
DOI reference number: 10.18293/SEKE2018-106

Conflict Management in the Collaborative
Description of a Domain Language

Claudia Litvak
DIIT

Universidad Nacional de La Matanza
La Matanza, Bs. As., Argentina

clitvak@unlam.edu.ar

Gustavo Rossi1, Leandro Antonelli
Lifia, Facultad de Informatica

Universidad Nacional de La Plata
La Plata, Argentina

{gustavo, lanto}@lifia.info.unlp.edu.ar
1also CONICET

Abstract—The identification and specification of the
requirements of a software system is a difficult task that has the
goal of obtaining requirements as correct and complete as
possible. It is extremely important that Requirements Engineers
understand a domain language in order to write high-quality
requirements. Moreover, they must describe (and discuss) the
language in a collaborative way in order to consider the different
points of view of all stakeholders to assure that the resulting
requirements will have more chances to meet their needs.
However, collaborative construction implies the occurrence of
conflicts that are unavoidable because of ambiguity, overlapping
and misunderstanding natural language descriptions. This article
relies on the Language Extended Lexicon in order to describe the
application domain. Although it is a semi-structured glossary and
this characteristic helps to reduce the conflicts, our experience
shows that conflicts arise anyway. Thus, in order to mitigate this
problem, this article presents a catalogue with a set of conflicts
that could appear during a collaborative construction of the
Language Extended Lexicon and proposes alternatives for their
resolution.

Keywords-requirements engineering, collaboration, conflicts,
natural language models

I. INTRODUCTION

Requirements Engineering is one of the initial stages of the
Software Development Life Cycle. The goal of this stage is to
acquire the knowledge and the requirements needed for the
system to be built. Errors made in requirements specifications
have a great impact towards the end of software development,
since the cost of error correction increases as each stage
progresses [1].

Several authors argue that the interaction of different
stakeholders working collaboratively on the same problem
improves the quality of the system requirements [2] [3]. Since
different stakeholders have different concerns and different
point of view, all of them working together will produce a
richer model.

However, generating models collaboratively implies the
emergence of conflicts that must be solved in order to build a
consistent high quality model. The existence of a conflict is not
a negative situation, in fact it might be positive since it

provides the possibility of improving the models, analyzing and
discussing the different ideas observed and manifested by the
conflict.

In this context, it is even more important, to define a basic
language in order to interact and describe the needed models.
There are two main kinds of languages: formal and natural
language. Despite the introduction of ambiguity, the natural
language has the advantage to be understood by all the
stakeholders (technical and non technical).

Ambiguity means having two interpretations for the same
word. For example, let’s consider that the word “label” has two
different meanings: (i) “It is the action of putting the brand of
the product on the boxes of finished product”; and (ii) “It is the
action of marking the price of each finished box of finished
product”. Imagine a situation where two stakeholders use the
same word with different meaning: they would think they
understand each other, but in fact, they want to transmit a
different idea. An opposite situation could be the use of two
different words, which in fact are synonyms and represent the
same idea. In this case, both stakeholders can not know that
they are talking about the same thing.

Our research is framed by the Language Extended Lexicon
(LEL). The LEL is a model that uses Natural Language [4] to
describe the vocabulary of the application domain. The LEL is
a very convenient tool for stakeholders with no technical skills,
although people with such skills will profit more from its use
[5]. In particular, the convenience of the LEL as a tool arises
from three significant characteristics: it is easy to learn, it is
easy to use and it has good expressiveness. Goel [6] states that
the LEL is widely used to capture the language to describe
requirements. Moreover, it is a useful technique because can be
understood by the stakeholders, and this characteristic
encourage their active participation which is crucial in first
steps of software development.

The LEL captures the terms (they are called symbols) and
describes them with the name, the notion, and the behavioral
responses. The name identifies the symbol; all synonyms that
exist in the domain must be defined in this attribute. The notion
describes the meaning (denotation) and the behavioral
responses describe the relation of the symbol with other

symbols (connotation). Every LEL symbol belongs to one of
four categories: Subject, Object, Verb, and State.

Antonelli [7] outlines a strategy to describe the LEL in a
collaborative way. However, it is very difficult to produce a
domain language specification when there are many actors
involved [8]. In a collaborative context, all participants build a
joint model, and as previously explained conflicts might
emerge between the different viewpoints.

This paper presents an approach for the identification and
resolution of conflicts that emerge when the LEL is developed
collaboratively. The collaborative construction of the LEL
means that different stakeholders propose symbols and
provides definitions in an iterative way. This means that
different people collaborate by making specific contributions:
identifying the symbol that must be defined, or adding a
definition. Nevertheless, in this context, it is necessary to have
a full understanding of all the definitions. Our proposed
approach consists in analyzing the whole glossary looking for
conflicts and providing a solution for each conflict.

The paper is organized as follows: Section II provides the
related work; Section III presents the conflicts, the proposed
solutions, and a preliminary evaluation; finally, Section IV sets
out the conclusions and future work.

II. RELATED WORK

Different authors have studied the existence of conflicts in
Requirements Engineering [9]. Literature covers a wide range
of conflict types and stages of the requirement phase where
conflicts can appear [10]. Bendjenna [11] states the importance
of dealing with conflictive situations during Requirements
Engineering, considering the variety of stakeholders with the
common objective of obtaining a unique system. Aldekhail
[12] presents a literature review related to requirements
conflicts. Some publications have presented requirements
conflict management in a web-based collaborative
environment. The SOP project [13] has developed a wiki using
the Volere Requirements Specification Template [14], seeking
to pinpoint inconsistencies in requirements documents created
with their tool. WikiWinWin [15] is a wiki front-end to the
WinWin tool. Urbieta [16] presents an approach for detecting
and solving inconsistencies and conflicts in web software
requirements and shows a taxonomy for conflicts in Web
applications requirements. Lutz [2] developed CREW-Space, a
tool to support the co-located collaboration of several users to
simultaneously interact through Android-enabled mobile
devices. They use role playing to involve different stakeholders
in a use case analysis. Azadegan [3] proposes two steps: (i)
identifying relevant user requirements and (ii) voting for user
requirements.

The problem of conflicts also appears when building
domain ontologies collaboratively. Lexons with properties,
restrictions and relationships are defined in ontologies. In the
LEL, there are symbols with two specific attributes (notion and
behavioral responses), and relationships between the symbols
are hyperlinks to other symbols used to make the description.
Also each symbol has a type. The most important difference
between ontologies and our approach is that we analyze these
definitions, while approaches with ontologies mainly analyze

the relationship between the elements. It was analyzed if there
is overlapping in definition of the notion or the behavioral
responses, or even if they are similar. If definitions are similar
it could imply that synonyms were found. It is important to pay
attention to homonyms, which are the same symbol referring to
different things. Symbols (concepts) are naturally organized in
a hierarchy way. This approach also analyzes how definitions
are organized or repeated in such structure. In collaborative
ontology engineering there is a great variety of methodologies
[17], nevertheless, they do not analyze the definitions. Chen
[18] proposes an approach that deals with classes and relations.
They detect three kinds of conflicts: hard, soft and latent
conflicts between the classes. On the subject of building
ontologies collaboratively some studies apply the consensus
method [19] [20]. It has been proved to be useful in conflict
solution between objects. The most important problem in
consensus-based collaboration, is defining when they get an
agreement. Consensus quality concept [21] is defined to show,
how they get a consensus, in the construction of the
Vietnamese language dictionary with WordNet.

III. CONFLICTS IN THE COLLABORATIVELY DEVELOPED

LEL MODEL

This section presents the proposed conflict resolution
approach and a preliminary validation. Section A describes the
process to identify conflicts during the collaborative
description of the LEL and presents a set of the conflicts that
could arise. It is important to mention that these conflicts were
identified from several real-life software systems descriptions.
Section B shows each conflict and the actions to solve them.
Finally, section C presents a preliminary evaluation.

A. Our Approach in a Nutshell

The LEL is built in an iterative and incremental way, where
different Requirements Engineers contribute to its description.
With different points of view a conflict may arise. Thus, it must
be identified and solved as soon as possible in order to obtain a
consistent LEL (see Figure 1).

Figure 1. Process for conflicts resolution (Req Engi: Requirements
Engineeri)

The first step represents the action that every Requirements
Engineer performs: identifying a symbol or contributing with
the description of notion or behavioral response. Every action

Quality enough or
time finished

ReqEngi identifies or
describes symbols

Conflicts
identification

Conflicts
resolution

can give origin to a conflict. For example, two different
Requirements Engineers could define independently the
previous Label symbols of Table 1 and 2. Thus, the whole
glossary must be analyzed in order to identify conflicts. If a
conflict is identified, it should be solved in order to assure the
consistency of the LEL.

The list of conflicts was defined from the analysis of
several real projects. The conflicts are grouped in categories in
order to make the description clearer.

The first category is Semantic conflicts: These are conflicts
that arise when there are differences in the meaning of the
symbols. For example, Label refers to two different actions: the
action of putting the brand (Table I) and the action of marking
the price (Table II). Subcategories of Semantic conflicts are: (i)
the same identification for elements with different meaning and
the same syntactic classification; (ii) different identification for
elements that refers to the same concept in the same way; (iii)
different identification for elements that refers to the same
concept in different way; (iv) different identification for
elements that refers to the same concept with complementary
information.

The second category is Structural conflicts: Structural
conflicts arise when there is complete or partial repetition in the
definitions, considering the description of the behavioral
responses or the organization of the description in hierarchies.
For example, let's consider that one symbol is a generic
concept, and there is a specific term that specializes the
previous one, and the last symbol repeats information described
in the first one. Subcategories are: (i) different level of detail;
(ii) descriptions duplicated in hierarchies.

The last category is Syntactic conflicts: These conflicts
appear when the same symbol has different syntactic
classifications. For example, Label can be an Object or a Verb.
There is no subcategory.

B. Catalogue of Conflicts and their Solutions

This section describes the conflicts with more detail
together with their proposed resolution. In order to illustrate the
proposed approach, we chose "IP Etiquetas S.A.", a company
that produces some kinds of sticky labels, either with barcodes,
with specific brands or white ones. Underlined words are other
LEL symbols.

The study was developed by means of a series of interviews
carried out by different Requirements Engineers with several
people in the company. A series of conflicts arose during the
attempt to define the LEL model collaboratively. The total
number of conflicts found was 17. For space reasons we show
some of them in detail. The other conflicts refer to behavioral
response conflicts and also conflicts generated when part of a
description of notion or behavioral response defined by a
requirement engineer is contained on the defined by other
requirement engineer. Some examples include the Label
symbol, which was considered by a Requirements Engineer as
the verb meaning “attach a label,” whereas another
Requirements Engineer considers that Label is the produced
label. A third engineer thinks the Label symbol means “attach
the price tag,” this being also a verb.

1) The same identification for elements with different
meaning and the same syntactic classification (Homonym).

This conflict arises when there are two different entries that
are identified with the same symbol, but they represent
different things. For example, let’s consider two different
definitions of the symbol “Label” as described in Table I and
Table II. The identification of both symbols is the same, since
it is “Label”. Nevertheless, both LEL entries refer to different
things; one represents the action of putting the brand, while the
other represents the action of marking the price.

TABLE I. LABEL SYMBOL

Symbol #: 10
Author: Req.

Eng. 3
Type1: Verb

Name/s Label

Notion
- It is the action of putting the brand of the product on
the boxes of finished product.

Behavioral
Response

-The logo of the brand is defined with the client and
is previously established.

TABLE II. LABEL SYMBOL

Symbol #: 10
Author: Req.

Eng. 1
Type1: Verb

Name/s Label

Notion
- It is the action of marking the price of each finished
box of finished product.

Behavioral
Response

-The price per box is previously established according
to the total number required.

Heuristic to detect the conflict: review all the LEL entries,

identifying two or more entries with the same identification.
Check the notion, in order to determine whether the entry is
duplicated or they are different entries.

Solution: If the entry is duplicated merge both definitions.
If the entries are different, specialize the identification in order
to make clear that there are different entries: Label(1) and
Label(2).

2) The same identification for elements with different
syntactic classification (Homonym).

This conflict is similar to the previous one, but the
difference relies on the type of the entries. For example, let’s
consider a new symbol “Label” with Verb classification (Table
III), while the other “Label” symbols refers to Objects (Table
I). The “Label” of object category refers to the end product
manufactured by the company.

TABLE III. LABEL SYMBOL

Symbol #: 11
Author: Req.

Eng. 2
Type1: Object

Name/s Label
Notion - Product manufactured by the company

Behavioral
Response

-…

Heuristic to detect the conflict: review all the LEL entries,

identifying two or more entries with the same identification and
different category.

Solution: Rename the symbols as Label(1) and Label(3).

3) Different identification for elements that refer to the
same concept in the same way (Synonym).

This conflict arises when there are two different entries that
are identified with different symbols, but they are described in
the same way. For example, let’s consider two different entries
“missing stock” and “insufficient raw material” as described in
Table IV and Table V. Both refer to the same situation
described identically. That is, “State of raw material stock
when it is lower than the minimum stock level.”

TABLE IV. MISSING STOCK SYMBOL

Symbol #: 17
Author: Req.

Eng. 2
Type1: State

Name/s Missing stock

Notion
-State of raw material stock when it is lower than the
minimum stock level.

Behavioral
Response

-…

TABLE V. INSUFFICIENT RAW MATERIAL SYMBOL

Symbol #: 9
Author: Req.

Eng. 3
Type1: State

Name/s Insufficient raw material

Notion
-State of raw material stock when it is lower than the
minimum stock level.

Behavioral
Response

-…

Heuristic to detect the conflict: Compare all the notions of

the different symbols checking for coincidences.

Solution: Define the elements as synonyms. In the example,
“Missing Stock / Insufficient Raw Material element” must be
defined as synonyms of the same entry.

4) Different identification for elements that refer to the
same concept in different way (Overlapping).

This conflict arises when there are two different entries that
are identified with different symbols, but they are described in
different way. For example, let’s consider two different entries
“insufficient raw material” as described in Table V and Table
VI. Both refer to the same situation described similarly. One
symbol is described as “State of raw material stock when it is
lower than the minimum stock level.” while the other is
described as “State of the stock of supplies when it must be
changed to replenishment.” Both symbols refer to the same
concept, and both descriptions are similar.

TABLE VI. INSUFFICIENT RAW MATERIAL SYMBOL

Symbol #: 8
Author: Req.

Eng. 1
Type1: State

Name/s Insufficient raw material

Notion
-State of the stock of supplies when it must be
changed to replenishment.

Behavioral
Response

-…

Heuristic to detect the conflict: Compare all the notions of

the different symbols checking for similarities.

Solution: Since both descriptions are similar, it must be
agreed only one description. The other entry must be removed.
In Tables V and VI, the same symbol with a different Notion is
shown.

5) Different level of detail.

This conflict arises when there are different symbols
overlapping concepts in a hierarchy structure not well defined.
Let’s consider the situation of two different operators: (i)
Rewinder Operator and (ii) Flexographic Printing Press
Operator. One Requirements Engineer defines only one symbol
named “Operator” with a general description considering both
roles (i) and (ii). While other Requirements Engineer defines
the two specific symbols (i) and (ii). In this situation, there are
common characteristics to both roles; it should be described in
a generic “operator” symbol, and then, the specific
characteristics of both roles (i) and (ii) should be described in
them.

TABLE VII. OPERATOR SYMBOL

Symbol #: 22
Author: Req.

Eng. 3
Type1: Subject

Name/s Operator

Notion
-It is the technician in charge of operating the
production machines.

Behavioral
Response

-…

TABLE VIII. FLEXOGRAPHIC PRINTING PRESS OPERATOR SYMBOL

Symbol #: 9
Author: Req.

Eng. 2
Type1: Subject

Name/s Flexographic printing press operator

Notion
-Is the technician in charge of operating the
flexographic printing press.

Behavioral
Response

-…

TABLE IX. REWINDER OPERATOR SYMBOL

Symbol #: 20
Author: Req.

Eng. 2
Type1: Subject

Name/s Rewinder operator

Notion
-It is the person in charge of rewinding the label rolls.
-It is the technician in charge of operating the
rewinding machine.

Behavioral
Response

-…

Heuristic to detect the conflict: Compare all the notions of

the different symbols looking for possible hierarchy structures.

Solution: Identify the generic and specific terms of the
hierarchy structure, and describe the specifics mentioning the
generic. For example, in specializes symbols, refer to
“Operator”, saying that “He is an Operator that ...”

6) Different identification for elements that refer to the
same concept with complementary information (Synonym with
complementary information).

This conflict arises when there are two different entries that
are identified with different symbols, and they are described

with complementary information. For example, let’s consider
two different entries “Cash Flow” and “Monetary Flow” as
described in Table X and Table XI. Both refer to the same
situation. In this case “Cash Flow” describes more details in
Notion, defining it as “the amount of cash inflows and
outflows” and that “it is originated by payments issued or
received” while “Monetary Flow” is defined by “the amount of
cash inflows and outflows”. Moreover, this situation could be
observed in Behavioral Response.

TABLE X. CASH FLOW SYMBOL

Symbol #: 3
Author: Req.

Eng. 5
Type1: Object

Name/s Cash Flow

Notion
-It is the amount of cash inflows and outflows.
-It is originated by payments issued or received.

Behavioral
Response

-It is daily prepared by the Treasurer.

TABLE XI. MONETARY FLOW SYMBOL

Symbol #: 13
Author: Req.

Eng. 1
Type1: Object

Name/s Monetary flow
Notion -It is the amount of cash inflows and outflows.

Behavioral
Response

-It is approved and registered by Treasurer.
-It is used as a source of information when preparing
the Sales Forecast.

Heuristic to detect the conflict: Compare all the notions and

Behavioral Response looking for common descriptions in
different symbols checking for coincidences and differences.

Solution: Define the elements as synonyms; merging all the
descriptions, that is, the whole description must be used: the
common part, and the particularities of each symbol. In the
example, “Cash Flow / Monetary flow” must be defined as
synonyms of the same entry with the richer description in each
case.

7) Descriptions duplicated in in hierarchies

This conflict arises when descriptions are duplicated in
specific elements of the hierarchy instead of putting them in the
generic element. For example, two specific elements have the
same description in the behavioral responses. Thus, the
objective of the hierarchy is to put the common descriptions in
the generic element. The same problem could arise in the
notion.

TABLE XII. OPERATOR SYMBOL

Symbol #: 22
Author: Req.

Eng. 1
Type1: Subject

Name/s Operator

Notion
-It is the technician in charge of operating the
production machines.

Behavioral
Response

- Send the finished order to the Plant Manager

Let’s consider the situation of two different operators: (i)

Rewinder Operator and (ii) Flexographic Printing Press
Operator. A requirements engineer has placed the same
behavioral response on each specialized symbol and another

requirements engineer has defined a generic symbol, but the
former did not realize that the generic symbol was the right
place to put the description. The corresponding behavioral
responses “Send the finished order to the Plant Manager” must
be eliminated from each specialized, leaving this description
only in the generic.

TABLE XIII. FLEXOGRAPHIC PRINTING PRESS OPERATOR SYMBOL

Symbol #: 9
Author: Req.

Eng. 5
Type1: Subject

Name/s Flexographic printing press operator

Notion
-Is the technician in charge of operating the
flexographic printing press.

Behavioral
Response

- Send the finished order to the Plant Manager

TABLE XIV. REWINDER OPERATOR SYMBOL

Symbol #: 21
Author: Req.

Eng. 5
Type1: Subject

Name/s Rewinder operator

Notion
-It is the person in charge of rewinding the label rolls.
-It is the technician in charge of operating the
rewinding machine.

Behavioral
Response

- Send the finished order to the Plant Manager

Heuristic to detect the conflict: Compare all the notions and

Behavioral Response of the different symbols looking for
repetitions in the specific elements.

Solution: Move the repeated description from the specific
elements to the generic one.

C. Preliminary Evaluation

In order to validate the conflicts proposed in this paper, we
analyzed a LEL built collaboratively by 5 Requirements
Engineers. We analyze the resulting LEL looking for the
conflicts we proposed. Then, we present every report to
Requirements Engineers who participated in the construction of
the LEL to check whether they agree with the conflicts
reported. Requirements Engineers have agreed in almost all the
conflict reported. The following Table XV presents some
figures for the 5 different participants.

TABLE XV. TOTAL OF CONFLICTS FOUND IN IP ETIQUETAS

Req. Eng.

Total of
symbols

described

Symbols with
conflicts

Percentage

Req. Eng. 1 42 31 74
Req. Eng. 2 35 28 80
Req. Eng. 3 28 21 75
Req. Eng. 4 31 27 87
Req. Eng. 5 47 38 80

Table XV presents for each Requirements Engineers the

number of symbols in which he participated in their
description, the symbol with conflict identified by our approach
and the percentage that it represents. This table shows that
conflicts are very common.

IV. CONCLUSIONS AND FURTHER WORK

Requirements definition is one of the initial stages in the
software development process and their products are the
groundwork for subsequent stages. Thus, errors made in
requirements stage will be replicated and deepened in
subsequent stages. For this reason, it is extremely important to
develop requirements models of the highest quality as possible.
When requirements models are developed collaboratively,
conflicts unavoidable will arise. Moreover, natural language
descriptions are more plausible to give origin to conflicts.

A vast experience in working with a structured glossary, the
Language Extended Lexicon (LEL), proves that such structure
reduces the occurrence of conflicts. However engineers have
observed that while building the LEL collaboratively produces
a richer model, it also introduces conflicts. In our research, and
by analyzing several application domains of real projects, a
classification of conflicts was devised. A process and guides
for their resolution has been described in this paper. Our
approach with some examples of a real project was also
illustrated.

A preliminary evaluation was presented; it showed the
importance of identifying conflicts and the solutions for the
conflicts proposed. The percentage of conflicts was between
74% and 87%, in the five groups that have been evaluated. It
shows the importance of solving those conflicts for arriving to
better quality models.

An experiment to validate the conflicts and their resolutions
is being designed. This experiment will be conducted in a
different country to validate in another context the findings
presented in this paper.

A process to identify the conflicts and an automated
suggestion of solutions is planned. This implementation will be
based on two important modules: (i) a module of natural
language processing and (ii) a module of machine learning.

REFERENCES

[1] B.W. Boehm, Software Engineering Economics. Prentice Hall, 1981.

[2] R. Lutz, S. Schäfer, and S. Diehl, “Using mobile devices for
collaborative requirements engineering”, 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 298–301. ACM.
2012.

[3] A. Azadegan, X. Cheng, F. Niederman, and G. Yin, “Collaborative
requirements elicitation in facilitated collaboration: report from a case
study”, 46th Hawaii International Conference on System Sciences, pp.
569–578, ISSN 15301605, IEEE, 2013.

[4] J. C. S. D. P. Leite, and A. P. M. Franco, “A strategy for conceptual
model acquisition”, Requirements Engineering, IEEE International
Symposium on , pp. 243–246. IEEE, 1993.

[5] A. d. P. A. Oliveira, J. C. S. d. P. Leite, L. M. Cysneiros and C. Cappelli,
"Eliciting Multi-Agent Systems Intentionality: from Language Extended
Lexicon to i* Models", Chilean Society of Computer Science, 2007.
SCCC '07. XXVI International Conference of the, Iquique, 2007, pp.
40–49, doi: 10.1109/SCCC.2007.20

[6] S. Goel, “Transformation from LEL to UML”, International Journal of
Computer Applications, vol. 48, no. 12, 2012.

[7] L. Antonelli, G. Rossi, and Oliveros A., “A collaborative approach to
describe the domain language through the Language Extended Lexicon”,
Journal of Object Technology, vol. 15, no. 3, pp. 1–27, 2016.

[8] N. Mulla, S. Girase S, “A new approach to requirement elicitation based
on stakeholder recommendation and collaborative filtering”,
International Journal of Software Engineering and Applications, vol.
3(3), pp. 51–60, 2012, doi:10.5121/ijsea.2012.3305.

[9] S. Easterbrook, “Resolving requirements conflicts with computer-
supported negotiation”, Requirements engineering: social and technical
issues, vol. 1, pp. 41–65, 1994.

[10] W. N. Robinson, S. D. Pawlowski, and V. Volkov, Requirements
interaction management. ACM Computer Survey, vol. 35(2), pp. 132–
190, 2003.

[11] H. Bendjenna, P. J. Charrel, and N. E. Zarour, “Using AHP Method to
Resolve Conflicts Between Non-Functional Concerns”, International
Conference on Education, Applied Sciences and Management
(ICEASM'2012), Dubai, UAE, pp. 26–27, 2012.

[12] M. Aldekhail, A. Chikh, and D. Ziani, “Software Requirements Conflict
Identification: Review and Recommendations”, International Journal of
advanced computer science and applications, vol. 7, no. 10, pp. 326–
335, 2016.

[13] B. Decker, E.Ras, J. Rech, P. Jaubert, and M.Rieth, “Wiki-based
stakeholder participation in requirements engineering”. IEEE Software,
vol. 24(2), pp. 28–35, 2007.

[14] J. Robertson, and S. Robertson, “Volere Requirements Specification
Template”.The Atlantic Systems Guild, 2012.

[15] D. Yang, D. Wu, S. Koolmanojwong, Brown, A. W., and B. W. Boehm,
“Wikiwinwin: A wiki based system for collaborative requirements
negotiation”, Hawaii International Conference on System Sciences,
Proceedings of the 41st Annual, pp. 24–24. IEEE, 2008.

[16] M. Urbieta, M. J. Escalona, E. R. Luna, and G. Rossi, G., “Detecting
conflicts and inconsistencies in web application
requirements”, International Conference on Web Engineering, pp. 278–
288. Springer, Berlin, Heidelberg, 2011.

[17] E. Simperl, and M. Luczak-Rösch, “Collaborative ontology engineering:
a survey”, The Knowledge Engineering Review, vol. 29, no. 1, pp. 101–
131, 2014.

[18] Y. Chen, X. Peng, and W. Zhao, “An approach to detect collaborative
conflicts for ontology development”, Advances in Data and Web
Management, pp. 442–454.Springer, Berlin, Heidelberg. 2009.

[19] S. Karapiperis, and D. Apostolou, D. “Consensus building in
collaborative ontology engineering processes”. Journal of Universal
Knowledge Management, vol 1(3), pp. 199–216, 2006.

[20] N. T. Nguyen, “Advanced methods for inconsistent knowledge
management”. Springer, London (2008)

[21] T. H. Duong, M. Q. Tran, and T.P.T. Nguyen, “Collaborative
Vietnamese WordNet building using consensus quality”, Vietnam J
ComputSci 2017, vol 4:85, Springer Berlin Heidelberg, Print ISSN:
2196-8888, Online ISSN: 2196-8896, 2017.

	I. Introduction
	II. Related Work
	III. Conflicts In The Collaboratively Developed LEL Model
	A. Our Approach in a Nutshell
	B. Catalogue of Conflicts and their Solutions
	1) The same identification for elements with different meaning and the same syntactic classification (Homonym).
	2) The same identification for elements with different syntactic classification (Homonym).
	3) Different identification for elements that refer to the same concept in the same way (Synonym).
	4) Different identification for elements that refer to the same concept in different way (Overlapping).
	5) Different level of detail.
	6) Different identification for elements that refer to the same concept with complementary information (Synonym with complementary information).
	7) Descriptions duplicated in in hierarchies

	C. Preliminary Evaluation

	IV. Conclusions And Further Work
	References

