
ORIGINAL ARTICLE

CrowdMock: an approach for defining and evolving web
augmentation requirements

Diego Firmenich1,2 • Sergio Firmenich1,3 • José Matı́as Rivero1,3 • Leandro Antonelli1 •

Gustavo Rossi1,3

Received: 12 March 2015 / Accepted: 30 May 2016 / Published online: 11 June 2016

� Springer-Verlag London 2016

Abstract Web Applications are accessed by millions of

users with different needs, goals, concerns, or preferences.

Several well-known Web Applications provide personal-

ized features, e.g., they recommend specific content to

users by contemplating individual characteristics or

requirements. However, since most Web Application can-

not consider all users’ requirements, many developers

started to create their own mechanisms for adapting

existing applications. One of the most popular techniques

for third-party applications adaptation is Web Augmenta-

tion, which is based on the alteration of its original user

interface, generally by using scripts running at the client

side (e.g., the browser). In the context of Web Augmen-

tation, two user roles have emerged: scripters who are

those users able to create a new augmentation artifact, and

end users without programming skills, that just consume

the artifacts that may satisfy totally or partially their needs.

Scripters and end users generally do not know each other,

and they have rarely a contact, beyond the fact that they use

the same script repositories. When end users cannot get

their needs covered with existing artifacts, they claim for

new ones by specifying their requirements (called Web

Augmentation requirements) using textual descriptions,

which are usually hard to interpret by scripters. Web

Augmentation requirements are a very particular kind of

Web requirements for which there partially exist a solution

implemented by the Web site owner, but still users need to

change or augment that implementation with very specific

purposes that they desire to be available in such site. In this

paper, we propose an approach for defining and evolving

Web Augmentation requirements using rich visual proto-

types and textual descriptions that can be automatically

mapped onto running software artifacts. We present a tool

implemented to support this approach, and we show an

evaluation of both the approach and the tool.

Keywords Requirements engineering � Web engineering �
Web augmentation

1 Introduction

Personalizing a Web Application consists in delivering

specialized (in general adapted) contents to different users,

considering their needs, goals, or preferences [6]. Experi-

ence has shown that devising a personalization mechanism

that satisfies the requirements of all potential users is really

challenging, particularly when the crowd of users is con-

stantly growing. To make matters worse, users have

evolved while using the Web and they have, day by day,

more sophisticated and, in general, personalized

requirements.

One of the answers for this evolution has been the

development of techniques allowing users to adapt third-

& Sergio Firmenich

sergio.firmenich@lifia.info.unlp.edu.ar

Diego Firmenich

dfirmenich@tw.unp.edu.ar

José Matı́as Rivero

mrivero@lifia.info.unlp.edu.ar

Leandro Antonelli

lanto@lifia.info.unlp.edu.ar

Gustavo Rossi

gustavo@lifia.info.unlp.edu.ar

1 Lifia, Facultad de Informática, UNLP, La Plata, Argentina

2 DIT, Facultad de Ingenierı́a, Universidad Nacional de la

Patagonia San Juan Bosco, Trelew, Argentina

3 CONICET, Buenos Aires, Argentina

123

Requirements Eng (2018) 23:33–61

https://doi.org/10.1007/s00766-016-0257-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0257-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0257-3&domain=pdf
https://doi.org/10.1007/s00766-016-0257-3

party applications by themselves. Several communities

working on these techniques have then emerged. One of the

most popular approaches to achieve third-party applica-

tions adaptation is Web Augmentation [5, 10, 44]. Basi-

cally, Web Augmentation consists in adding, altering, or

removing features of the application’s user interface (i.e.,

the resources that the application’s server delivers to the

client after a request), by using software artifacts (usually

scripts) that run on the user device, normally in the Web

browser. Web Augmentation artifacts are used to adapt

content, functionality, and presentation of existing Web

sites. In the last years, the crowd of users has been able to

satisfy many of their needs by themselves by creating and

sharing Web Augmentation artifacts. There is much evi-

dence showing the success of this technique as a way for

adapting Web sites, from public scripts repositories (where

artifacts for adapting very popular Web Applications, such

as YouTube and Amazon, are installed thousands of times),

to very domain-specific uses such as chemistry and biology

Web sites [41].

Let’s consider a simple example. Imagine a PhD stu-

dent, called Peter, who is navigating DBLP1 looking for

some papers. When he finds a paper of his interest, he adds

manually a new entry in his Mendeley Library.2 In order to

do that, he has to move papers’ information from one

application (DBLP) to another (Mendeley) by copying and

pasting. He realizes that, by using a Web Augmentation

artifact, he could improve his work by adding a link to each

DBLP result that will open a new tab or window with the

Mendeley page containing the form to add a new paper,

automatically pre-filled with the DBLP paper information.

However, it is not straightforward to develop such artifact

to do that and he should acquire technical knowledge that is

out of his interests. If he does not find an existing artifact

for satisfying his requirement, he has two options. He can

create a new one by using end-user tools (which are gen-

erally developed for very specific augmentations tasks and

do not require programming skills) or he can ask for some

of the existing communities to build the needed artifact.

However, it is hard to communicate such requirement even

for this single task. And it is harder in the context of Web

requirements because users and developers are widely

distributed. In our example, Peter cannot express orally his

requirements, because he cannot meet the scripter, so he

must write a specification of his requirements, and this is

usually a problem. It is not difficult to imagine a more

complex augmentation requirement or an evolution of this

one such as to integrate Mendeley inside DBLP, to

understand that soon Peter will realize that if he wants this

adaptation, it is likely that he has to build it himself.

If the requirement is simple enough, Peter could be able

to use WYSIWYG (What You See Is What You Get) tools

such as Platypus [44] or WebMakeUp [13] for developing

the artifact by its own without learning new programming

languages. However, as we show later, it is hard to satisfy

Peter’s requirements with such tools since they do not even

have the expressivity needed. In fact, several of the aug-

mentation artifacts extensively used cannot be developed

with this kind of tools.3,4

In this paper, we focus on the problem of building

complex Web Augmentation software that is beyond end-

user programming tools. When the desired augmentation is

too complex and requires the use of low-level languages

such as JavaScript, end-users’ skills could not be enough to

build their own augmentation artifacts. In cases like these,

and Web Augmentation communities are an example, a

communication channel is established between end users

and scripters. In this way, end users ask for augmentation

artifacts to scripters, which means that through this com-

munication channel, end-user requirements are expressed.

This kind of Web Augmentation requirements is becoming

more relevant (as we explain in the following section)

because it is actually a technique for personalizing and

improving user experience when navigating the Web.

Extracting requirements from Web Augmentation com-

munities implies different issues to be tackled. These

requirements are contextualized to a particular Web

Application. Since this is an augmentation requirement, the

implemented artifact would run over the UI of an existing

Web Application, and consequently, most of the problem

domain is already implemented. The augmentation layer

just adds something missing or desired, that beyond of

implying some programming logic, always adds, changes,

or removes UI components. To make matters worse, this

problem has been ignored (or at least under estimated), up

to know, by the software engineering field, particularly by

the requirements engineering community. Though the

problem of managing requirements from a large crowd of

users is not new, and it is a very challenging task [22],

existing research focuses on more ‘‘institutional’’ software

projects. However, our target end users do not belong or

work in any specific company or institution and people

solving their problems are, in general, volunteers. They

tend to communicate informally, and the use of systematic

approaches for the specification is absent. The possible

kinds of augmentation functionality are usually far from

trivial (See Sect. 3.3.2), and communicating requirements

informally usually do not work.

1 DBLP—http://www.informatik.uni-trier.de/*ley/db.
2 Mendeley—http://www.mendeley.com/.

3 https://openuserjs.org/scripts/YePpHa/YouTube_Center.
4 https://openuserjs.org/scripts/JoeSimmons/YouTube_Auto_Buffer_

Auto_HD.

34 Requirements Eng (2018) 23:33–61

123

http://www.informatik.uni-trier.de/%7eley/db
http://www.mendeley.com/
https://openuserjs.org/scripts/YePpHa/YouTube_Center
https://openuserjs.org/scripts/JoeSimmons/YouTube_Auto_Buffer_Auto_HD
https://openuserjs.org/scripts/JoeSimmons/YouTube_Auto_Buffer_Auto_HD

The consequences are, as one might suppose, evident

regarding satisfaction (many times requirements are not

fulfilled), and when the underlying Web Application

evolves or when requirements get old, there is no easy way

to catch up again with the users’ needs. Clearly, a sys-

tematic approach is needed. In a study we have done in this

context, we found that among more than 4,500 artifacts

from greasefork.org, 56.7 % of the artifacts have at least an

upgrade (as a consequence of Web site upgrades and also

for improving the functionality of the script). The 25 % of

the upgraded artifacts have been written in the last

5 months. These statistics denote the dynamism such as

communities and the need for a systematic way to allow

end users to communicate their requirements to scripters.

In this sense, we believe that the way in which an

augmentation requirement should be defined has to involve

the definition of the visual augmentation. Additionally, we

should note that different end users from the community

could have similar requirements. We believe that a way to

make easier requirement refinement and prioritization

should be contemplated, since these are very common in

software development, and current communities do not

provide mechanisms for doing it. With all this in mind, it is

clear that communicating and managing augmentation

requirements is an important but yet unexplored topic.

We have been working in the field of Web Augmenta-

tion and Web Applications requirements for many years

[25, 31, 32] and have identified the set of problems that

need to be solved in this field. We have done this by

carefully analyzing the requirements and products of hun-

dreds of Web Augmentation artifacts in real Web Aug-

mentation communities, and have come up with a set of

recurrent type of augmentation requirements, achieving a

taxonomy of Web Augmentation uses which is similar to

the one described by a relevant survey work in the field

[11].

Though our research proposes several contributions to

the process of Web Augmentation software development,

in this paper we focus specifically on the stage of

requirements definition. We present a process for dealing

with this kind of requirements, called CrowdMock. We

also describe a specific tool, called MockPlug, for speci-

fying augmentation requirements through augmentation-

based mock-ups which are inspired by well-known mock-

up tools [31]. We propose to complement the mock-ups

with User Stories [8] and to deal with them collaboratively.

Our aim was mainly to empower script requestors with

mechanisms to communicate easily and accurately their

needs.

The contribution to the specific field of requirements

engineering is threefold: The first contribution is the

identification of a new kind of problem that, so far, has

been under estimated: the problem of requirements

specification for augmentation software. The second is a

process and a tool to support requirement specification and,

in many cases, automatic generation of specified augmen-

tation artifacts. Finally, and not less important, we present

a way to synchronize and prioritize these requirements in

an augmentation community. We think that our work is not

only relevant but also seminal to the requirements engi-

neering field.

The rest of the paper is organized as follows. In Sect. 2,

we introduce the background of the area focusing mainly

on Web Augmentation techniques and its most relevant

communities. In Sect. 3, we present the core of our

approach. In Sect. 4, we show the tools we have created for

supporting our approach. In Sect. 5, we present the eval-

uation of our work. In Sect. 6, we survey the related works,

focusing on similar processes, models, and tools. Finally, in

Sect. 7, we conclude and comment some future work.

2 Background

As mentioned, a powerful mechanism for adapting third-

party Web Applications is to use software artifacts running

in the client side. This means that the adaptation is per-

formed inside the Web browser by executing code that

manipulates the loaded content. The resources that are

available to be manipulated are mainly those composing

the Web Application’s UI (User Interface), such as HTML

documents, CSS, JavaScript scripts, and images. Thus,

Web Augmentation artifacts deal in general with the DOM

(Document Object Model), which is an object representa-

tion of HTML documents and CSS (Cascading Style

Sheets) which are a way for defining presentation of such

documents. The most important Web Augmentation com-

munities emerged around two kinds of augmentation

artifacts:

• Userstyles A userstyle defines a set of CSS rules that

replace the original ones of the Web site being

augmented in order to change the presentation of its

content. The most popular tool used to accomplish this

is Stylish.5 Stylish allows users to install userstyles

(basically, CSS files). The most remarkable community

around the idea of userstyles is userstyles.org, where

users who may specify their desired CSS rules upload

userstyles for their preferred Web sites, and other users

may download and install them in their Web browsers.

Nowadays, there are more than sixty thousand user-

styles, most of them aimed to be applied over very

well-known Web Applications such as Facebook,

YouTube, Twitter, and Wikipedia. Some of the

5 Stylish, https://addons.mozilla.org/es/firefox/addon/stylish/.

Requirements Eng (2018) 23:33–61 35

123

https://addons.mozilla.org/es/firefox/addon/stylish/

userstyles in the repository have more than forty

thousand installations. Those users who do not know

how to create new userstyle may ask changes on the

existing ones (in a dedicated forum within the com-

munity) or also ask for a totally new userstyle in

specific forums for style requests.6 As an example, in

Fig. 1 we present the result of applying a userstyle in

Facebook. There are three main adaptations performed

in the example. First, the chat contact list is moved to

the left and also there is a semi-hidden panel that is

totally shown when the mouse is over. Besides that, the

chat window is larger, allowing users to see more

messages in the conversation, which is very useful for

group chats. Finally, as a consequence of moving the

chat contact list at the left, the right panel is totally

dedicated to show the last events. Others userstyles hide

off-line people in the contacts list, etc.

• Userscripts deal with defining scripts to manipulate the

DOM using JavaScript. With this kind of artifacts, it is

also possible to add new features and eventually modify

the functionality of the underlying Web Application—

not only its look and feel as with userstyles. The first

popular tool of this kind was GreaseMonkey,7 a Firefox

extension working as a JavaScript engine; it allows

users to execute external scripts (developed by any

user) when a particular Web page is loaded. Nowadays,

there are equivalent engines compatible with other

popular Web browsers like GreaseKit for Safari,

Tampermonkey for Chrome, etc. It is important to

stress that most of these extensions run the same type of

JavaScript scripts, called userscripts. A userscript is an

artifact containing both the JavaScript logic for manip-

ulating the Web content and a set of metadata that

indicates, for instance, which Web pages will be

manipulated with it. There are several userscript

repositories (GreasyFork,8 UserScripts,9 etc.) that offer,

altogether, more than one hundred thousand userscripts.

Some of these scripts were downloaded more than one

million times. As well as with userstyles, users who do

not know how to create new userscripts can review

existing ones and also ask for a new userscript using

forums like ‘‘Ideas and Script Requests.’’10 As an

example of the power of userscripts, let’s consider the

script called YouTube center. This userscript, whose

last version was installed more than seventeen thousand

times only from one of the available repositories, adds a

lot of new functionality to YouTube video pages, such

as further player configuration, audio options, layout

Fig. 1 UserStyle-based

adaptation on Facebook

6 https://forum.userstyles.org/categories/style-requests.
7 https://addons.mozilla.org/en-us/firefox/addon/greasemonkey/.

8 http://greasyfork.org/.
9 http://userscripts-mirror.org/.
10 http://userscripts-mirror.org/forums/2.html.

36 Requirements Eng (2018) 23:33–61

123

https://forum.userstyles.org/categories/style-requests
https://addons.mozilla.org/en-us/firefox/addon/greasemonkey/
http://greasyfork.org/
http://userscripts-mirror.org/
http://userscripts-mirror.org/forums/2.html

options, UI enhancements, videos, and audio down-

loading. Each user may customize all these new

extensions by a complete configuration menu shown

in Fig. 2.

These communities, where thousands of Web Aug-

mentation artifacts are shared with end users, are strongly

based on scripters’ programming knowledge. In this sense,

end users are pushed into the background role of con-

suming existing artifacts. However, there are several

research works published in the context of end-user pro-

gramming, which has been defined as ‘‘programming to

achieve the result of a program primarily for personal,

rather public use. The important distinction here is that

program itself is not primarily intended for use by a large

number of users with varying needs’’ [21]. The Web is a

very good platform for enabling end-user programming

(tools) in order to adapt or integrate Web content. In fact,

this has been happening for a long time, since several tools

and approaches have emerged in order to allow users to

specify changes in their preferred Web sites by means of

visual tools. For instance, in the context of Web Aug-

mentation, Platypus [44] was one of the first tools pursuing

the claim ‘‘what you see is what you get’’ (WYSIWYG); it

allows end users to specify the expected changes over the

Web pages with visual tools and then to export a userscript

materializing them. Although we later review some of

these approaches in the related work section, it is important

to mention that the augmentation effect achieved by this

kind of tools does not reach the expressiveness and com-

plexity of the more popular scripts available in public

repositories.

3 The CrowdMock approach

CrowdMock is a user-driven approach for defining and

evolving Web Augmentation requirements. In the

approach, every stakeholder (as scripters or end users) may

collaborate in the management of the requirements. How-

ever, we have oriented the process and the supporting

artifacts and tools in order to take advantage of scripter’s

technical knowledge with the goal of providing fast and

usable solution sketch before implementing the definitive

version of the script. In this way, and considering Web

Augmentation communities, where the contract between

stakeholders (scripters and end users) is really weak, it is

important to quickly provide a solution sketch in order to

have very fast acceptance tests even before of building the

final artifact. With this in mind, the way in which that

requirements are specified should be really close to the

expected solution and facilitate a rapid artifact develop-

ment. In this section, we first present the general approach.

Then, we review some important details about both prod-

ucts and activities. We also describe which type of aug-

mentation requirements can be managed with CrowdMock,

and finally, we show a case study illustrating the whole

approach.

3.1 The CrowdMock process in a nutshell

In CrowdMock, different stakeholders (users and scripters

interchangeably) involved in the system (the Web Appli-

cation to be augmented) collaborate actively in specifying

the augmentation requirements. The approach is based on

Fig. 2 UserScript-based

adaptation on YouTube

Requirements Eng (2018) 23:33–61 37

123

the use of two kinds of existing artifacts: User Stories and

UI mock-ups. User Stories are usually the requirement

artifact used mainly in widely adopted agile development

methodologies. At the same time, we took mock-ups (ar-

tifacts that are also extensively used in agile context) as a

strategy to describe an augmentation requirement in the

form of UI components that are woven into an existent

Web Application; in this sense, our approach does not use

traditional UI mock-ups, but it let users specify live, high-

fidelity prototypes that are actually woven on the target

Web page.

There are four activities defined in our approach that

rely on the two basic requirements artifacts mentioned

before: (1) requirements definition, (2) requirements

refinement, (3) requirements prioritization, and (4)

requirements implementation [9]. Figure 3 shows the

activities and elements involved and their relationships.

The requirements definition activity is related to producing

the first requirement specification. A stakeholder writes a

User Story and defines a first mock-up about a particular

need; they both together specify a CrowdMock require-

ment. The requirements refinement activity deals with

improving or enriching the requirements artifacts defined

previously. This is the starting point of a collaborative

process since one stakeholder can improve the require-

ments specified by another one; in this context, a trace-

ability relationship between artifacts appears since a

requirement is ‘‘refined by’’ another stakeholder producing

a new enriched version. Requirements prioritization is

mainly supported by a common social activity: voting. This

activity allows the community to indicate, to those partic-

ipants with programming skills, which are the requirement

version most people desire to be implemented. However,

other social activities, such as discussion forums about the

requirement, are also contemplated. The order between

activities 2 and 3 may vary since a requirement may be

evolved at the same time that users are voting it.

Finally, activity (4)—requirement implementation—is

supported by the automatic generation of code based on the

MockPlug metamodel; though we briefly comment it in

Sect. 4.4, a complete description of this activity, which is

outside the of scope of this paper, can be found in [17].

Note that, although in Fig. 3 we just distinguished

between scripters and end users, in following sections, we

show how these two kinds of stakeholders have specific

views and tools for the requirement specification.

We have developed a Web-based environment that

supports all these activities. Our system is composed of a

server-side and a client-side application. The server-side

application, called UserRequirements, is a repository

where the requirements are centralized and managed. The

client-side application, called MockPlug, is a tool that

empowers users with mechanisms for injecting mock-ups

into existing Web Applications. All the tool support is

available online,11 and we describe the whole system in

Sect. 4.

3.2 CrowdMock: products and activities

This section describes in detail the products and activities of

the proposed approach. As commented before, our approach

is based on two artifacts: User Stories and mock-ups.

A User Story is a description in natural language that

captures what the user wants to achieve. User Stories are

used within agile software development methodologies and

generally adjust to a template that considers three attri-

butes: a role, a goal/desire, and a reason [8]. The goal/

desire represents the requirement that the application must

fulfill. The role defines the kind of user who interacts with

the application in order to use the feature described by the

goal/desire. Both attributes refer to elements within the

scope of the application. In contrast, the reason belongs to

the context of the application, and it states why the user

requires the application to provide the functionality

described in goal/desire.

Mock-ups are a way of prototyping UI on paper or using

digital computer images in order to agree on presentation

requirements (among others) with end users. Commonly, a

mid- or high-fidelity mock-up of a UI will look like the real

UI, but it will not perform any function. It has been shown

that when mock-ups are used in software development, the

cost and effort of the development is reduced [30]. One of

the main advantages of mock-ups in the development

process is that they allow defining interaction and presen-

tation aspects very early. This avoids future changes in the

application being built because of mistakes or errors in the

requirements gathering stage. Also, mock-ups can be used

Fig. 3 Overview of the approach

11 UserRequirements and MockPlug: http://www.userrequirements.

org.

38 Requirements Eng (2018) 23:33–61

123

http://www.userrequirements.org
http://www.userrequirements.org

as a jargon-free language to communicate requirements

between users and analysts or developers [27]. In our

approach, a mock-up is represented by what we call a

MockPlug model.

A MockPlug model contains the definition of alterations

made over the originalWeb page’s DOM in order to define a

prototype of the expected augmentation. At first glance, a

MockPlug model can be seen as a high-fidelity mock-up

[39]. From the point of view of end users, actually it repre-

sents a prototype of the script they expect; however, from the

point of view of scripters, while they refine a model they are

also visually ‘‘programming’’ what the script is going to

adapt or augment in the Web site’s UI as well as specifying

low-level aspects for the code generation. Different from the

idea of using mock-ups to describe some visual and inter-

active aspects of the desired solution (using them only as a

documentation artifact), we take a MockPlug model as the

first, partially functional version of the script, i.e., such as a

live script that is evolving. A refinement of the MockPlug

model is, in this sense, a second version of the script. Because

of this special reuse, we refer to our mock-ups as Runnable

Augmentation Mock-ups (RAMs).

In our approach, an instance of the MockPlug meta-

model, described in [17], is associated only with one User

Story, but one User Story can be referenced or split in

multiple MockPlug models. In comparison with other

mock-up tools, the novelty of MockPlug models (the form

in which we formalize RAMs) is that they are defined over

existing Web Applications, showing a real augmentation.

Additionally, they are not ‘‘just’’ an image but the aggre-

gation of a set of (interface) objects with precise semantics

both in terms of their own behavior and in terms of their

effect in the target Web page. This feature makes the

resulting requirements artifacts to be very close to the

definition of the expected implementation and, as is briefly

shown in Sect. 4.4, allows the incorporation of real func-

tionality to fast acceptance test before the automatic gen-

eration of Web Augmentation code.

In our approach, User Stories have another role related

to the dynamic of the Web Augmentation communities.

The current repositories of scripts provide typically a few

ways of search augmentations: to browse the repository by

relevance, browse the repository by target Web site or just

by searching by text on the script’s descriptions. The

decision of using User Stories for this purpose was moti-

vated because they are the most used documentation

method in the context of Agile Methodologies [24] which

in place are the most adopted development approach

actually according to recent surveys.12 In the context of

CrowdMock, they are used as a textual way of extracting

the essence of the requirement being implemented which,

complemented with the target Web site and the text pro-

vided on the RAM’s widgets, give us a powerful way to

retrieve relevant requirements. This includes the role of the

user involved (for instance, logged user, anonymous one,

and administrator), what is exactly this user wants to

accomplish through the augmentation and optionally the

reason because he or she requires it, following the classic

User Story format As a\type of user[, I want\some

goal[so that\some reason[.

Our approach consists of four activities; however, since

this paper is mainly concerned with Web Augmentation

requirements specification and management, the following

explanation contemplates only three of them. The first one is

requirements definition, which consists in specifying a

requirement using two artifacts: User Stories and mock-ups

(RAMs). The stakeholderwrites aUser Story description and

he or she also defines a related RAM by using MockPlug.

This activity implies writing for the first time a requirement

(User Story and mock-up) that has never been specified

before. In fact, the activity of specifying requirements

implies two more basic activities of the classic requirements

engineering approach: eliciting or defining the knowledge

and specifying it. Since the same person is the one who own

the knowledge about the requirement and specify it, our

requirements definition activity is closer to the requirements

specification activity in agile development than in a classical

approach, since stakeholders have an important and irre-

placeable role in the elicitation. The following activity

consists in the refinement of one of the two artifacts com-

posing a CrowdMock requirement, the User Story and/or the

RAM. In both cases, the new version of the artifact is derived

from the previous one, and then we are able to trace the

requirement evolution.

Finally, the last activity is requirements prioritization.

For this purpose, we propose to use voting, a simple social

activity. In particular, we decided to use a ‘‘like’’ tool

instead of another common activity such as ranks, because

it showed to be more effective in filtering requirements [2].

Nevertheless, the requirements refinement activity also

means in a certain way their prioritization, since this

refinement implicitly means that stakeholders consider that

this requirement is important enough to be refined. Priori-

tization is supported by Agile Methodologies when the

backlog is organized in a stackwith themost important User

Stories well described at the top and the least important are

barely described at the bottom.

3.3 Expressivity: what augmentation requirements

can be defined with CrowdMock

First of all, it is necessary to understand which is the nature

of Web Augmentation requirements, i.e., which kinds of

12 10th Annual State of Agile Survey—http://stateofagile.versionone.

com/.

Requirements Eng (2018) 23:33–61 39

123

http://stateofagile.versionone.com/
http://stateofagile.versionone.com/

requirements are present in Web Augmentation commu-

nities. We have analyzed existing Web Augmentation

artifacts in two ways: first by typifying the alterations over

Web pages, and later by analyzing these alterations from a

more traditional requirement engineering’s point of view.

3.3.1 Analysis of Web Augmentation artifacts

If we take into account existing taxonomies that classify

which kinds of alterations are usually carried on by Web

Augmentations artifacts, we can find a coarse-grained

classification in a recent survey [11]. This research work

establishes that augmentation is currently used mainly to

adapt Content, Layout, Navigation, and Functionality,

through adding, removing, or changing elements in the

augmented website.

However, in order to ensure that our approach supports a

more fine-grained taxonomy, we have analyzed the top 50

userscripts from one of the most important repositories

(greasyfork.org). We downloaded, installed, and used each

of these scripts, and then we classified the adaptation

effects and strategies which are not mutually exclusive

(i.e., a script could include more than one), obtaining the

following classification:

• Content-related, most of the analyzed scripts aug-

mented Web pages through content manipulation,

which can be subclassified in:

• Filter/Hide content: 2/50 scripts filtered or hid

content in some way. For instance, one of the scripts

hides the results series episodes that have been

visualized before.

• Remove content: 11/50 scripts removed content, with

the main objective of advertisement suppression.

• Add content: 42/50 scripts added content from the

same application, loading it from different pages.

For instance, a script for YouTube added informa-

tion to the search results, loading it from the video

page of every individual search result item.

• Integrate content from other Web Applications: 8/50

scripts integrated content from other Web sites by

obtaining it dynamically. For instance, to integrate

IMDB rating in other Web Applications for the same

domain such as http://www.filmaffinity.com.

• Behavior-related: several of the analyzed scripts added

behavior that changed the original functionality of the

Web Application:

• Add behavior: 38/50 scripts added some kind of

behavior. For instance, one of the scripts added a

minimap to a game (called Agar).

• Remove behavior: none of the scripts among the top

50 removed any behavior.

• Alter behavior: 4/50 scripts altered some kind of

behavior. For instance, one of the scripts changed

the behavior of the right click.

• Layout-related:

• Reorder layout: 14/50 scripts modified the layout in

some way.

• Interaction-related:

• Add navigation: 14/50 scripts added one or more

navigation features in some way. For instance, one

of the scripts converted plain text into real links.

• Add keyboard interaction: 7/50 scripts added new

keyboard shortcuts. For instance, some of them added

further keyboard control for YouTube video pages.

• Add mouse interaction: 5/50 scripts added new

mouse event-based behavior. A common feature

was to add onmouseover event to images, in order

to show them bigger when the mouse cursor is over

them.

• Regarding to the target items: some scripts augment

(applying some of the listed changes) a single informa-

tion item per page while other augment several of them.

Augment a list of items in Web page: 11/50 scripts

repeated the same augmentation in a same Web page,

one time for each similar target items in a list. For

example, one of the scripts augments all Google

Image results with a direct link to the image, which

save some interaction steps to the user.

Augment a single item in a Web page: 39/50 scripts

performed an augmentation for a single item in the

page. For instance, one of the scripts augments

YouTube video pages with a new layout and also

adds information to the video description.

Besides these 50 userscripts, we have browsed an

additional 50 in different communities, reviewing

descriptions, screenshots, user comments, etc., and noted

that all of them address similar kind of augmentations

listed above. Even more, we have studied userstyles too

(from userstyles.org), a different kind of augmentation

artifact. While only 14 of the top 50 userscripts were

focused on layout changes, most of userstyles are imple-

mented for this kind of augmentation. The reason behind

this, as we said in Sect. 2, is related to the different tech-

nologies upon userscripts and userstyles are implemented.

3.3.2 Classification of Web Augmentation requirements

According to [11], where authors have analyzed several

Web Augmentation extensions, this technique is mainly

used for three main purposes: refactoring (for restructuring

40 Requirements Eng (2018) 23:33–61

123

http://www.filmaffinity.com

Web pages to improve non-functional attributes), cus-

tomization (for leveraging the existing Web page to per-

form the same functionality but in a more personalized

way), and modding (for adding functionality to the Web

page that originally was not conceived). We can establish a

relationship between these three categories and the typical

requirements classification: non-functional requirements

(NFRs that include refactoring) and functional require-

ments (FRs that include both customization and modding).

Considering that a CrowdMock requirement is composed

of a User Story and a RAM, our approach is clearly ori-

ented to FRs, given that both RAMs and User Stories are

used to specify functional requirements. Most of the

existing Web Augmentation approaches and repositories

are oriented to FRs. This has sense because the technique is

for augmenting a Web site, and then, some well-known

non-functional requirements such as security are impossi-

ble to be improved only with Web Augmentation tech-

niques because probably the application’s code at server-

side needs to be changed, while the augmentations are

restricted to and applied on the client side. Nevertheless,

some kind of non-functional requirements can be tackled

within our approach.

The survey introduced above has let us identify the most

common application aspects adapted by augmentation

artifacts. These common kinds of alterations allowed us to

define the set of what we call augmentation meta-require-

ments, which are classified on non-functional and func-

tional requirements as follows:

• Non-functional requirements As we said before, it is

important to notice that non-functional requirements

cover extremely different sort of things such as

efficiency, reliability, portability, usability, and security

[19]. Some of these NFR categories cannot be tackled

with Web Augmentation because these are strongly

dependent on the server-side implementation of the

application. However, those categories closer to the UI,

such as usability or accessibility, can be improved with

this technique. When the non-functional requirement is

somehow related to the UI, our approach allows end

users (by using MockPlug) to convert part of the

existing UI into RAM widgets, which may be edited or

moved. This makes it possible to specify, for instance,

new layouts according to the user preferences or needs

or even to the device used to access the Web sites in

order to improve the responsiveness (an NFR) of the

UI. For instance, in Fig. 4a, a user has defined a

MockPlug model in which he shows a UI overlapping

problem in mobile devices—whose viewport is more

limited than in conventional, desktop-based browsers.

In this case, he would expect a more responsive Web

site that adapts the UI when he is accessing from his

mobile device.

Some usability issues are not related to the existing

layout but related to how the original functionality is

used. For instance, the DBLP search engine13 allows

users to specify several conditions for searching. As an

example, if a user searches for ‘‘atom|molecules,’’ he is

indicating the logic operator OR, if he or she adds a ‘‘$’’

to one token, then he wants an exact word match, etc.

There are several conditions to use inDBLP searches, but

probably it would be easier to use them if the user has a

Fig. 4 DBLP usability

enhancements. a Responsive

DBLP requirement, b query

modifier menu

13 CompleteSearch DBLP—http://www.dblp.org/search/index.php.

Requirements Eng (2018) 23:33–61 41

123

http://www.dblp.org/search/index.php

query modifier menu that assists in the task of writing

new queries. Such menu is shown in Fig. 4b.

• Functional requirements Regarding functional require-

ments, we have made a subcategorization considering

most common augmentations in the repositories: nav-

igation-based, behavior-based, content-based:

• Navigation-based MockPlug models support the

possibility of specifying requirements based on

navigation, which involves the addition, alteration,

and removal of anchors or behavior implying the

execution of navigation actions at some point in

third-party applications. As an example of such type

of augmentation, we can show how to add a new

panel to DBLP containing the previous searches

that the user has made. MockPlug allows users to

express easily this requirement by copying the UI of

an existing panel (such as ‘‘Refine by AUTHOR’’)

and edit its content, such as Fig. 5 shows. This

addition implies a new set of anchors that trigger

further navigations which were not present in the

initial, non-augmented version of the page. In this

example, a user has added the new panel ‘‘Previous

Searches’’ as well by copying and editing the

existing ‘‘Refine by AUTHOR’’ panel.

• Behavior-based New functionality can be expressed

with MockPlug with the addition of different kinds

of widgets related to information entry and business

process support. In addition, the alteration of how

an existing functionality is already supported is

possible through the introduction of changes in the

original UI structure and behavior. As an example,

let’s consider the DBLP results Web page and its

search refinement panels, particularly ‘‘Refine by

AUTHOR’’ one. When the user clicks over one of

the authors, another page is loaded showing the

papers for that author. This can be useful in

particular cases; however, sometimes it is annoying

because the user needs to go to the previous page

when he wants to see the original search. In this

case, a user may want a new functionality for

highlighting the author’s papers in the current Web

page, without navigating to a new page. A possible

MockPlug model for this new functionality is

shown in Fig. 6.

• In this figure, two widgets have been added. First, a

‘‘highlight icon’’ was added next to the first author

from the ‘‘Refine by AUTHOR’’ panel. Second, one

of the result papers was selected as a widget (‘‘paper

Fig. 5 New navigational panel

based on previous searches

Fig. 6 Highlight author’s

papers on current page

42 Requirements Eng (2018) 23:33–61

123

widget’’) for being manipulated. Finally, the high-

light icon widget is set for changing the paper

widget’s style when the user clicks on it. The new

style is copied from another existing element in the

Web page (Fig. 7).

• Content-based Requirements about new content

may be expressed by removing existing content or

even by bringing new content from other Web sites

to indicate some desired integration. This is a

technique widely used in Web Augmentation.

Imagine a user who wants to see how many

references a paper has at Google Scholar. Then,

he may search one of the DBLP papers at Google

Scholar, obtain the ‘‘Cited by X’’ anchor and add it

to the corresponding paper at DBLP. Since this

anchor will preserve its properties (such as textual

content and href attribute, which were brought from

Google Scholar), any other user who sees this

MockPlug model will be able to understand which

its aim is.

Besides these specific kinds of requirements, any other

feature that cannot be represented or prototyped by a

concrete visual component in the UI may be contemplated

and described by special annotation widgets, as usual when

using common mock-ups within traditional development

processes. Some examples of annotation widgets are the

sticky note in Fig. 4. This allows expressing augmentation

requirements in textual ways but with a visual context.

However, it should be noted that all the UI alteration

aspects presented in the previous subsection are covered

explicitly by our approach, which implies defining part of

the behavior and UI alterations using the tool, in such a

way that no textual annotations describing extra features to

be implemented were required.

3.4 The CrowdMock process by example

This section is based on the example about the Peter’s

requirement, mentioned in the introduction. The originalWeb

page of CompleteSearch DBLP (see Fig. 8) only shows some

information (title, authors, etc.) for the resulting papers, but it

does not include the abstracts, which is one of the changes that

Peterwants. Besides that, he alsowants to add the paper easily

in Mendeley. For these two aspects, Peter has defined a first

RAM, shown inFig. 9. This RAMincludes two anchors, ‘‘See

Abstract’’ and ‘‘Add to Mendeley.’’

Here, we show one of the relevant parts of our approach;

instead of defining these requirements textually, drawing

them by hand or using existing mock-ups tools, Crowd-

Mock allows specifying augmentation requirements

graphically and interactively through its supporting tool

MockPlug [17], creating a RAM instance. This tool is

explained in Sect. 4.1.

As we mentioned before, our approach proposes to

complement the RAM with a User Story; Peter has also

written the corresponding one:

Fig. 7 Resulting paper

augmented with ‘‘Cited by X’’

anchor brought from Google

Scholar

Fig. 8 Original DBLP UI

Requirements Eng (2018) 23:33–61 43

123

As a: researcher

I want: to easily add papers in my Mendeley Library

from DBLP resulting papers when their abstracts are

relevant to my research

So that: I can survey the papers I want to read later

Now that we have introduced the original Peter’s

requirement specification, and in the rest of the section, we

describe the process and activities involved to share, refine,

prioritize, and implement it.

For instance, let’s imagine another user, John, who

considered that it is easier to perform Peter’s task by

integrating Mendeley into DBLP instead of navigating to

Mendeley and filling the form with the paper’s information

in that Web site, as Peter proposed initially. With this in

mind, John refined the original Peter’s User Story in this

way:

As a: researcher

I want: to integrate Mendeley into DBLP search for

easily add papers to my library when the abstracts are

relevant for my research

So that: I can survey the papers I want to read later

In this case, John has not defined a new MockPlug

model; however, another user of the community, George,

who read both versions of the User Story, decides to col-

laborate by defining a new MockPlug model for John’s

User Story. In this way, he defines a more complete pro-

totype considering the integration of both the abstract and

the Mendeley’s Web form for adding a paper. First, he took

the original MockPlug model defined by Peter, which has

two anchors. His resulting model, shown in Fig. 10a, is

pretty similar to Peter’s one a priori. However, instead of

navigating to external Web pages, these anchors were

defined for toggling the corresponding UI component. The

‘‘See Abstract’’ anchor, for a given paper, shows/hides the

corresponding abstract, as shown in Fig. 10b; additionally,

the ‘‘Mendeley’’ anchor shows/hides the Mendeley Web

form inside DBLP (see Fig. 10c). Note that this kind of

behavior specification may be established because the

widgets that users manipulate, instead of being just styled

boxes as in common mock-up tools like Balsamiq,14 are

actually real DOM elements. Users may configure his

behavior by using visual tools provided by MockPlug.

In Agile approaches, there is a refinement session

(which was previously called grooming backlog session

[8]) consisting in refining the backlog by adding, removing,

or changing tasks in it. The difference between our

approach and this kind of sessions is that our refinement is

collaborative, in the sense that one end user (who may also

be a user with programming skills) writes one requirement

and another one can refine it. The same person can perform

the whole definition, as in regular agile approach where the

product owner is the one who concentrates this activity.

Nevertheless, our approach encourages the collaborative

refinement, because two or more different people are

analyzing the same requirement in the same way they are

also validating it at the same time. In Agile approaches, the

validation occurs mainly in the review session after the

requirement is implemented. In our approach, the valida-

tion occurs previous to implementation (in most of the

cases) as recommended in classic requirement engineering

Fig. 9 First MockPlug model

defined for Peter’s User Story

14 Balsamiq Mockups—http://balsamiq.com/products/mockups/.

44 Requirements Eng (2018) 23:33–61

123

http://balsamiq.com/products/mockups/

approaches, with the technical assistance of the imple-

mented tooling. Moreover, the use of RAMs in the

requirement definition provides a benefit to validation since

stakeholders can see and even interact with the final UI

before it is implemented.

In Fig. 11, we show the evolution of Peter’s require-

ment, which depicts the refinement activity. The presented

tree in the figure shows the different versions of the

requirements and its precedent version. Each node repre-

sents a version, and the label is the user who created it,

except for the root, whose label is the requirement name.

As it can be seen, there is first a branch corresponding to

the User Story refinement (performed by John), and then

another version of the requirement is achieved when

another user (George) created a MockPlug model

responding to this last version of the User Story. This last

version of the MockPlug model is presented in Fig. 10c.

As the last comment, note that the requirement priori-

tization activity is contemplated also in Fig. 11, in which

the last MockPlug model defined by George is highlighted

for being the most voted by the crowd of users. However,

as it will be explained in Sect. 4.3, other aspects of the

implementation effort could be taken into account in order

to prioritize a RAM version.

4 CrowdMock Implementation

Our approach is supported by two tools, namely MockPlug

and UserRequirements. In this section, we describe the

features of both of them and how they work together.

4.1 MockPlug for end users

MockPlug is a client-side tool deployed as a Web browser

extension designed for allowing end users to plug mock-

ups on existing Web pages—what we called RAMs. Using

this tool, end users can specify their augmentation

Fig. 10 Requirement defined over DBLP for supporting the task of

adding papers in Mendeley’s library. a DBLP result page augmented

with ‘‘See Abstract’’ and ‘‘Mendeley’’ options. bWhen the user clicks

on the ‘‘See Abstract’’ option, it shows the paper’s abstract obtained

from the Editorial’s Web page. c When the user clicks ‘‘Mendeley’’

button, it shows a pop-up corresponding to the Mendley’s Web form

for adding a paper in the user’s Library

Requirements Eng (2018) 23:33–61 45

123

requirements inside their natural context: the target Web

site. Although an augmentation requirement expressed

using MockPlug is related to a User Story, in this section

we focus mainly on the MockPlug tool and the MockPlug

model.

One of our priorities in the design of the MockPlug was

to provide a tool that allows users without any technical

knowledge to define their RAMs. A MockPlug model

represents a set of intended modifications over an existing

Web site. Users materialize these modifications by adding

or manipulating different kinds of widgets. From the user’s

point of view, these widgets have a hand-drawn visual

style, as usual in tools such as Pencil15 or Balsamiq.16

However, MockPlug renders widgets as ordinary DOM

elements, which enables the possibility of specifying fur-

ther behavioral aspects very easily, achieving high-fidelity

mock-ups [39].

A user may drag widgets from the MockPlug Panel and

drop them into the desired position on the current Web

page in order to define his or her requirements. Figure 12

shows the MockPlug Panel and, in particular, the widgets

palette tab. The same figure shows also how the user has

added a web link ‘‘Add to Mendeley’’ on the result search

page of DBLP. Since our tool works with real DOM ele-

ments, a Widget insertion has a real effect in the UI Web

page code loaded in the Web Browser. To make clear this

point, we show in Fig. 13 the same fragment of the Web

page before the insertion and after the insertion. Note that

at the bottom of Fig. 13, where code altered by MockPlug

is shown, there is a new anchor that has several attributes

specifically set for the use of MockPlug. This is one of the

key features of the RAMs used to specify augmentation

requirement in the approach.

Although the MockPlug palette has predefined compo-

nents (including widgets such as lists, buttons, and text

fields), users may also convert any existing DOM element

into a widget that can be further manipulated (we call them

Collected widgets). For instance, let’s imagine a user who

desires a different refinement panel order, thus changing

the page layout. Then, he probably wants to cut each panel

and paste them in another place. For doing it, the user may

collect the existing ‘‘Refine by VENUE’’ panel (Fig. 14a)

and work with it as any other supported widget in the tool,

moving it (for instance) to the top (Fig. 14b).

When widgets are collected in other Web sites, we call

them Pocket widgets. Pocket Widgets can be used to

express augmentations reusing functionalities already pre-

sent in existing web sites.

In Fig. 15, we show the Pocket tab in MockPlug. This

tab allows users to use the ‘‘Collect’’ functionality, which is

available on every Web site. When the user clicks this

button, some highlighting is enabled and the user may

select specific DOM elements that will be then available in

the pocket.

As an example, consider the example shown in Fig. 7,

which is about integrating the ‘‘Cited by X’’ anchor from

Google Scholar in DBLP search results. For specifying this

requirement, the user collects that anchor from Google

Scholar. By using the pocket on that Web site, he or she

selects the necessary DOM element, shown in Fig. 16a.

Finally, when the user comes back to DBLP in order to

continue defining his requirement, he opens the Pocket tab

in MockPlug, where the ‘‘Cited By 12’’ widget is available.

At this point, a Pocket Widget may be inserted in two

ways. On the one hand, it can be inserted as a DOM Ele-

ment, copying all the children nodes if there any. In this

Fig. 11 Evolution of Peter’s

requirement

15 http://pencil.evolus.vn.
16 https://balsamiq.com.

46 Requirements Eng (2018) 23:33–61

123

http://pencil.evolus.vn
https://balsamiq.com

case, the added widget may inherit the visual style from the

Web page in where is inserted, thus losing in this way

relevant visual style. On the other hand, a Pocket Widget

can be inserted as an image, in order to let users preserve

its original style and appearance.

4.2 MockPlug for scripters

Despite scripters can make use of the same MockPlug

functionality already available for end users (see Sect. 4.1),

they may specify further aspects about the requirement that

Fig. 12 Widget palette tab of

mock-up/RAM panel

Fig. 13 Widget insertion effect

Requirements Eng (2018) 23:33–61 47

123

Fig. 14 Collected Widget and

its manipulation. a ‘‘Refine by

VENUE’’ panel converted into a

widget, and b ‘‘Refine by

VENUE’’ relocated to the top of

refinement panels

Fig. 15 MockPlug’s Pocket tab

Fig. 16 MockPlug’s Pocket

tab. a Highlighting target DOM

element, b collecting a DOM

element

48 Requirements Eng (2018) 23:33–61

123

will help to (1) make closer the definition to the final

solution, (2) to improve how the requirements are weighted

and estimated (for identifying the most convenient version

to implement), and (3) determine how the final script is

generated.

We have envisioned two ways to empower scripters in

the refinement of the requirement, both of them related to

the widget edition, which is appreciated in Fig. 17. When

editing a widget, there is a tab named ‘‘Advanced options’’

that allow scripters to specify low-level aspects of the

widget behavior. There are two ways: selecting ‘‘annota-

tions’’ and ‘‘code snippets.’’

Annotations make possible to define some aspects

related to the complexity behind a widget. For instance, if

the requirement implies to obtain images from Google

Images to be integrated into another Web site when the

user click a button, then a scripter can establish that the

widget representing that button has the annotation

‘‘XMLHttpRequest (cross-origin).’’ In this way, the scrip-

ter is explicitly specifying that a request to another Web

page has to be done for implementing the requirement.

Additionally, if a scripter wants to refine the requirement

by actually obtaining the images from Google Images, he

may add a JavaScript snippet and attach this code to a

particular event. Then, the next time that the interested user

opens the MockPlug model, he can interact with the RAM

with some functionality really implemented.

4.3 UserRequirements

UserRequirements is a requirements repository with social

features that manages CrowdMock requirements, described

through a RAM and a User Story. UserRequirements

supports requirements definition, refinement, and voting.

Figure 18 shows different views of Peter’s requirement

listing its different versions in the repository. Each version

is composed by a User Story description, the widgets used

in its underlying MockPlug model, and the number of

votes. The user can open and see the MockPlug corre-

sponding to a concrete augmentation requirement version,

Fig. 17 Widget edition for

advanced users or scripters

Requirements Eng (2018) 23:33–61 49

123

among several other options. A requirement version can be

refined using the edit button. The requirement list is

ordered by votes, but the user can see the evolution of the

requirement through a version tree as shown in Fig. 18b. In

this view, the user can click on a particular tree node to

visualize the requirement and he or she can also create new

branches. The versions tree view is a valuable tool for

understanding the evolution of a requirement; the

community can quickly see which is the most voted ver-

sion, the most discussed one, and also if the user who

defined the original requirement accepts or rejects some of

the versions. Just as an example, in Fig. 19 we show a more

complex tree, in which other users have been participating.

There are several aspects to be considered in order to

understand the version tree visualization. First, it is

important to mention that each user has an associated color

Fig. 18 UserRequirements: requirement details. a Requirement view: version list, b requirement view: version tree

Fig. 19 A User Story evolution

tree in UserRequirements

50 Requirements Eng (2018) 23:33–61

123

in the tree. This allows to easily visualize the contribution

of each participant. Second, the size of tree nodes is defined

according to their votes; then, bigger nodes are those that

users consider better. However, other information about the

requirement specification (such as scripters’ RAM defini-

tions) may be visualized in the platform. Third, nodes may

have also a border stroke, whose width represents the

discussion on the corresponding version of the require-

ment. If this stroke is wide, it means that it has several

users’ comments. Finally, the border stroke color has also a

particular meaning. If this color is green, it means that the

user who has defined the requirement originally (in the

presented example, Peter) agrees with that version. If this

color is red, then he or she is rejecting it. When this stroke

color is the same that the color filling the node, it implies

that the user who originally created it, i.e., Peter, has not

given any feedback about the requirement version so far.

In the example from Fig. 19, we may easily see that the

Angie’s version of the requirement is the most voted (be-

cause it is the biggest node in it) and, at the same time, it

was also commented by several users (a wide border

stroke). In addition, Peter approved this version (green

border stroke). In the same example, we may appreciate

that Peter has rejected Teresa’s version that has been

derived from Angie’s one (red border stroke).

As a final comment about the underlying implementa-

tion of UserRequirements, it is important to say that a

requirement could be first created on the platform without

an associated RAM. In cases like this, the user may choose

among creating a single User Story, or a more complex

requirement involving more than a single User Story,

which is called theme. In this way, the same requirement

could be composed by several user stories, each one with a

RAM.

4.4 MockPlug: integration with UserRequirements

The CrowdMock approach is fully supported through the

integration between UserRequirements and MockPlug. In

order to create a new requirement in UserRequirements, a

user may use MockPlug for defining the RAM expressing

the augmentation required in the target Web site. After

that, from the same MockPlug panel, he or she can save it

in the UserRequirements platform. In order to complete

this task, the requirement’s title, a User Story, and a model

description must be provided. Figure 20 shows how Peter

can perform this task.

4.5 MockPlug metamodel and code generation

MockPlug let users specify runnable, augmentation-based

mock-ups (RAMs). At an implementation level, if we want

to augment a DOM with new widgets, we have to specify

how those widgets are woven into the existing DOM. With

this in mind, we defined and implemented the MockPlug

metamodel. This metamodel defines the expressivity of

MockPlug models and, consequently, how augmentation

requirements are defined and what kind of requirements

(i.e., which concrete augmentation functionality) can be

specified. As shown in Fig. 21, both the name and the URL

of the augmented Web site are part of the MockPlug

model. It is worth noting the importance of the property url

in a MockPlug model, since this is the property that defines

which Web site (o set of Web sites when using a regular

expression) the model is augmenting.

The specification of new widgets relevant for the

requirement (Widget class) may be defined in the model.

Widgets can be simple (SimpleWidget, atomic, and self-

represented) or composite (CompositeWidget, acting as a

container for another set of Widgets). All widget subtypes

have several characteristics in common:

• They belong to a MockPlug model that has both a type

and a set of properties.

• They are prepared to respond to several events, such as

mouseover or click.

• They can react to an event with predefined operations

defined according to the underlying DOM element type

Fig. 20 Interaction with MockPlug: creating a new requirement from

MockPlug

Requirements Eng (2018) 23:33–61 51

123

Scripters may define customized operations and

attach these to Widget’s events in order to express

the real, executable behavior expected by users

Each widget has associated an insertion strategy

(InsertionStrategy), which describes how and where it is

inserted into the DOM tree (float, leftElement, rightEle-

ment, afterElement, beforeElement, etc.). These strategies,

depending on the referenced DOM element (for instance,

the parent), must use the domRef property or not.

As a first advantage, the MockPlug metamodel allows

users to share and edit their requirements since the

MockPlug tool can interpret them as runnable models and

they are not just images or static visual elements added to

the UI. A second advantage is that MockPlug models

(defined through its metamodel) can be processed, in order

to generate code, as it occurs in well-known model-driven

approaches [20]. Although we are aware that the MockPlug

metamodel is not expressive enough to generate all the

necessary logic for all kind of requirement, we have suc-

cessfully generated several code stubs that helped to

develop the full, final userscript. In the context of Web

Augmentation, it is complex to guarantee that the code

generated automatically is going to be adopted by artifacts

developers, which is a problem related to model-driven

engineering field in general [40]. For instance, there are

hundreds of JavaScript libraries to be used that can help to

write Web Augmentation implementation code, as well as

several ways for structuring it. To cope with this, we have

defined an extension point for code generation. This means

that developers may create their own code generator just

creating a JavaScript object that responds to a specific

message, receives as an argument the XML file that

describes the MockPlug model, and returns an arbitrary

complex stub of code. For this paper, we have developed

one of the big set of potential code generators, which was

used for the evaluation presented in the following sec-

tion. For the sake of conciseness and coherence, we omit

further descriptions of the code generation process that can

be read in [17].

5 Evaluation

This section describes a preliminary evaluation of the

CrowdMock approach and its supporting tool MockPlug. In

particular, we focused on the capability of the approach to

express requirements because this is its most important

contribution and we defined a novel supporting process and

tooling for that. We performed a controlled experiment

focused on assessing the satisfaction achieved by experi-

enced Web users (who played the role of end users) when

specifying augmentation requirements on existing Web

Applications. We also evaluated the satisfaction level of

the scripts produced (by a group of developers who formed

part of the experiment team) to implement such

requirements.

The experiment compared the results of specifying

requirements using CrowdMock against using common

requirements definition approaches in the industry. In order

to accomplish such comparison, participants had to pro-

duce the augmentation requirements specifications, then a

group of developers implemented them, and finally par-

ticipants had to evaluate how the implementation satisfied

their original requirements. The goal of the experiment is

described according to the Goal/Question/Metric (GQM)

method formulated by Basili et al. [3].

Analyze CrowdMock and traditional Web Augmen-

tation development approaches

for the purpose of evaluation of the approach

with respect to their effectiveness

from the point of view of the potential users

With respect to the satisfaction achieved by the users

who specify requirements and inspect products con-

structed from the requirements.

Fig. 21 MockPlug metamodel

52 Requirements Eng (2018) 23:33–61

123

The description is organized mainly according to the

template proposed by Shull et al. [34]. It has five main

subsections. The first section (‘‘Experiment Planning’’)

describes the plan and protocol that was used to perform

the experiment and analyze the results. Then, the ‘‘Devia-

tion from the plan’’ subsection comments the execution

details. After that, the ‘‘Analysis’’ subsection summarizes

the data collected and its treatment. Then, Threats to

Validity are analyzed, and finally, the results of the

experiment and their implications are discussed.

5.1 Experiment Planning

This subsection describes the protocol used to perform the

experiment and analyze the results.

5.1.1 Goal

The goal of the experiment can be refined into the fol-

lowing one:

Goal: Analyze CrowdMock and traditional Web

Augmentation requirements specification techniques

For the purpose of understanding their effectiveness

With respect to the satisfaction achieved by the users

who specify requirements and inspect products con-

structed from the requirements.

5.1.2 Participants

A group of 20 participants were involved in this evaluation,

9 females and 11 males, aged between 22 and 60. All of

them were professionals on Computer Science degrees

from postgraduate courses on Web Engineering which

were held in three different Universities: Universidad

Abierta Interamericana (8 participants), Universidad

Nacional de La Plata (8 participants), and Universidad

Nacional de la Patagonia San Juan Bosco (4 participants).

Participants did not have experience in CrowdMock while

reported experience in other requirements engineering

techniques. Thus, they were able to assess whether tradi-

tional techniques they are accustomed to use were more

effective or not that CrowdMock according to the time and

effort invested in requirements specifications. Moreover,

since software engineering professionals have more expe-

rience in specifying and validating requirements, thus we

preferred to involve these groups of people in order to

avoid the bias that non-technical end user could incorporate

to the experiment. Participants had experience ranging

from 7 to 18 years in Web Engineering, some of them as

developers, others as analysts, and some others as team

leaders. Some participants were also teachers at the

University. The majority of the participants were

Argentinean, but there were also people from Ecuador and

Sweden. The group of participants had diversity in expe-

rience (years, roles, country and context—academia vs.

industry), and we think that this variety is beneficial for the

experiment.

5.1.3 Experimental material

The techniques used to specify augmentation requirements

were two. One of them was the tool we propose and is

explained in previous sections. On the other hand, partic-

ipants had to specify requirements using other technique

already known by them, so they used a common word

processor to build textual document with the specification,

which included screenshots in some cases.

Other products used in the experiments were question-

naires.17 There were two kinds of questionnaires, one to

provide information about the task of specifying require-

ments and other to validate the functionality of the script

developed to fulfill such requirements. The first question-

naire asked information related to the augmentation feature

selected to be implemented, the difficulty perceived during

the task, and the time they needed to perform it. The sec-

ond questionnaire asked information about the script

installation, execution, the script satisfaction (perceived by

the participant), and eventually and optionally the reason.

5.1.4 Tasks

Participants had to perform two tasks: specifying aug-

mentation requirements they desire and testing the result-

ing script that implemented it. After every activity, they

had to fill in a questionnaire. They had to specify four

requirements, two of them using an already known tech-

nique and the other two using RAMs. During the require-

ments specification tasks, they had to fill in a questionnaire

(an activity diary) to measure the complexity of specifying

requirements using the corresponding strategy. The activity

diary consisted in the following information: beginning and

ending time of the working session, activities performed,

and problems aroused. After the initial questionnaires have

been filled and when the scripts fulfilling the desired

requirements have been implemented, participants had to

install and test the scripts produced by scripters according

to the requirements specified. Then, they had to fill in a

questionnaire about the level of satisfaction of the scripts.

All the tasks were performed at home. Thus, the inter-

change of artifacts (questionnaires, scripts, etc.) was

accomplished in the following way: (1) Requirements

specified using an already known technique and the

17 http://www.lifia.info.unlp.edu.ar/crowdmock/public/crowdmockex

periment.zip.

Requirements Eng (2018) 23:33–61 53

123

http://www.lifia.info.unlp.edu.ar/crowdmock/public/crowdmockexperiment.zip
http://www.lifia.info.unlp.edu.ar/crowdmock/public/crowdmockexperiment.zip

corresponding activity diary were recorded in a PDF doc-

ument sent by email. Scripts were sent to participants via

email. (2) Requirements specified using RAMs were

referred through UserRequirement URLs in a PDF docu-

ment within the activity diary also sent by email. Scripts

were uploaded in UserRequirements, and participants

downloaded them in their browser and filled in satisfaction

questionnaires in Google Forms. The augmentation

requirements had to be based on some general features that

we provided over well-known existing Web Applications:

IMDB18 and YouTube.19 Possible features for IMDB were

as follows:

• F1.1. Filter the list of 250 best movies under certain

criteria.

• F1.2. Add some information to the 250 best movies list.

• F1.3. Change the layout and/or content of a movie page

based on the following allowed operations: (1) move

elements of the page, (2) remove elements from the

page, (3) add new widgets into the page (button, input

box, menu, etc.), or (4) add contents related to the

movie from another IMDB page.

Allowed features for YouTube were as follows:

• F2.1. Add information about the videos in the search

results.

• F2.2. Change the layout and/or content of a video’s

Web page based on the following allowed operations:

(1) move elements of the page, (2) remove elements

from the page, (3) add new widgets into the page

(button, input box, menu, etc.), or (4) add contents

related to videos from another YouTube page.

We chose these specific set of general features since

they contemplate the meta-requirements representing the

most common kind of changes that existing augmentation

artifacts perform over Web sites according to the survey

presented in Sect. 3.3. Note that in all the cases, these

general features are only partially specified, and partici-

pants had to decide how to define more fine-grained

aspects. As we explained in Sect. 3.3, we made a survey

that, beyond of being coincident to other studies [11], has

shown that Web Augmentation is used mainly in three

dimensions, which are content, functionality, and layout.

Regarding the content, we showed that the majority of the

augmentation requirements desired by users are related to

adding content to Web pages, both to a single information

item (for instance, a movie page in IMDB) and to a list of

information items (such as a video search results in You-

Tube). Both ways to add content are different, because

while the former implies applying the augmentation only to

specific DOM elements, the later needs to apply the same

process to a set of DOM elements iteratively. We wanted to

be sure that our tool was appropriated for specifying both

kinds of content-based requirements. Tasks F2.2(4) and

F1.3(4) were aimed to define single content augmentation

requirements, while F1.2 and F2.1 are meant to define an

augmentation that must be applied over a set of DOM

elements. Besides adding content, removing content is

considered in F1.3(2) and F2.2(2).

As a result of the survey shown in Sect. 3.3, we dis-

covered that adding functionality was the second most

pursued kind of augmentation, at least in the context of the

participant sample chosen for our experiment. Mostly, the

functionality to be added is implemented by using forms,

menus, buttons, etc. (i.e., interaction widgets that allow

users to have further behavior). We have covered this kind

of augmentation with F1.1, F1.3(3), and F2.2(3). Finally,

layout reordering is another popular augmentation

requirement. In this case, we have defined F1.3(1) and

F2.2(1) in order to allow participants to define the specific

requirements related to layout aspect.

Beyond the result of the experiment (i.e., the compar-

ison between techniques for specifying the requirements,

which is shown in the remaining of Sect. 5), at this point it

is important to say that the definition of these five coarse-

grained requirements was enough for obtaining concrete

requirements specifications based on the mentioned popu-

lar augmentation requirements dimensions (content, func-

tionality, and layout) that were assessed in our survey. For

example, a participant noted that filters must be accessed in

IMBD after clicking the option Subscription administra-

tion, but he wanted a direct button to filters. This issue was

related to Feature 2.2, and the participant specified a

requirement to add a button in the main window to access

the filters (which merge aspects about content and behav-

ior). Another participant wanted more information about

videos related to music in the search results. Thus, he asked

to include a link to the lyrics of the song. This requirement

was related to Feature 2.1. Other participant refined R1.3

for adding YouTube videos to IMDB movies (trailers) in a

modal window that is opened when the user clicks a new

anchor. There were really different examples among the

requirements defined by participants, most of them use at

least one of the meta-requirements introduced in

Sect. 3.3.1, while others are based on the combination of

two or more of them.

The task of testing the scripts was very simple. Partic-

ipants had to install them as an extension in the web

browser, and after that, they had to visit the Web site they

had referred in the requirements specification document in

order to assess whether the functionality provided satisfied

their needs. Since augmentation requirements are very

18 Internet Movie Data Base - http://imdb.com; last accessed

February 4, 2014.
19 YouTube—http://youtube.com; last accessed February 4, 2014.

54 Requirements Eng (2018) 23:33–61

123

http://imdb.com
http://youtube.com

specific, it was easy for participants to state whether the

script satisfied or not their requirements and it was not

necessary to specify a list of acceptance criteria. Never-

theless, sometimes could happen that users were not fully

satisfied and we provided the option ‘‘partially satisfy’’ for

this situation. For example, in the requirement of adding a

button to access the filters, the implementation may not

satisfy the requirements because the position of the button

is not the one that the user expected. In this case, this

implementation can be assessed as ‘‘partially satisfy.’’

5.1.5 Hypothesis and variables

The experiment had only one goal: comparing the satis-

faction perceived by participants when they test scripts

which functionality was described using CrowdMock

against other well-known techniques. Therefore, our

hypotheses are as follows:

H0: There is no difference in the satisfaction

by using CrowdMock and traditional approaches

HA: There is a difference in the satisfaction

by using CrowdMock and traditional approaches

Three types of variables were defined for the experi-

ment: independent, dependent, and control. The technique

(i.e., CrowdMock, Narrative description, and User Stories)

is an independent variable because it is what we vary in

order to test the results. The level of satisfaction (i.e., ‘‘does

not satisfy,’’ ‘‘partially satisfy,’’ and ‘‘completely satisfy’’)

is a dependent variable because we want to measure how

they vary according to the technique. Finally, features

subset is a control variable because the set of features is

constant and unchanged, and participants can specify

similar kind of requirements from the features to make the

comparison of strategies possible.

Although the questionnaires provide much information,

we focused the objective of the experiment on the level of

satisfaction because the main goal of requirements engi-

neering is to capture the correct requirements to build the

right product. Requirements usually refer to necessities,

wishes, and expectations, and some of them are tacit, so

stakeholders are the only one who can determine the

satisfaction.

5.1.6 Experiment design

The experiment had a simple design within subjects that

means that each participant (subject) of the experiment had

to use two techniques (treatments): the technique under

evaluation (CrowdMock) and other well-known technique

well known by the participant. In this situation, the Mat-

uration Threat of internal validity (the order in which

participants apply the technique) is very important to cope

with. We had used levels of independent variable (treat-

ment); thus, we had made two groups of participants, one

group used CrowdMock first while the other used Crowd-

Mock in second place in order to counterbalance the effect

of the order in applying the approaches.

5.1.7 Procedure

The experiment was organized in two phases. In each

phase, the participants specified some requirements, then a

group of scripters implemented the functionality specified,

and finally the participants validated whether the imple-

mentation satisfied their original request specified as

requirements.

At the beginning of the experiment (before both phases),

some of the authors of this article introduced the general

procedure and trained the participants on the common tasks

of both phases. This training was performed as a part of a

postgraduate course. Some participants have used in the

first phase a technique they already known, and others have

used MockPlug. Participants have also received training in

MockPlug previous to the use of the technique.

After that stage, participants had 3 days to write two

requirements inspired and limited by the list of features we

provided; requirements had to be written at home without

any kind of assistance. In one phase, participants have to

use a technique they already known to specify require-

ments, and in the other one, they have to use MockPlug.

After these 3 days, they had to send their specifications to

the development team. Developers had 2 days to imple-

ment the corresponding augmentations through

GreaseMonkey scripts. It is important to note the distinc-

tion between participants of the experiment who only have

to specify requirements and a specific team composed by

experienced developers in Web Augmentation who

implemented them. This distinction is important because

the experiment had the goal to test the communication

between both groups through the specification produced by

different techniques. After finished, scripts were sent to the

participant who originally specified it and he or she had 2

additional days for installing, using, and evaluating it.

During this process, every participant had to fill in the

aforementioned questionnaires.

5.1.8 Analysis procedure

Given that we have no guarantee about a normal distribu-

tion of the data, we have used the Wilcoxon sign test, a

nonparametric statistical hypothesis test, to assess whether

one of the two samples of paired observations tends to

show differences [42]. We apply this test to the level of

satisfaction declared by participants.

Requirements Eng (2018) 23:33–61 55

123

5.2 Deviations from the plan

Since execution was carried out according to the procedure

defined, in this section we describe some characteristics of

the experiment development.

The first task to be performed by participants was the

selection of the general features to write the requirements.

All the features were selected randomly. Table 1 shows

that the distribution of selection of the features was quite

balanced near the average of 20 %.

Participants performed the tasks in the schedule previ-

ously described. The techniques used, apart from our pro-

posed technique, were traditional mock-ups, traditional

user stories, narrative description, and a combination of

mock-ups with narrative descriptions. Table 2 shows the

distribution of the techniques used.

Regarding the usability questionnaires, the difficulty was

measured in a scale ranging from ‘‘Very Easy’’ to ‘‘Very

difficult,’’ having ‘‘Easy,’’ ‘‘Normal,’’ and ‘‘Difficult’’ as

intermediate options. When specifying requirement with

traditional techniques, the difficulty was mostly perceived as

‘‘Normal.’’ ‘‘Very Difficult’’ rank was not used at all. The

difficulty perceived using CrowdMock approach had more

situations ranked as ‘‘Very Easy’’ and ‘‘Easy,’’ but it also had

more situation ranked as ‘‘Difficult’’ and ‘‘Very Difficult.’’ It

is important to mention that situations where CrowdMock

was rankedmore difficult than other approaches were related

to technological issues. For example, some participants

reported problems when installing the plug-in, and other

participants had problems about internationalization (for

instance, people from Sweden and Ecuador). Table 3 shows

the complete distribution of difficulty perceived. It is

important to mention that the average time of applying tra-

ditional techniques was 198 min, while the average time of

applying CrowdMock was 104 min.

The development team implemented all the require-

ments and sent the scripts to every participant. Neverthe-

less, participants were able to download and install the

script in 95 % of the cases.

The level of satisfaction reported by participants who

were able to install and test the scripts is summarized in

Table 4. It describes all the possible combination about

level of satisfaction according to traditional and Crowd-

Mock approaches and the quantity of times the situation

was reported by participants. In some cases, the application

of both approaches was related to a similar level of satis-

faction. In other cases, traditional approaches were repor-

ted to have higher level of satisfaction than CrowdMock.

And in other, CrowdMock was reported with higher level

of satisfaction. Results show that the majority of times both

approaches reported the same level of satisfaction: ‘‘Does

not satisfy’’/‘‘Does not satisfy,’’ ‘‘Partially satisfy’’/‘‘Par-

tially satisfy,’’ and ‘‘Satisfy’’/‘‘ Satisfy’’ with 20 times.

Nevertheless, CrowdMock reported a higher level of sat-

isfaction than traditional approaches: ‘‘Does not satisfy’’/‘‘

Partially Satisfy,’’ ‘‘Does not satisfy’’/‘‘ Satisfy’’, ‘‘Partially

Satisfy’’/‘‘Satisfy’’ with 13 times.

Table 1 Distribution of the

features selected
Feature % selected

F1.1 12

F1.2 22

F1.3 17

F2.1 25

F2.2 24

Table 2 Distribution of techniques used

Technique % used

Narrative description 26

Narrative description ? mock-up 24

Mock-up 39

User Story 11

Table 3 Distribution of difficulty perceived when specifying

requirements

Level % for traditional

approach

% for CrowdMock

approach

Very easy 5 11

Easy 21 26

Normal 63 42

Difficult 11 16

Very difficult 0 5

Table 4 Distribution of satisfaction perceived when specifying

requirements

Traditional approach CrowdMock approach Quantity

Does not satisfy Does not satisfy 1

Does not satisfy Partially satisfy 1

Does not satisfy Satisfy 1

Partially satisfy Does not satisfy 1

Partially satisfy Partially satisfy 7

Partially satisfy Satisfy 11

Satisfy Does not satisfy 0

Satisfy Partially satisfy 4

Satisfy Satisfy 12

56 Requirements Eng (2018) 23:33–61

123

5.3 Analysis

In order to apply Wilcoxon sign test, W value and Z value

must be calculated. We used 38 pairs of data corresponding

to the situations where participants were able to specify,

install the script, and verify the functionality provided.

Then, these 38 pairs of data, has 20 pairs, where the sat-

isfaction reported was the same for both techniques; thus,

the sample was reduced to a size of 18 (N = 18). In this

situation, we use the W value to evaluate our hypothesis.

W value is 45. The critical value of W for N = 18 at

p B 0.01 is 32 [26]. Therefore, H0 cannot be rejected at

p B 0.01. But the critical value of W for N = 18 at

p B 0.05 is 47 [26]. Therefore, H0 can be rejected at

p B 0.05 [42]. We also calculated the effect size. Since our

experiment compares groups of independent values, we

calculated the Cliff’s delta correlation coefficient instead of

the generally used Cohen coefficient [7]. We obtained a

value of 0.209. This value determines an effect size

between small and medium.

Summing up, there is a substantial difference (p\ 0.05)

between both approaches in terms of the satisfaction of the

script produced using different approaches to specify them

and H0 can be rejected.

We focused the experiment on the capability of our

proposed approach to express requirements. In particular,

the experiment was focused on assessing the satisfaction

achieved by experienced Web users. Thus, the participants

had to use two different techniques: CrowdMock and other

technique well known by them, and compare the results.

This situation was adverse to CrowdMock, because people

were comparing a well-known technique against a new

one. And it is expected that the well-known technique

would have a better performance that the new one. Nev-

ertheless, CrowdMock obtained good results. The average

time of applying CrowdMock was almost half of the

average time of applying well-known techniques. Then,

CrowdMock was ranked better than the other techniques in

difficulty perceived (if technical issues are not considered).

And in this scenario, the level of satisfaction perceived was

better in CrowdMock than in other well-known techniques.

Even more, we do not choose a specific technique to

compare with CrowdMock. We let participants to choose a

well-known technique by each of them.

Thus, although we believe that we have to continue with

the experimentation for measuring other aspects about our

approach, such as how well our propose traceability is

supported, we think that results are very promising and

have shown that this is good way to express Web aug-

mentation requirements. We think that the fact that

CrowdMock relies on prototypes (mock-ups) applied over

the real Web Application is the key of the success of the

experiment.

5.4 Threats to validity

Wohlin et al. [42] group validity threats into four cate-

gories: conclusion, internal, construct, and external valid-

ity. The following paragraphs analyze different threats

from each category.

Concerning the conclusion category, one possible threat

is to violate the assumptions of statistical tests. In order to

avoid this threat, we have used Wilcoxon sign test which is

a nonparametric alternative to paired t test. Another threat

from the conclusion category is the reliability of measures.

Our experiment consists in ranking the satisfaction per-

ceived by participants in a scale of three possible values:

‘‘no satisfy,’’ ‘‘partially satisfy,’’ and ‘‘completely satisfy.’’

This rank can be easily and unbiased identified by partic-

ipants, because if the satisfaction is not null or complete, it

is partial. Thus, this measure is the core to ensure that our

experiment is not biased. The last threat from this category

to discuss is random heterogeneity of subjects. There is

always heterogeneity in a study group. If the group is very

heterogeneous, there is a risk that the variation due to

individual differences is larger than due to the treatment. In

our experiment, all participants are homogenous since all

of them have a degree diploma and have experience in

industry. Nevertheless, participants are heterogeneous in

relation to years of experience, roles, country, and context

(academia vs. industry).

The second category of threats to analyze is internal

validity. Selection is the main threat to internal validity. In

order to mitigate the effect of this threat, subjects were able

to choose by themselves features to specify requirements

and a technique to contrast to CrowdMock. Instrumentation

is another threat to internal validity that we were concerned

to tackle. For that purpose, we paid a lot of attention to the

preparation of artifacts for the experiment. We used real

applications, and we also determine real features. More-

over, since nowadays homeworking is a common practice,

the context in which the main tasks were performed should

not derive in any threat. The maturation threat does not

impose a problem because the experiment lasted little time

and experimental task in particular was very short, partic-

ipants had only to specify two requirements, test the

implementation and complete short questionnaires. In this

way, the subjects would not have to worry about being

bored or tired from the experiment.

According to the construct validity category, we

observed that the experiment did not suffer from such

threats referred to as hypothesis guessing, evaluation

apprehension, or experimenter expectancies, because the

people only had to produce the requirements specification

and then, they had to contrast their expectations to the

scripts produced. Moreover, the team in charge of imple-

mented the functionality did not know the experimental

Requirements Eng (2018) 23:33–61 57

123

situation; thus, they could not be biased trying to provide

implementation with defect on purpose. Although subjects

were students and they could have been biased by their

position, they did not know which variable described in the

questionnaires was going to be analyzed.

Sjøberg et al. [35] state that many threats to external

validity are caused by an artificial setting of the experi-

ment. They mention the importance of realistic tasks and

realistic subjects. Realistic tasks are concerned with the

size, complexity, and duration of the tasks involved. Tak-

ing this into account, we set up an experiment which had

the complexity of a small but real situation. Realistic

subjects are concerned with the selection of subjects to

perform the experimental tasks. In order to tackle this

threat, we selected practitioners with real experience in

Web Engineering. They had a wide range of experience, as

well as different skills.

In order to avoid biases, we have also paid special

attention on designing the questionnaires by following

well-known practices. First, all the vocabulary used in

questionnaires was opportunely introduced and explained

during the presentation of the experiment, in the courses’

face-to-face meetings. Besides the specific vocabulary, all

participants were Spanish speakers, and since all ques-

tionnaires were written in Spanish, there were not mistakes

introduced by any translation. Regarding questions design,

we have used a combination of both closed-ended and

open-ended questions. The first ones were used because

they allowed us to define a priori the numeric values for the

response choices (which were selective). The second ones

were used in order to allow participants to express, without

any limitation, why or why not the scripts satisfied their

requirements. These answers were analyzed a posteriori,

and fortunately, these answers were in concordance with

the scaled answers, but providing us some additional

details.

Regarding the administration strategy, we chose the

self-administered questionnaires. This was important

because we reduce any biases that could appear when there

exists the intervention of interviewers.

6 Related works

Web Augmentation is an activity carried out by end users.

At the end, they are who know their needs and, as we have

pointed out in this paper, only those users with the neces-

sary programming skills are able to create artifacts with

particular adaptation goals and share them within Web

Augmentation communities. However, since not all people

have these skills, many augmentation requirements are

relegated until they are completely understood. As far as

we know, and beyond informal forums for asking new

augmentation artifacts provided by the communities, there

are not scientific works tackling the problem of how to

specify and manage this kind of requirements. Neverthe-

less, there exist are several important works that aim to

raise the abstraction level for programming Web Aug-

mentation artifacts in order to make broader the spectrum

of augmentation developers. Most of these approaches

about end-user Web Augmentation are defined in terms of

a subset of possible adaptations or domains. For instance,

in previous works, we aimed to support inter-application

tasks by integrating mechanisms based on Web Augmen-

tation tools, which allow users to specify (for instance) the

integration and the augmentation desired, using a frame-

work and a domain-specific language [16]. Others authors

have proposed end-user programming languages for Web

Augmentation, although requiring some high technical

skills [12]. The same authors have defined the WebMa-

keUp [13] approach, comprising an end-user tool allowing

users to perform several kinds of augmentations. Regard-

less of these very important contributions, we strongly

believe that most of the popular Web Augmentation arti-

facts are not possible to be specified only using this kind of

tools. Several of the scripts available in existing reposito-

ries have more than one thousand lines of code, containing

complex logic.

Several of the examples presented on this paper cannot

be specified without the intervention of someone with

programming skills, especially in imperative programming.

In this way, and even when the mentioned approaches are

enough to satisfy several augmentation requirements, those

cases such as Peter’s one are out of scope of most end-user

augmentation tools. Our approach aims to fill this gap

considering that currently there is evidence of cooperation

between users with and without programming skills in the

existing communities. In this way, we are confident that

our work is a novel approach for supporting Web Aug-

mentation activities, because we provide end users with

mechanisms to specify their requirements and, based on

these specifications, end-user developers may get a first

script code generated automatically.

Note that although our work is focused on Web Aug-

mentation requirements, several aspects of our approach

are related to both collaboration in requirements manage-

ment and Web requirement specification. Azadegan et al.

[1] and Dheepa et al. [9] propose approaches similar to

ours. They involve many stakeholders to identify require-

ments, and then, they discuss and prioritize requirements.

Nevertheless, these approaches are different from Crowd-

Mock because they propose more rigid steps while in a

collaborative context, a more flexible approach is more

suitable. Moreover, they divide their approaches in two

main steps: First, they build a stakeholder structure and

after that, they work on requirements. This imposes even

58 Requirements Eng (2018) 23:33–61

123

more rigidity, because it prevents that a new stakeholder

can be included in the process after this stakeholder

structure was built, while our approach is more flexible

because stakeholders can be incorporated in any moment

during the definition of the requirement. In particular,

stakeholders involved in our approach can play two roles:

they can be requester of functionality and they can also be

providers. These two roles agree with the roles proposed by

Vuković et al. [38].

An important aspect of our approach is prioritization.

We provide a simple mechanism to prioritize using the

‘‘like’’ voting technique. Lim et al. [23] rank using a scale

from 0 to 5; nevertheless, ‘‘like’’ has proved to be more

effective in order to select more important requirements

[2]. Shimakage et al. [33] rank using a more complex

mechanism as analytical hierarchy process (AHP).

Although it provides better results, it is complex to apply

and demands much effort.

We agree with Wu [43] in the importance of collabo-

ration in order to obtain the diversity that it is needed to

support the creativity process and obtain a good and rep-

resentative set of requirements. In this process, we consider

that iteration and refinement are very important, in contrast

to Ponzanelli et al. [28] which ignores refinements at all. In

this collaboration context, it is very important to use

models that are well understood by all participants. Thus,

we use User Stories (structured colloquial descriptions) and

high-fidelity mock-ups (RAMs) which complement each

other. This is possible since our metamodel allows to

specify behavioral features like responses actions to events

in added widgets. Shimakage et al. [33] propose a similar

model to ours, but they use GUI descriptions while we use

mock-ups. Using UI mock-ups as a requirement elicitation

technique is a growing trend that can be appreciated just

observing the amount of different Web and desktop-based

prototyping tools that appeared during the last years like

Balsamiq and Mockingbird.20 Statistical studies have pro-

ven that mock-ups use can improve the whole development

process in comparison with using other requirements arti-

facts [30]. MockPlug, our mock-up tool, is specifically

designed for the Web Augmentation domain, achieving

high-fidelity prototypes really close to the final imple-

mentation, since the involved widgets are already DOM

elements. In comparison with the mentioned tools, we

think that taking as a base the existing Web site facilitates

the specification process, since users never start from

scratch and also start from the real, original Web site to

specify their augmentation requirements. The use of mock-

ups has been introduced in different and heterogeneous

approaches and methodologies. They have been included in

traditional, code-based Agile settings as an essential

requirement artifact [14, 37]. They have been used as

formal specifications in different model-driven develop-

ment approaches like MockupDD [31], ranging from

interaction requirements to data-intensive Web Applica-

tions modeling. In this work, we propose to specify aug-

mentation changes using (among other techniques) mock-

up-style widgets. Also, MockPlug combines mock-up-style

augmentation techniques with well-known annotation

capabilities of common mock-up tooling that can be also

used as formal specifications in the future as in [27].

Sutcliffe et al. [36] propose a similar approach to ours.

Their approach considers iterative cycles where different

stakeholders produce and refine abstract models and con-

crete representation (scenarios, sketches, storyboards). The

difference is that they need a role of moderator. Other

approaches not only add new roles, but they also include

more complex analysis of stakeholders. Lim et al. [23]

prioritize stakeholders using a variety of social network

measures in order to consider the vote of different stake-

holders in different ways. Reenadevi et al. [29] include a

rating of malicious stakeholders in order to detect how they

can affect the product quality. In fact, they propose an

algorithm for identifying non-stakeholders. Since we rely

on collaboration, our approach is based on the premise that

all stakeholders have the same influence and they are

working with no malice.

7 Conclusions and future work

Web Augmentation has emerged as a mechanism to

improve the user experience while surfing the Web. It has

been widely adopted by a crowd of users as it can be seen

in the multitude of script repositories. Augmentation goals

are broad since users’ requirements are broad as well.

Some of the current tools are used widely; for instance,

AdBlock Plus!21 has been installed more than 300 million

times, allowing users to alter Web pages with a very par-

ticular goal, which is basically to remove intrusive adver-

tisement. Other more powerful Web Augmentation engines

(Scriptish, Stylish, or GreaseMonkey) have also millions of

installations and altogether propose more than one hundred

thousand augmentation artifacts used by more than several

thousand users each one. As we have mentioned before,

these topics are also being tackled in different ways in the

research world. Different scientific works are based on

Web Augmentation for improving Web Applications

accessibility [4, 18], support user tasks and concerns [16],

Web forms filling improvements [15], etc. These works

have shown the power of augmentation techniques when

applied to specific domains, designing specific tools and

20 http://gomockingbird.com. 21 https://adblockplus.org.

Requirements Eng (2018) 23:33–61 59

123

http://gomockingbird.com
https://adblockplus.org

making easier the development of augmentation artifacts in

the context of a particular domain. Also others works have

shown that end users without programming skills are able

to create their own augmentations [13], although reducing

the expressivity and consequently supporting only a subset

of potential adaptations, or DSL for Web Augmentation

[12].

Altogether, the mentioned works place Web Augmen-

tation as a powerful mechanism for Web personalization

and customization. Existing Web Augmentation commu-

nities have a similar pattern in their users’ composition.

There are artifacts creators, artifacts users, and artifacts

requestors. However, the current communication channel

between creators and requestors makes harder to under-

stand what users (requestors) need.

In this work, we presented the CrowdMock, an approach

whose main goal is to improve how Web Augmentation

communities work. One of ourmain aimswas to improve the

communication between requestors and creators. The

CrowdMock approach is fully supported by MockPlug, a

tool for defining augmentation requirements via high-fidelity

augmentation-based mock-ups, and UserRequirements, a

platform formanaging these requirements. The approach lets

users collaborate in the refinement process and choose the

better version to be implemented, administrating in this way

the effort made by creators who (at least in these commu-

nities) usually enjoy collaborating with each other and with

requestors. Our approach not only helps them in under-

standing what a requestor expects, but also it provides a way

to automatically generate initial code for implementing the

augmentation that satisfies its requirements.

We strongly believe that Web Augmentation artifacts

are going to play even a more important role in the future.

We also think that if we want to go further in the adoption

of Web Augmentation as a personalization mechanism, we

need to provide better support to those users who are not

able to create their own artifacts, but still have adaptations

requirement. CrowdMock and its supporting tools are a

novel approach in this sense, which shows that it is possible

to define and manage Web Augmentations requirements in

a systematic way.

At the moment, we are currently working on the

improvement of several CrowdMock aspects. First, we are

improving automatic code generation. This is really a

challenge since creators have different views when pro-

gramming augmentation artifacts due, for example, to the

big offer of JavaScript libraries they may prefer to use.

This gives us the premise that it would be necessary to

improve the customization of how the code artifacts are

generated if we pretend that the approach has a high

adoption rate. Experiments about how creators may adopt

the generated code are also foreseen. Even more, we are

working on the inclusion of acceptance tests when an

artifact is published in response to a requirement; in this

way, the requestor may provide feedback about the

implementation.

References

1. Azadegan A, Cheng X, Niederman F, Yin G (2013) Collaborative

requirements elicitation in facilitated collaboration: report from a

case study. In: 2013 46th Hawaii international conference on

system sciences (HICSS), pp 569–578

2. Bao J, Sakamoto Y, Nickerson JV (2011) Evaluating design

solutions using crowds. In: Seventeenth americas conference on

information systems, August 4th–7th, pp 2013–2015

3. Basili VR, Caldiera G, Rombach HD (1994) The goal question

metric approach. Encycl Softw Eng 2(1994):528–532

4. Bigham J, Ladner R (2007) Accessmonkey: a collaborative

scripting framework for web users and developers. In: Proceed-

ings of international cross-disciplinary conference on web

accessibility (W4A 2007), pp 25–34

5. Bouvin NO (1999) Unifying strategies for Web augmentation. In:

Proceedings of the tenth ACM conference on hypertext and

hypermedia: returning to our diverse roots: returning to our

diverse roots, pp 91–100

6. Brusilovsky P (2001) Adaptive hypermedia. User Model User-

Adap Inter 11:87–110

7. Cohen J (1988) Statistical power analysis for the behavioral

sciences. 2nd edn. Routledge, London

8. Cohn M (2004) User stories applied: for agile software devel-

opment. Addison-Wesley Professional, Boston

9. Dheepa V, Aravindhar DJ, Vijayalakshmi C (2013) A novel

method for large scale requirement elicitation. Int J Eng Innov

Technol (IJEIT) 2:375–379

10. Dı́az O (2012) Understanding web augmentation. In: Gross-

niklaus M, Wimmer M (eds) Current trends in web engineering.

Springer, Berlin, pp 79–80

11. Dı́az O, Arellano C (2015) The augmented web: rationales,

opportunities, and challenges on browser-side transcoding. ACM

Trans Web (TWEB) 9(2):8

12. Dı́az O, Arellano C, Azanza M (2013) A language for end-user

web augmentation: caring for producers and consumers alike.

ACM Transactions on the Web (TWEB) 7(2):9

13. Dı́az O, Arellano C, Aldalur I, Medina H, Firmenich S (2014)

End-user browser-side modification of web pages. In: Benatallah

B, Bestavros A, Manolopoulos Y, Vakali A, Zhang Y (eds) Web

information systems engineering–WISE 2014. Springer Interna-

tional Publishing, pp 293–307

14. Ferreira J, Noble J, Biddle R (2007) Agile development iterations

and UI design. In: Eckstein J, Maurer F, Davies R, Melnik G,

Pollice G, (eds) Agile conference (AGILE), 2007. pp 50–58

15. Firmenich S, Gaits V, Gordillo S, Rossi G, Winckler M (2012)

Supporting users tasks with personal information management

and web forms augmentation. In: Brambilla M, Tokuda T,

Tolksdorf R (eds) Proceedings of international conference on web

engineering. Springer, Berlin, pp 268–282

16. Firmenich S, Rossi G, Winckler M (2013) A domain specific lan-

guage for orchestrating user tasks whilst navigation web sites. In:

Daniel F, Dolog P, Li Q (eds) Proceedings of international confer-

ence on web engineering. Springer, Berlin Heidelberg, pp 224–232

17. Firmenich D, Firmenich S, Rivero JM, Antonelli L (2014) A

platform for web augmentation requirements specification. In:

Casteleyn S, Rossi G, Winckler M (eds) Proceedings of interna-

tional conference on web engineering. Springer International

Publishing, pp 1–20

60 Requirements Eng (2018) 23:33–61

123

18. Garrido A, Firmenich S, Rossi G, Grigera J, Medina-Medina N,

Harari I (2013) Personalized web accessibility using client-side

refactoring. Internet Computing, IEEE 17(4):58–66

19. Glinz M (2007) On non-functional requirements. In: Require-

ments engineering conference, 2007. RE’07. 15th IEEE interna-

tional, pp 21–26

20. Kelly S, Tolvanen JP (2008) Domain-specific modeling: enabling

full code generation. Wiley, New York

21. Ko A, Myers B, Rosson M, Rothermel G, Shaw M, Wiedenbeck

S, Abraham R, Beckwith L, Blackwell A, Burnett M (2011) The

state of the art in end-user software engineering. ACM Comput

Surv (CSUR) 43(3):21

22. Lim SL, Quercia D, Finkelstein A (2010) StakeNet: using social

networks to analyse the stakeholders of large-scale software

projects. In: Proceedings of the 32nd ACM/IEEE international

conference on software engineering, vol 1, pp 295–304

23. Lim SL, Damian D, Finkelstein A (2011) StakeSource2.0: using

social networks of stakeholders to identify and prioritise

requirements. In: 2011 33rd international conference on software

engineering (ICSE), New York: IEEE Xplore, pp 1022–1024

24. Lucassen G, Dalpiaz F, van der Werf JME, Brinkkemper S

(2015) Forging high-quality user stories: towards a discipline for

agile requirements. In: 2015 IEEE 23rd international require-

ments engineering conference (RE), pp 126–135

25. Luna ER, Rossi G, Garrigós I (2011) WebSpec: a visual language

for specifying interaction and navigation requirements in Web

Applications. Requir Eng 16(4):297–321

26. McCornack RL (1965) Extended tables of the Wilcoxon matched

pair signed rank statistic. J Am Stat Assoc 60(311):864–871

27. Mukasa KS, Kaindl H (2008) An integration of requirements and

user interface specifications. In: Proceedings of the 2008 16th

IEEE international requirements engineering conference. IEEE

Computer Society, pp 327–328

28. Ponzanelli L, Bacchelli A, Lanza M (2013) Leveraging crowd

knowledge for software comprehension and development. In:

2013 17th European conference on software maintenance and

reengineering (CSMR), pp 57–66

29. Reenadevi R, Dugalya P (2012) Identifying malicious stake-

holders using algorithm For large scale requirement-elicitation.

Int J Comput Commun Technol 3(6, 7, 8):106–108 (ISSN
(Print): 0975–7449)

30. Ricca F, Scanniello G, Torchiano M, Reggio G, Astesiano E

(2010) On the effectiveness of screen mockups in requirements

engineering: results from an internal replication. In: Proceedings

of the 2010 ACM-IEEE international symposium on empirical

software engineering and measurement, p 17

31. Rivero JM, Rossi G (2013) MockupDD: facilitating agile support

for model-driven web engineering. In: Sheng Q, Kjeldskov J(eds)

Current trends in web engineering. Springer International Pub-

lishing, pp 325–329

32. Rivero JM, Grigera J, Rossi G, Luna ER, Montero F, Gaedke M

(2014) Mockup-driven development: providing agile support for

model-driven web engineering. Inf Softw Technol 56(6):670–687

33. Shimakage M, Hazeyama A (2004) A requirement elicitation

method in collaborative software development community. In:

Product focused software process improvement. Springer, Berlin,

pp 509–522

34. Shull F, Singer J, Sjøberg DIK (eds) (2008) Guide to advanced

empirical software engineering. Springer, London

35. Sjøberg D, Anda B, Arisholm E, Dybå T, Jørgensen M, Kara-

hasanovic A, Koren EF, Vokác M (2002) Conducting realistic

experiments in software engineering. In: Proceedings of 2002

international symposium on empirical software engineering,

2002, pp 17–26

36. Sutcliffe A (2010) Collaborative requirements engineering:

bridging the gulfs between worlds. In: Intentional perspectives on

information systems engineering. Springer, Berlin, pp 355–376

37. Ton H (2007). A strategy for balancing business value and story

size. In: Agile conference (AGILE), 2007, pp 279–284

38. Vuković M (2009) Crowdsourcing for enterprises. In: 2009

World conference on Services-I, pp 686–692

39. Walker M, Takayama L, Landay JA (2002) High-fidelity or low-

fidelity, paper or computer? Choosing attributes when testing web

prototypes. In: Proceedings of the human factors and ergonomics

society annual meeting, vol 46, No. 5. SAGE Publications,

pp 661–665

40. Whittle J, Hutchinson J, Rouncefield M (2014) The state of

practice in model-driven engineering. Softw IEEE 31(3):79–85

41. Willighagen EL, O’Boyle NM, Gopalakrishnan H, Jiao D, Guha

R, Steinbeck C, Wild DJ (2007) Userscripts for the life sciences.

BMC Bioinform 8(1):487

42. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén

A (2012) Experimentation in software engineering. Springer

Science & Business Media, Berlin

43. Wu W, Tsai WT, Li W (2013) Creative software crowdsourcing:

from components and algorithm development to project concept

formations. Int J Creat Comput 1(1):57–91

44. Platypus: https://addons.mozilla.org/es/firefox/addon/platypus/

Requirements Eng (2018) 23:33–61 61

123

https://addons.mozilla.org/es/firefox/addon/platypus/

	CrowdMock: an approach for defining and evolving web augmentation requirements
	Abstract
	Introduction
	Background
	The CrowdMock approach
	The CrowdMock process in a nutshell
	CrowdMock: products and activities
	Expressivity: what augmentation requirements can be defined with CrowdMock
	Analysis of Web Augmentation artifacts
	Classification of Web Augmentation requirements

	The CrowdMock process by example

	CrowdMock Implementation
	MockPlug for end users
	MockPlug for scripters
	UserRequirements
	MockPlug: integration with UserRequirements
	MockPlug metamodel and code generation

	Evaluation
	Experiment Planning
	Goal
	Participants
	Experimental material
	Tasks
	Hypothesis and variables
	Experiment design
	Procedure
	Analysis procedure

	Deviations from the plan
	Analysis
	Threats to validity

	Related works
	Conclusions and future work
	References

