CAN Bus Experiments of Real-Time
Communications

Fernando G. Tinetti*, Fernando L. Romero, Alejandro D. Pérez

Instituto de Investigacién en Informética LIDI (I1I-LIDI)
Facultad de Informética, UNLP, 50 y 120, La Plata, Argentina
{fernando, fromero}@lidi.info.unlp.edu.ar, perez.alejandrodaniel@gmail.com

Abstract. This paper presents a benchmark development and the anal-
ysis of communication times in a CAN (Controller Area Network) bus.
Preemptive and fixed priority scheduling is taken as departure point for
the initial experiments and analysis. This method would be adapted for
programming CAN messages without preemption of the shared com-
munications channel. It is also complemented by a specific priority as-
signment algorithm, suitable for non-preemptive systems. A real CAN
network is used for the experiments, and results are analyzed from the
point of view of real-time performance and CAN specification. We have
found well known, deterministic, and correct performance communica-
tion times. Messages and signals are delivered within deadlines, a funda-
mental requirement for a real-time system.

Keywords: CAN Bus Implementation, Real-Time Experiments, Instru-
mentation and Monitoring, Real-Time Schedulability

1 Introduction

The initial development of a CAN time analysis is based on [6], which defines a
preemptive and fixed priority task scheduling (mainly) for single-processor sys-
tems. This method is adapted for the programming of CAN messages and sev-
eral enhancements defined in [2]. Basically, an optimal prioritization algorithm
introduced in [1] is applicable to non-proprietary systems. Enhancements and
optimizations can be experimentally verified (at least in part) by building a real
CAN network where specific communication time measurements can be made.
Time measurements/sampling can be then used for evaluating the fulfillment of
CAN real time requirements.

A CAN bus is arbitrated using priorities, and once the bus access is obtained,
the message is transmitted in full. Thus, the bus appropriative policy prevents
another message from gaining access to the bus while a message is being trans-
mitted. The priority inversion problem allowed by the CAN apropriativeness
should be addressed. Regardless of priority inversion, every message has its own

* Comisién de Investigaciones Cientificas, Prov. de Bs. As., corresponding author

deadline, and the bus arbitration will impose some delay that should be mini-
mized in order to avoid real-time deadline violations. This work will be focused
on the behavior of the Data Frames transmission of the CAN standard.
Messages in the CAN bus are handled by controllers, and a single controller
may handle several CAN nodes. Also, each controller implements the bus arbi-
tration while it maintains a queue of pending messages. The controller queue is
managed according to fixed priority and non-preemptive scheduling. Controllers
are synchronized at the start of a message with the clock of the sending node
(rising edge). A transmission is allowed to start after the bus is idle for a 3-bit
(interframe) period. A controller begins to transmit with a dominant bit (“’0”),
which causes the rest of the controllers to synchronize with the rising edge of
this bit and become receivers. Any message that is ready to be transmitted must
wait for another arbitration cycle to start when the bus is again idle. The CAN
protocol requires the transmitter to insert a bit with opposite polarity every 5
bits of the same polarity, a technique known as “bit stuffing”. Thus, a stuffing
bit may be added every 4 bits of the message. Taking into account the message
bit length, mbl, the constant number of bits k& needed for the node identification,
the maximum number of bits added for stuffing, and the bit transmission time,
Thit, the maximum transmission time of the message would be given by Mt,, in

(1).
Mt,, = <mbz +k+ VWZHD Thit (1)

2 Waiting, Errors, and Maximum Time

Given a specific application or experiment, the message types are predefined,
i.e. each message m has a unique and fixed identifier and priority. Messages are
queued in controllers by a software routine. Message queueing needs a run time
between 0 and Jm, known as queuing the message jitter, and is inherited from
the response time of the task, including the delay by polling [6]. The message
time period T'm is considered for events that trigger the message queueing. There
are three types of events associated with T'm: a) Events with exact period T'm,
b) Events that occur sporadically with a minimum separation time T'm, and c)
Events that occur only when the system starts. Each message has a hard deadline
Dm, the maximum time from the initial event that generates the message to be
queued to the actual message arrival at destination.

The worst case for response time Rm of a message can be defined as the
longest time since the start event occurs until the message begins to be received
by the node/s that require it. A message can be called “schedulable” if and only
if its worst case response time is less than or equal to Dm: Rm < Dm. The whole
system is “schedulable” if and only if all the messages are schedulable. Rm is
basically the aggregation of: 1) The delay time Wm (also called Window time),
which is the longest message waiting time in the CAN controller, and 2) The
worst message transmission time, Mt,,. In turn, Wm is a function of: 1) Blocking
time, Bm, given by messages of lower priority in the transmission process, and

2) Interference time, where a message with higher priority is transmitted earlier
than m. The message blocking time can be calculated as Bm = maz(C}) with
k € Ip(m), and Ip(m) is the set of messages with lower priority than m. The
interference time is closely related to the concept of “busy period” introduced
in [5], where a busy period of level i is defined as the time interval [a, b] within
which the tasks with priority ¢ or greater are processed within this interval and
there are no tasks with priority 4 in the intervals (a — ¢,a) and (b,b + t) with
t > 0. Adapting this definition to the CAN protocol, we have a busy period of
priority m. The period starts at a time T's where a message of priority m or
greater is queued to transmit, and there are no queued messages of priority m
or greater than m. It is a continuous interval of time, during which any priority
message less than m is not transmitted. Finally, the period ends at time Te,
when the bus becomes ready for the next transmission and arbitration cycle and
there are no messages with priority greater than m.

The key characteristic of the busy period is that all messages of priority m
or higher are transmitted within the period. In mathematical terms, the busy
periods can be seen as intervals [T's, T'e). Furthermore, the end of a busy period
may coincide with the beginning of another busy period [5]. The busy period
elapsed time can be calculated as the maximum of ¢%! given in equation 2,
where gep(m) is the set of messages with priority greater than or equal to m,
and f(t7,,t;) is the function that combines ¢}y, with the times related to message
j: Jj (jitter) and T; (time period).

t:LnJrl =B + Z ’Vf(t;Lw trj-‘ Cj (2)

j€gep(m)

The busy period time given by the recurrence in equation 2 monotonically grows
from B, up to one of the following values: a) t?, + C,;, > D,,,, which makes the
message non-schedulable or unschedulable, or b) ¢! =" = where the worst
response time of the first instance of the message is reached in the busy period
determined by ¢}, + Cy,

Errors and their related recovery times have to be taken into account when
dealing with noisy environments. Each controller detecting an error starts a
recovery process by transmitting an error signal. The resynchronization process
takes at least 29 bit transmission times. Furthermore, resynchronization is only
the first step of the error recovery process. Other tasks (and their corresponding
times) involved in the recovery process are those required to the retransmission of
the message affected by errors. The equation including errors and their associated
times in noisy environments is given in equation 3, where F,, involves at least the
29-bit resynchronization and message retransmission, which is usually considered
in the analysis as the worst case overhead time as given in equation 4.

tm =Bm+Em+ Y. [f(th.trj]C; (3)
j€gep(m)
Over,, = max (Cj)+ 297p (4)

j€gep(m)

There are other details (and their corresponding times) involved in dealing with
errors, but the current work is focused on the basic analysis of CAN bus messages
and delay times. Thus, we will focus on a real CAN network and experimentation
in the next section without taking into account errors and error recovery time/s.

3 Specific Benchmark

The Society of Automotive Engineers (SAE) provides a set of test data to eval-
uate communication technologies handling the seven different subsystems in an
electric car prototype [6]. Signal data details are used to show a case of “real”
use for the timing model of the previous section, with the 53 signals given by
the SAE and explained in [4]. The seven subsystems that generate signals in-
clude the brakes, the driver himself, the engine, etc. In total there are 53 signals,
characterized not only by the subsystem that generates them but by other im-
portant details, such as the amount of information bits, if they are periodic
or sporadic, jitter, etc. Every signal implies handling a message with specific
real-time latency/deadline.

The order in which the messages in a controller queue are transmitted will be
determined by their priorities, so priority definition will determine the schedu-
lability of a system with specific signal periods. Also, priority assignment will
be directly related to the robustness of the communication system when facing
errors. Priority assignment “by deadline” (deadline monotonic priority assign-
ment) is proposed in [6], i.e. those messages in the queue nearer their deadline
will be assigned greater priority. This priority assignment policy is optimal for
systems with preemptive and fixed priority task scheduling, assuming deadlines
are no longer than message periods. A non-optimal policy does not mean it is
useless, it actually means that another option should be chosen under (more)
critical times/deadlines. Table 1 shows an example similar to that found in [2]
in which an unschedulable system is generated by: a) assuming no jitter, 0 jitter
time, b) the channel is already being used by 1ms by a lower priority message,
LM, that gained access to the bus before messages M1, M2, and M3 arrive at the
controller, and ¢) deadline monotonic priority assignment. Given that priorities

Table 1. Timing Example

Message Period & Deadline Trans. time

LM N/A 1 ms
M1 3.0 ms 1.1 ms
M2 4.0 ms 1.1 ms
M3 4.5 ms 0.5 ms

assignment determine the order M1, M2, M3, if the channel is (already) busy
by 1ms, then messages M1 and M2 use the channel by a total amount of 2.2ms.

Thus, while message M2 is being transmitted, a new instance of message M1,
is queued and this new instance is the one with highest priority. Then, while
the new instance of message M1 is being transmitted a new instance of message
M2 is queued, and message M3 is delayed beyond its deadline. The sequence of
messages in the channel would be

LM => M1, after lms => M2, after 2.1ms => M1’ after 3.2ms
because the channel is not initially preempted from the lower priority message/s
(represented by LM in the sequence above) and priorities are fixed and deter-
mined by deadline/s. However, if the order of messages is determined as M1, M3,
and M2 the worst response times are Ry;q; = 2.1ms, Rpo = 2.6ms, and Rpss
= 3.7ms. Thus, this new priority assignment determines a schedulable system,
where response times R,, < D,,, YVm. The new priority assignment imply the
following sequence of messages in the communication channel

LM => M1, after lms => M3, after 2.1ms => M2, after 2.6ms
and no new instances of messages M1 and M2 will generate any delay on message
M3. In this context, the priority assignment algorithm given in [1] is claimed to
be optimal in non-preemptive systems in [3]. In general, the algorithm given in
[1] is useful as long as the worst case of response time of a message: a) does not
depend on an ordering of the highest priority messages, and b) does not change
its length (it is not made longer, in particular) when having a higher priority.

The length of the delay queue and the length of the busy period do not depend
on a specific order of the high priority messages. The blocking time, B,,, can be
made longer by changing the priority, but at the same time the interference is
decreased. The priority assignment algorithm given in [1] performs a maximum
of n(n — 1)/2 evaluations for n messages, and guarantees message scheduling
when possible. It should be borne in mind that the algorithm does not specify
an order in which messages should be analyzed at each priority level. This order
greatly influences the priority assignment if there is more than one scheduling,
and a poor choice of initial order may result in a non-optimal scheduling.

Given a set of CAN messages, it is possible to assign the corresponding
priorities by following a sequence of simple steps

1. Define the message characteristics: size, identifier, bus speed, etc.

2. Sort messages by some criterion, whether those given in [6] or [1].

3. Apply the timing model to each message. Usually, it is possible to analyze
the minimum transmission rate at which the system is schedulable.

In the case of the SAE signals and data, the “D - J” method given in [6] will be
used as a guide, in which higher priority is assigned to signals with lower waiting
time, (that is, a smaller D - J value, being D and J Deadline time and Waiting
time, respectively). Once signals have their priorities, it is possible to analize
the system’s schedulability with the timing model given above and considering
the data rate of the communication channel. Besides, the channel utilization is
may be enhanced with a technique referred to as “piggyback”. Basically, the
piggyback technique takes advantage of periodic signals that can be grouped in
a single message. Table 2 shows the first 10 signals defined by the SAE, all of
them of a single-byte periodic signals with deadline time (D) equal to period

(P), and jitter time given as J, where it is possible to identify 4 signals with
the same period from the same source. More specifically, signals 1, 2, 4, and 6
from the Battery subsystem are sent every 100 ms. Instead of sending 4 one-byte
messages, a single message is sent with 4 bytes using the piggyback technique.
Piggybacking reduces bus overhead of three messages. The transmission of a
data byte can require the transmission of up to 63 bits. This technique can be
extended to periodic signals that have different periods, as long as the minimum
time period is a divisor of the other period times. For example, signals 29, 30,
and 32 have the same source subsystem, with periods 10 ms, 10 ms, and 5 ms
respectively. Thus, every 2 messages of signal 32, the signals 29 and 30 can be
added to the same message with piggybacking.

Table 2. First 10 SAE Signals

#S Signal From D=P J

1 Hi&Lo Contactor Open/Close Battery 100 ms 0.6 ms
2 Brake Pressure, Line Battery 100 ms 0.7 ms
3 Processed Motor Speed Battery 1000 ms 1.0 ms
4 Torque Command Battery 100 ms 0.8 ms
5 Brake Pressure, Master Cylinder Battery 1000 ms 1.1 ms
6 Accelerator Position Battery 100 ms 0.9 ms
7 Torque Measured Driver 5 ms 0.1 ms
8 Transaction Clutch Line Pressure Brakes 5 ms 0.1 ms
9 Clutch Pressure Control Brakes 5 ms 0.2 ms
10 High Contactor Control Trans 100 ms 0.2 ms

The piggyback technique can also be applied to sporadic signals. These sig-
nals can be sent in a “server” message where the station sending the message
checks for the occurrence of the sporadic signal before queuing the message.
With this approach, a sporadic signal can be delayed no longer than the polling
period time, plus the worst latency time of the “server” message. For a message
with deadline of 20 ms, a server message with a 15 ms polling period and 5 ms
worst case latency the technique would be good enough. Combining piggyback-
ing with “server” messages for the sporadic signals the SAE benchmark /system
is schedulable with a data rate of 125 Kb/s. Piggybacking provides most of the
optimization, making possible channel utilization below 100%.

4 Experiments on a Real CAN Network

Fig. 1-a) schematically shows the CAN network we built to validate the previous
analysis in a real network, specifically for experimentation. Real-time generation
signals/messages generation is achieved by using Arduino development cards
(UNO and Mega). Fig. 1-b) shows several runtime network data, in particular the
Arduino output with timestamped events. The timestamped events are received

in the PC at runtime from the Arduino Mega. Data shown on the screen is only
for visual monitoring, the real-time and precise timing calculations are made in
a spreadsheet after each specific experiment.

Fig. 2 follows the same construction scheme of the experimental CAN net-
work, including the Kinetis K70 development card. The Kinetis K70 includes a
CAN interface, so it was immediately available to interoperate with the Arduino-
based CAN network.

. com15 o X
Arduino MEGA.
Arduino UNO. GPIo Signals to CAN Bus
Signal Data
Timestamp Events
Serial Port
PC.
csv Data
CAN Controller
Arduino UNO
+TFT CAN Bus 7
CAN Data sink/recv 1
a) b)

Fig. 1. CAN Network: Schematic and Monitoring

Fig. 2. CAN Network Including a Kinetis K70 Node

Although the data presented in Table 3 corresponds to a very short elapsed
time of the experiments it is possible to verify that messages in the real network
are sent sequentially, each one adding its transmission time to the waiting time of
the next messages to be transmitted. Thus, it resembles the incremental sequence
of message times as in equation 2 of the timing model given in a previous section.
Experimentation on the real network allows us to verify that:

— The timing model is accurate in the sense that it represents the actual be-
havior of a real network, i.e. there is a busy period in which messages with
low priority have to wait for a message with high priority, implying mono-
tonically increasing waiting times.

— The actual writing time of a specific sequence of messages, where the waiting
time is not always the maximum possible, because messages are delivered as
soon as the communication channel is available.

Table 3. Timing Measurements in a Real CAN Network

0 1 2 3 4 5 6 7 8 9

0 2.576 0 0 0 0 0 0 0 0 0
1 2.579 0 0 0 0 0 0 0 0 0
2 2.584 0 0 0 0 0 0 0 0 0
3 0 2.66 0 0 0 0 0 0 0 0
4 0 0 5.248 0 0 0 0 0 0 0
5 0 0 0 784 0 0 0 0 0 0
6 0 0 0 010.432 0 0 0 0 0
7 0 0 0 0 0 13.27 0 0 0 0
8 0 0 0 0 0 0 15.564 0 0 0
9 0 0 0 0 0 0 018.163 0 0
10 0 0 0 0 0 0 0 0 0 20.752

Fig. 3 shows the sequence of message arrivals to the CAN controller, and
waiting times calculated from the measurements taken in the real CAN network
while processing the SAE benchmark data. As schematically shown in Fig. 1, the
Arduino UNO generated the signal data (those defined by the SAE benchmark),
which the Arduino Mega handles for

— Message transmission to the CAN Bus, i.e. queueing and the real transmis-
sion.

— Message time instrumentation and monitoring, i.e. timestamping events and
sending monitoring data to an external data analizer (a PC in this case).

Each vertical bar in Fig. 3 identifies a particular message or message instance
(where the signal type is identified by a color or gray level) numbering them
from 0 onwards (on the x-axis). The height of each bar is directly proportional
to the message elapsed time from the event of reaching the CAN controller until
it is received at destination. Looking in detail at the first 10 bars of Fig. 3, it is
possible to identify that:

— The CAN messages 0 to 2 belong to the same signal, 0, which has a period
of 30 ms, so the sender can send the 3 messages before the arrival of signal
1, which has a period of 100ms.

— After sending the first 3 messages, in the same instant (at 100ms) data from
signals 1 to 8 arrive. These all enter at the same time, so there are incremental
times of messages 3 to 10 in the graph, depending on the CAN behavior:
messages are sent taking into account the corresponding priorities.

— Messages that arrived at the same instant are sent in less than 30ms and
then a new message of signal 0 arrives. It is important to note that none of
the messages had a latency higher than the worst time previously calculated
with the timing model. Thus, it can be said that the model, as well as its
implementation have been successfully tested.

25
20

16

0
. 111 il lIII | I I !

o o w o © m o o T L omoO T OL LR N 8 B 9 9T 9 OB T o@ @ 92 o

Fig. 3. Busy Periods in the CAN Network

5 Conclusions and Further Work

It has been possible to carry out the experimental corroboration of the timing
model analysis proposed in previous works regarding latency and response times
in the transmission of messages using the CAN protocol. The mathematical
representation of each of the phenomena present on the bus has been analyzed
with a set of signals of a hypothetical system, based on the SAE benchmark. This
approach has been extensively used by automobile and machinery manufacturers
when considering their CAN-based systems. Thus the analysis in this work is
useful in itself and allows for new research and approaches. A real CAN network
has been implemented and validated, building not only the hardware on which to
carry out the experimentation but also including the necessary instrumentation
for the collection of data to verify with the mathematical model.

As part of the future work, a careful study should be considered to increase
the experimentation hardware environment, mainly in terms of having a CAN
network closer to the real ones regarding the number of controllers. Analogously,
the bus bandwidth and the number of message sources (types of signals involved)
that each CAN controller must handle when accessing the CAN bus must be
carefully determined.

References

1. Audsley, N.: Optimal priority assignment and feasibility of static priority tasks with
arbitrary start times (1991)

2. Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (can)
schedulability analysis: Refuted, revisited and revised. Real-Time Systems 35(3),
239-272 (Apr 2007), https://doi.org/10.1007/s11241-007-9012-7

3. George, L., Rivierre, N., Spuri, M.: Preemptive and Non-Preemptive Real-
Time UniProcessor Scheduling. Research Report RR-2966, INRIA (1996),
https://hal.inria.fr/inria-00073732, projet REFLECS

4. Kopetz, H.: A solution to an automotive control system benchmark. In: 1994 Pro-
ceedings Real-Time Systems Symposium. pp. 154-158 (Dec 1994)

5. Lehoczky, J.P.: Fixed priority scheduling of periodic task sets with arbitrary dead-
lines. In: [1990] Proceedings 11th Real-Time Systems Symposium. pp. 201-209 (Dec
1990)

6. Tindell, K., Burns, A., Wellings, A.: Calculating controller area network (can)
message response times. Control Engineering Practice 3(8), 1163 — 1169 (1995),
http://www.sciencedirect.com/science/article/pii/0967066195001128

