3 presents frameworks as a mechanism for reuse of

design and implementation. The proposed P2P framework is

presented in Section 4. An usage example is described in Section 5.

Section 6 presents conclusions and future work.

II. MAINTAINING CONSISTENCY IN P2P GROUPWARE

Many groupware applications rely on the shared data being

replicated in all participating clients. Maintaining the replicated data

consistent is a problem that has been extensively covered by the

literature [1, 8, 22]. The fundamental cause of the emergence of

inconsistency is that mapping changes at one location onto changes

at all other locations consumes an unpredictable amount of time, due

to network latency, processing time and queuing time [8]. Problems

arise when conflicting changes are propagated from different nodes

at the same time (see figure 1.B). This may result in different

ordering of changes and therefore divergent results at different

locations [8].

Consider, as an example, a collaborative puzzle application where

a group of people try to solve a puzzle moving and fitting pieces

concurrently. All nodes are aware of all movements and fits

generated by other nodes. Maintaining consistency implies that after

changes have been made, all nodes must have the same puzzle data.

There are several conflicting situations in this scenario. For example,

at the same time two players may decide to move the same piece to

different locations.

One option to obtain the same result in all nodes is to establish a

global total ordering among operations. It is based in the fact that if

all nodes have the same initial state and execute operations in the

same order, the final state at all nodes would be identical. In a client-

server architecture the server can establish it considering the arriving

order. Thus, it can attach a serial number to operations and forward

them to all nodes, which will execute them in order (see figure 1.A).

In a pure peer to peer architecture there is no distinguished entity

which can provide a global and total ordering of operations (having a

distinguished entity would break its pureness). Therefore,

consistency must be ensured in a distributed manner.

Another strategy is not to accept actions that may cause

inconsistency, i.e., to deny some actions by some users. This may be

done by locking, a form of coordination that gives only one user at a

time the (temporary) privilege to initiate actions that may cause

inconsistency, while restricting others to do such actions as long as

the user holds the lock [8]. Establishing locks on entities decrease

interactivity which is not desirable in synchronous groupware

applications.

Client 1 Client 2Server

Op. A

Op. B

Op. A

Op. B

Op. B

Op. A

Peer 2Peer 1

Op. A

Op. B

Op. B

Op. A

Figure 1.A Figure 1.B

III. OT ALGORITHMS TO MAINTAIN CONSISTENCY

Operational Transformations (OT) [1] is an alternative to maintain

consistency in totally distributed environments. With this method it

is not necessary to execute operations in a total order, nor

establishing locks on entities.

In OT algorithms, changes are encapsulated in operations. Peers

generate operations which are executed locally and then propagated

to other peers. Operations received from other peers are executed

following strict rules.

Conceptually, each operation O has a context. This context is

composed by the operations needed to be executed to bring the

model from its initial state to the state on which O was defined

(definition context). The effect of an operation can be correctly

interpreted only in its definition context. When executing O, if the

current context (named execution context) is different from O’s

definition context, O has to be delayed or transformed so that it can

be executed in the current context.

OT algorithms transform operations to include/exclude the effects

of other operations. Intuitively, transformations shift operation’s

attributes before execution, to incorporate the effects of previously

executed operations that it was not aware of, at the time of

generation [23]. This method was originally designed for

collaborative text editors and to our knowledge it is not been adapted

to others domains.

Basically OT algorithms consist of three parts:

• Operations: application domain specific commands that

model actions (e.g., moves and fits in the puzzle game).

• Transformers, entities responsible of modifying operations

if they are in conflict with previously executed operations.

As we said before, they adapt an operation if its definition

context differs from the execution context, to make it

executable.

• An integration algorithm, in charge of receiving

operations, deciding when to execute them, deciding if they

must be transformed before execution, executing them and

propagating operations to all other peers.

Several OT algorithms exist [1, 2, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21]. They differ in their architecture (centralized or replicated,

unicast or multicast), their abilities (intention preservation, causality

preservation and copies convergence), undo support, operations

execution order, when operations are propagated, etc.

IV. IMPLEMENTING OT ALGORITHMS

OT algorithms are hard to understand, implement and debug. An

OT algorithms complexity indication is that papers that have been

published with errors in their algorithms [1, 2] were discovered long

after publication.

When building P2P groupware applications, in which

inconsistencies between peers can arise, selecting some consistency

preservation mechanism is a must. Generally, business logic code

and consistency preservation code are intertwined (e.g. information

such as details of preceding operations is embedded in domain

specific abstractions or locking code is dispersed all over the

business logic code). In such scenario, consistency preservation code

can hardly be reused and must be designed, implemented and tested

from scratch. As we said before, these are not trivial tasks and it is

not desirable to do them over and over again for each new

application.

Separating concurrency control from business logic facilitates

respective development stages. Doing a slight analysis (see next

section), it becomes clear that when developing applications from

different application domain, although business logic differs,

considerable parts of consistency maintenance functionality are

identical. This generates an ideal environment to define a

consistency management tier, which provides all common behavior

and allows configuring domain specific aspects.

V. REUSING OT ALGORITHMS

It is possible to provide reusable implementations of OT

algorithms that can be specialized to implement applications from

different domains. It implies encapsulating the parts that are

common across domains while providing mechanisms for extension

and specialization for those parts that differ.

Analyzing OT algorithms in accordance to its composition and

possible reutilization we conclude that:

• Operations are domain specific. For example in a

collaborative puzzle there will be move piece and fit piece

operations, whereas in a simple collaborative text editor the

operations would be to insert or delete characters. Such

specific behavior cannot be reused. However, the general

design principle of operations and a base implementation

could be provided, for example, following the Command

pattern [26].

• Transformers base in operation’s attributes to return

transformed operations. As we said before, operations are

domain specific. Consequently, transformers depend on

application domain. Like operations, its specific behavior

could not be reused, but its design can.

• Last but not least, the integration algorithm does not depend

on application domain, since:

o Operation’s receiving and sending could be treated as

an independent layer abstracted of application domain.

o To decide the operation’s execution time and if it must

be transformed for execution, the OT algorithm only

needs to compare its definition context with the

execution context, so it does not depend on the

application’s domain.

o Executing operations could be generalized using the

Command pattern.

So, a big portion of OT algorithms behavior is common.

A. Frameworks as a mechanism for reuse

Frameworks are a design reuse technique in the object-oriented

paradigm. A framework constitutes the inner structure of

applications and gives the possibility to tune the specific details. The

places where these specific details are specified are called

framework’s hot spots.

Hot spots are defined by abstract classes. Creating subclasses of

these abstract classes is how they are specified. These subclasses

have the option of redefine existing methods and the obligation to

define the abstract ones. Software developers do not have to know

how the entire framework is implemented. They only have to know

about how hot spots are specified [6, 7].

In the previous section we argued that a considerable part of the

consistency management code is repeated in different applications,

even if they come from different domains. In the next section we

show how these common parts can be encapsulated in a framework.

The solution we propose is the result of combining these previous

ideas and it is presented in next section.

VI. A P2P FRAMEWORK BASED ON OPERATIONAL TRANSFORMATIONS

The frameworks theory provides tools needed to encapsulate

common behavior and specify points of variability. Our contribution

consists of a framework to help in the development of P2P

synchronic groupware with heavy consistence management.

A. Framework architecture

As show in the packages schema below, the framework is divided

in four different but related packages:

• Application domain package.

• OT algorithm package.

• Communication layer adapter package.

• Communication backend package.

Application domain package

The application domain package is basically composed by

operations and transformers. Operations are subclasses of the

Operation abstract class. They redefine the execute() method and

two more methods (see Framework hotspots section for details). The

execute() method receives an object as a parameter and performs

some actions over this object. Groupware application peers will

communicate using operations. Any action that must be propagated

must be encapsulated in an operation.

In the puzzle application example, fit piece and move piece actions

need to be encapsulated by operations. Thus there will be one

Operation subclass for each action type (FitPieceOperation and

MovePieceOperation, see section VI.C for details).

Transformers are subclasses of the Transformer abstract class. As

said before, transformers adapt operations which definition context

differs from execution context, to make them executables. Each

transformer is a Singleton [26]. It redefines the transform() method,

which receives two operations and returns a transformed one.

There will be one transformer for each Operation subclass and two

transformers for any binary combination of these subclasses. So if

we have two operations classes, A and B, there will be one

transformer for transforming A given another A, other for B given

another B, other for A given a B and other for B given an A.

Going back to the puzzle application example, it will have four

transformers. One for transforming fit piece operations with itself,

another transformer for transforming move piece operations with

itself, another transformer for transforming fit piece operations with

move piece operations and another transformer for transforming

move piece operations with fit piece operations.

These two groups of classes (operations and transformers) are the

only application specific abstractions needed to guarantee

consistency.

OT algorithm package

Among all available integration algorithms, we choose to

implement adOPTed [2], because:

• It is proved that the integration algorithm is correct [4].

• There is enough documentation to implement it [2].

• It can be extended to support undo operations [5].

• It allows a replicated and multicast architecture. With

adOPTed, the model is in each peer and peers can directly

communicate with each other.

• Although it is proved that its transformations are wrong [3],

it is not necessary to use them. But in case we need them,

others [10] can be used.

The framework implements all concepts involved in the adOPTed

algorithm. There is a Site class in charge of sending and receiving

operations. Before executing, operations are pushed into a Queue

that prioritizes local operations over remote ones. An Executor,

which runs in an independent thread, pops executable operations

from Queue, transforms them (if it is necessary) and finally executes

them. Operations are encapsulated into Requests to be sent between

peers. Requests also contain the source peer id, the operation serial

number and the definition context. In adOPTed, both definition

context and execution context are represented by State vectors.

These State vectors have a hash table that keeps a counter of

operations executed from each site.

There is also a RequestsLog and an InteractionModel. The former

stores all departing local Requests and all arriving remote Requests.

It is used when operations need to be transformed. The latter stores

operations resulting from transformations. There are some cases in

which it must be done the same transformation over the same

operations. The InteractionModel is used to prevent doing the same

transformations over and over again.

Communication layer adapter package

This package purpose is to relate the OT algorithm

implementation with the communication software. It consists in

three classes, called SiteConnection, GroupManager (abstract) and

Receiver (abstract), and four interfaces, named Sender, Marshaller,

RequestsReceiver and Unmarshaller.

The SiteConnection class is the most important one because it acts

as the communication software facade for the Site. It has methods

for creating, joining, leaving and searching for groups, closing the

connection, returning peer id and sending and receiving requests. For

doing these activities it interacts with instances of GroupManager,

Receiver, Sender and Marshaller.

GroupManager is an abstract class which objective is to do group

activities like creating, joining, leaving and searching for groups of

peers. After joining a group, it also creates the Receiver, Sender,

Marshaller and Unmarshaller and passes them to the SiteConnection.

The way of doing all these activities clearly depends on the

communication software to use. Thus, they are all represented by

abstract methods. For each different communication software and

each different sending/receiving mechanism there will be one

GroupManager subclass. The current framework implementation has

a concrete subclass (JxtaGroupManager) for using JXTA pipes.

The Receiver is the object in charge of receiving messages,

transforming them into Requests using an Unmarshaller and passing

them to the RequestsReceiver. For each way of receiving messages

to use, there must be one Receiver subclass. The framework provides

a PipeReceiver for receiving messages through JXTA pipes.

The Unmarshaller interface only declares one method,

unmarshall(), that takes objects and returns requests. An

implementation, XmlUnmarshaller, for use with JXTA is provided.

Sender implementations need to implement two methods, close()

and send(). The former interrupts connections with other peers. The

+ execute(model: Object)
getSourceTransformers() : Set<Transformer>

getTargetTransformers() : Set<Transformer>

- getTransformer(operation: Operation) : Transformer
+ transform(operation: Operation) : Operation

Operation

transform (sourceOperation : Operation, targetOperation : Operation) : Operation

Transformer

OT Algorithm

Package

Application
Domain

Package

Communication
Backend

Package

Communication
Layer Adapter

Package

latter sends a message, previously created by a Marshaller

implementation, to all other peers. The current framework

implementation provides a PipeSender and an XmlMarshaller.

If you decide to use another communication software, you just have

to implement the appropriate subclasses of GroupManager and

Receiver and the appropriate implementations of Sender, Marshaller

and Unmarshaller.

Communication backend package

Although it could be replaced by other frameworks (like

Conference XP), we used JXTA [9] for communication. Its most

important services are, peer discovering and identifying, group

creation and management and security management.

B. Framework hotspots

The instantiation of the framework consists of several steps,

involving from selecting some communication software to

implementing operations and transformers. The framework hotspots

are divided into three subsections.

Communication layer package
The first step is to create an instance of the SiteConnection class.

In the constructor we will need to specify a GroupManager subclass.

Currently the framework only provides one subclass for connecting

with JXTA, so create a JxtaGroupManager instance. This is a ready-

to-use class that employs XML over JXTA pipes to communicate.

Using this class you would not need to configure a receiver, sender,

marshaller and unmarshaller. If you want to employ some different

JXTA communication mechanism or even some different

communication software, you may define new GroupManager and

Receiver subclasses and new Sender, Marshaller and Unmarshaller

implementations.

OT algorithm package, operations
The next step is to create a Site instance, specifying the

SiteConnection previously created and the model. The model is the

object over which operations will be executed.

Just to avoid casting the model to its specific class in each

operation, we create an Operation abstract subclass which

implements the execute method as showed below:

We replace SpecificModel with our model’s class name. We must

also declare the following abstract method:

For example, at the puzzle game, we have defined a

PuzzleOperation abstract class as showed below.

Then, we create the representative classes for those operations which

may be sent between peers. We make them subclasses of the

previously created Operation abstract subclass, and implement the

execute method in each one. The execute method should only

contain a call to a model method.

OT algorithm package, transformers

Next step is to create a Transformer subclass for each binary

combination of conflictive operations. Each of which may

implement the Singleton pattern. Each Transformer must implement

the transform method. In it, it must check certain properties or

attributes of parameterized operations and return the correct

transformed operation.

When different transformers are implemented, it may be taken in

account diverse criteria to find out the resultant operation.

Depending on interferences between transforming operations, three

cases are distinguished:

• Operations do not interfere with each other. In this case, the

sourceOperation must be returned without any

transformation.

• Operations are equals. This is the case in which two

participants concurrently create the same operation. In this

case, as the targetOperation was already executed, the

surceOperation may be ignored. So a NoOperation must be

returned.

• Operations interfere with each other. So, a transformation

that resolves the conflict must be applied.

There are some test cases to evaluate a set of transformers

correctness [10].

Each non abstract operation subclass created above may

implement the following methods:

The former returns a set of transformers which take as source

operation, instances of the class that contains the method. The latter

returns a set of transformers which take as target operation, instances

of the class that contains the method.

C. Usage example

Collaborative puzzle implementation

This section will show how the framework is used to implement a

collaborative puzzle. The picture below shows an schematic class

diagram of the collaborative puzzle. In it you can find three different

packages and how they are related. At the Application Domain

Package, the PuzzleController is in charge of communicating with

the Site for sending operations. It also communicates with the

SiteConnection for creating, joining leaving and searching for

groups. As explained before, at the OT Algorithm Package, the

Executor will execute operations on the PuzzleModel. The Site and

the SiteConnection collaborate with each other for sending and

receiving requests.

The instantiation of the whole application will happen in the

following way. The PuzzleController instantiates the SiteConnection

class passing as a parameter a GroupManager instance. Then, the

PuzzleController instantiates the Site class, passing as parameters the

SiteConnection previously created and a PuzzleModel instance.

Thus, operations will be executed on this PuzzleModel instance.

public abstract class PuzzleOperation extends Operation {

 public void execute(Object model) {

 this.execute((PuzzleModel) model);

 }

 public abstract void execute(PuzzleModel

puzzleModel);

}

Set<Transformer> getSourceTransformers()

Set<Transformer> getTargetTransformers()

public void execute(Object model) {

 this.execute((SpecificModel) model);

}

public abstract void execute(SpecificModel

specificModel);

Operations can arrive to the Site in two ways, from

PuzzleController (if they are locally generated) or from

SiteConnection (if they are remotely generated). In each peer the

PuzzleController will generate operations with information passed

by the PuzzleView and required to the PuzzleModel.

There are two types of operations, MovePieceOperation and

FitPieceOperation. These classes are PuzzleOperation subclasses,

which is abstract and subclass of Operation. PuzzleOperation class

only implements the abstract method execute(Object) (defined in

Operation class) in which invokes the execute(PuzzleModel) abstract

method.

Each PuzzleOperation subclass must implement the

getSourceTransformers(), getTargetTransformers() and

execute(PuzzleModel) methods. In MovePieceOperation case, the

getSourceTransformers() method returns a set with one instance of

MoveMoveTransformer class and another of MoveFitTransformer

class. The getTargetTransformers() method returns a set with one

instance of MoveMoveTransformer class. Finally, the

execute(PuzzleModel) method invokes the movePiece() method on

the puzzleModel.

In FitPieceOperation case, the getSourceTransformers() method

returns a set with one instance of FitFitTransformer class. The

getTargetTransformers() method returns a set with one instance of

FitFitTransformer class and another of MoveFitTransformer class.

Finally the execute(PuzzleModel) method invokes the fitPiece()

method on the puzzleModel.

Previously named transformers implement the Singleton pattern

and are subclasses of Transformer abstract class.

There are some cases in which the transformer always returns the

source operation without any transformation. In our puzzle, fit

operations have precedence over move operations. That is to say,

when a move and a fit operation over the same piece are

concurrently created, peer’s resultant states after both operations

execution will be the same as not have executed the move operation.

So transforming a fit operation with a move operation always returns

the fit operation without any changes. In these cases it is not

necessary to implement the transformer. That is why the

FitMoveTransformer class does not exist.

Each Transformer subclass implements the transform(Operation,

Operation): Operation method in the following way:

MoveFitTransformer: it checks if operations are over the same

piece or if pieces involved are fitted, in this case it returns a

NoOperation. Else it returns the source operation without any

changes.

MoveMoveTransformer: if movements are over the same piece

and to the same location it returns a NoOperation. If movements are

over the same piece but to different locations it checks operation’s

priorities to select which operation will remain. If operations are

over different pieces it returns the source operation without any

transformation.

FitFitTransformer: if fits are over the same piece and with the

same piece it returns a NoOperation. If fits are over the same piece

but with different pieces it checks operation’s priorities to select

which operation will remain. On the other hand, if fits are over

different pieces but are symmetrical, it checks operation’s priorities

to select which operation will remain. Finally if fits are not

symmetrical it returns the source operation without any

transformation.

VII. CONCLUSIONS, OPEN ISSUES AND FUTURE WORK

We have presented a new framework to help in the development

of synchronic groupware. It is based in Operation Transformations

assuring highly dynamic interaction between participants.

Some open issues are supporting late comers and provide some

way to test transformations. The former could be implemented

passing the current state to new users and when a late comer requires

class MoveMoveTransformer extends Transformer {

 ...

 Operation transform(Operation sourceOperation,

Operation targetOperation) {

 if (movements are over the same piece) {

 if (to the same location) {

 return new NoOperation(sourceOperation);

 } else {//to different location

 if (source operation has higher priority) {

 return sourceOperation;

 } else {

 return new NoOperation(sourceOperation);

 }

 }

 } else {//movements are over different pieces

 return sourceOperation;

 }

 }

}

class MoveFitTransformer extends Transformer {

 ...

 Operation transform(Operation sourceOperation,

Operation targetOperation) {

 if (operations are over the same piece or pieces

are fitted) {

 return new NoOperation(sourceOperation);

 } else {

 return sourceOperation;

 }

 }

}

an old operation it asks the group for. The latter is important because

developing transformers is not an easy task. See [3] for details.

The future work will be focus on previous open issues, some

technique to factorize transformers (to reduce its number) and testing

the framework in various and more complicated domains.

REFERENCES

 [1] S. J. Gibbs C. A. Ellis. Concurrency control in groupware

systems. Proceedings of the 1989 ACM SIGMOD international

conference on Management of data, pages 399–407, June 1989.

[2] D. Nitsche-Ruhland, M. Ressel and R. Gunzenhäuser. An

integrating, transformation-oriented approach to concurrency control

and undo in group editors. Proceedings of the 1996 ACM conference

on Computer supported cooperative work, pages 288–297, 1996.

[3] G. Oster A. Imine, P. Molli and M. Rusinowitch. Development

of transformation functions assisted by a theorem prover. 9/2003.

[4] Lushman, Cormack. Proof of correctness of Ressel’s adopted

algorithm. Information Processing Letters, 86:303–310, 2003.

[5] Rul Gunzenhäuser Matthias Ressel. Reducing the problems of

group undo. Proceedingsof the international ACM SIGGROUP

conference on Supporting group work, pages 131–139, 1999.

[6] Ralph E. Johnson. Components, Frameworks, Patterns. 1997

[7] Fayad, Mohamed; Schmidt, Douglas; Johnson, Ralph. "Building

application frameworks: object-oriented foundations of framework

design". New York: John Wiley & Sons, 1999.

[8] Ter Hofte, H., Working Apart Together – Foundations for

Component Groupware, Telematica Instituut, Enschede, 1998

[9] JXTA, http://www.jxta.org

[10] A. Imine, P. Molli, G. Oster, M. Rusinowitch, Achieving

Convergence with Operational Transformation in Distributed

Groupware Systems.

[11] Baecker, R. M., Grudin, J., Buxton, W. A. S., Greenberg, S.

1995 “Readings in Human-Computer Interaction: Towards the Year

2000” (Second Edition) Morgan Kaufmann Publishers, Inc.

[12] D. A. Nichols, P. Curtis, M. Dixon and J. Lamping. High-

latency, low-bandwidth windowing in the jupiter collaboration

system. Proceedings of the 8th annual ACM symposium on User

interface and software technology, pages 111–120, 1995.

[13] C. Sun, X. Jia, Y. Zhang, Y. Yang and D. Chen. Achieving

convergence, causality preservation, and intention preservation in

real-time cooperative editing systems. ACM Transactions on

Computer-Human Interaction (TOCHI), pages 63–108, 1998.

[14] Chengzheng Sun and Clarence Ellis. Operational transformation

in real-time group editors:issues, algorithms, and achievements.

Proceedings of the 1998 ACM conference on Computer supported

cooperative work, pages 59–68, 1998.

[15] M. Suleiman, M. Cart, J. Ferrie. Serialization of concurrent

operations in a distributed collaborative environment. Proceedings of

the international ACM SIG-GROUP conference on Supporting

group work: the integration challenge, pages 435–445, 1997.

[16] Maher Suleiman, Michele Cart, and Jean Ferrie. Concurrent

operations in a distributed and mobile collaborative environment.

Proceedings of the Fourteenth International Conference on Data

Engineering, pages 36–45, 1998.

[17] Jean Ferrie Nicolas Vidot, Michelle Cart and Maher Suleiman.

Copies convergence in a distributed real-time collaborative

environment. Proceedings of the 2000 ACM conference on

Computer supported cooperative work, pages 171–180, 2000.

[18] Rui Li, Du Li, and Chengzheng Sun. A time interval based

consistency control algorithm for interactive groupware applications.

In ICPADS ’04: Proceedings of the Parallel and Distributed

Systems, Tenth International Conference on (ICPADS’04), page

429, Washington, DC, USA, 2004. IEEE Computer Society.

[19] Haifeng Shen and Chengzheng Sun. Flexible notification for

collaborative systems. Proceedings of the 2002 ACM conference on

Computer supported cooperative work, pages 77–86, 2002.

[20] Du Li and Rui Li. Ensuring content and intention consistency in

real-time group editors. 2004.

[21] Du Li and Rui Li. Preserving operation effects relation in group

editors. Proceedings of the 2004 ACM conference on Computer

supported cooperative work, pages 457–466, 2004.

[22] Munson, J.P. and P. Dewan, 'A concurrency control framework

for collaborative systems'. In [CSCW96], p. 278-287.

[23] ACE a collaborative editor, Report evaluation algorithms.

[24] Mackay, W. (1990) Users and Customizable software: A Co-

Adaptive Phenomenon. Doctoral Dissertation, MIT.

[25] A. Oram, Peer-toPeer: Harnessing the Power of Disruptive

Technologies, O’Reilly & Associates, Inc., 2001.

[26] Gamma, E., Helm, R., Johnson, J., Vlissides, J.: Design

Patterns. Elements of reusable object-oriented software, Addison

Wesley 1995.

[27] C. Schuckmann, L. Kirchner, J. Schummer, J. Haake. Designing

object-oriented synchronous groupware with COAST. Proceedings

of Computer Supported Collaborative Work CSCW, 1996.

[28] D.A. Tietze: A Framework for Developing Component-based

Co-Operative Applications. GMD Research Series Nr.7/2001.

[29] S. Lukosch and C. Unger: Flexible Management of Shared

Groupware Objects, in Proceedings of the Second International

Network Conference (INC 2000), pp. 209-219.

class FitFitTransformer extends Transformer {

 ...

 Operation transform(Operation sourceOperation,

Operation targetOperation) {

 if (fits are over the same piece) {

 if (fits are with the same piece) {

 return new

NoOperation(sourceFitPieceOperation);

 } else {//fits are with different pieces

 if (source operation has higher priority) {

 return sourceOperation;

 } else {

 return new FitPieceOperation(

sourceFitPieceOperation.getTargetPieceId(), null,

sourceFitPieceOperation.getPriority(),

sourceFitPieceOperation.getSourcePieceId());

 }

 }

 } else {//fits are over different pieces

 if (fits are symmetrical) {

 if (source operation has higher priority) {

 return new MovePieceOperation(

targetFitPieceOperation.getSourcePieceId(),

targetFitPieceOperation.getSourcePieceLocation(),

sourceFitPieceOperation.getPriority());

 } else {

 return new NoOperation(sourceOperation);

 }

 } else {//fits are not symmetrical

 return sourceOperation;

 }

 }

 }

}

