
Efficient Broadcasts and Simple Algorithms for
Parallel Linear Algebra Computing in Clusters

Fernando G. Tinetti1, 2

1Universidad Nacional de La Plata
Facultad de Informática, 50 y 115

1900 La Plata, Argentina
fernando@ada.info.unlp.edu.ar

Emilio Luque2

2Universidad Autónoma de Barcelona
Escuela Técnica Superior de Ingeniería

08193 Barcelona, España
emilio.luque@uab.es

Abstract

This paper presents a natural and efficient implementation
for the classical broadcast message passing routine which
optimizes performance of Ethernet based clusters. A
simple algorithm for parallel matrix multiplication is
specifically designed to take advantage of both, parallel
computing facilities (CPUs) provided by clusters, and
optimized performance of broadcast messages on Ethernet
based clusters. Also, this simple parallel algorithm
proposed for matrix multiplication takes into account the
possibly heterogeneous computing hardware and
maintains a balanced workload of computers according to
their relative computing power. Performance tests are
presented on a heterogeneous cluster as well as on a
homogeneous cluster, where it is compared with the
parallel matrix multiplication provided by the
ScaLAPACK library. Another simple parallel algorithm is
proposed for LU matrix factorization (a general method to
solve dense systems of equations) following the same
guidelines used for the parallel matrix multiplication
algorithm. Some performance tests are presented over a
homogeneous cluster.

1. Introduction

Computation intensive applications -often referred to as
scientific processing- take advantage of the growing
processing power of standard computers‚ along with their
low cost and the relatively easy way in which they can be
available for parallel processing. Every local area network
(LAN) has the two main facilities needed for parallel
computing: a) processing power, which is provided by
each computer (CPU-memory), and b) interconnection
network among CPUs, which is provided by the LAN
hardware, usually Ethernet [11], and (at the software
lowest levels), by the protocols implemented by the
operating system, usually the TCP (Transmission Control
Protocol), UDP (User Datagram Protocol), and IP
(Internet Protocol) protocol stack.

In this context of cluster (parallel) computing, the
message passing model is usually adopted as the
programming model, which is based on CSP
(Communicating Sequential Processes) [9]. Many software
libraries have been proposed and are used to implement
the message passing routines necessary to exchange data
among parallel processes. Three of the most used at the
time of this writing are PVM (Parallel Virtual Machine)
[6] being the first de facto standard in this field, and free
implementations of the formal standard MPI [13], such as
MPICH [8] and LAM/MPI [3].

Linear algebra operations and methods are considered
highly representative in the field of computation intensive
applications. A great effort has been made in order to
optimize solution methods for serial as well as parallel
computing. The LAPACK (Linear Algebra PACKage) [1]
and BLAS (Basic Linear Algebra Subroutines) [10] [5] [7]
definitions represent the main results of this effort.

Parallel computing in clusters impose very specific and
hard constraints for scientific and, more specifically, linear
algebra operations:
p High performance processors and low performance

interconnection network (high startup time and low
data bandwidth). From this point of view, the parallel
machine built up with computers in a LAN is
unbalanced. For tightly coupled applications this
unbalanced processing-communication performance
implies a great effort in order to enlarge parallel
computing granularity.

p Performance on Ethernet based interconnection
network depends heavily on cabling hardware (hubs,
switches, mixing of hub-switches). From the point of
view of performance, switched Ethernet should be
used. However, the hardware switching cost usually
does not grow linearly with the number of computers,
and it becomes very expensive when the number of
computers grows enough. From another point of view,
if installed networks of computers are going to be used
as parallel machines, it is unlikely to have fully
switched networks, or at least it depends on the
organization policy for LAN hardware (i.e. it is not

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

possible to change easily the cabling hardware in order
to have a fully switched Ethernet network for parallel
processing).

p In heterogeneous clusters (with different computers in
the LAN), there are strong difficulties to maintain
balanced workload. For example, in [2] it is shown that
bidimensional processing workload balancing problem
is NP-Complete. It is worth noting that bidimensional
data distribution is the most accepted data distribution
(and hence processing workload balance) for linear
algebra operations solved in parallel.
Thus, parallelization of linear algebra operations is a

problem still to be solved in terms of obtaining optimized
performance on clusters. The main project on which this
work is contained focuses on a methodology to parallelize
linear algebra operations and methods on Ethernet based
clusters, taking into account the specific constraints
explained above. The methodology involves optimizing
algorithms in general, and communication patterns in
particular, in order to have optimized parallel performance
in clusters interconnected by Ethernet, thus having a
performance comparable with more expensive and ad hoc
interconnection networks, such as Myrinet, SCI (Scalable
Coherent Interface), ATM (Asynchronous Transfer Mode),
and HiPPI (High Performance Parallel Interface).

Matrix multiplication and LU factorization are the first
problems approached and the PVM broadcast performance
impose a strong performance penalty on the whole parallel
performance. As MPI implementations are not reliable on
broadcast performance, it is developed an Ethernet
optimized broadcast. Parallel algorithms performance
(and, partially, the parallelization methodology) is fully
evaluated by experimentation.

Section 2 describes the simple algorithms proposed to
solve a matrix multiplication and a LU factorization in
parallel using clusters of computers. Preliminary
experimental work is presented in Section 3, where it is
made clear an optimized broadcast message is needed for
acceptable performance. Section 4 presents the main items
taken into account for an optimized broadcast message on
Ethernet based clusters. Experimentation with algorithms
on three different clusters are explained in section 5.
Conclusions and possible enhancements are presented in
section 6.

2. Parallel Linear Algebra Operations on
Clusters

The parallel algorithms proposed on this paper follow a
few but very restrictive guidelines, taking into account the
specific characteristics of clusters used as parallel
computers mentioned above:
p Coarse granularity, given the performance penalties

implied by the unbalanced processing-communication
ratio.

p Broadcast based communication between parallel

processes, given that it is not always possible to have
fully switched Ethernet networks, and Ethernet itself
provides broadcast at its lowest level, thus giving some
chance of optimized communication performance.
Also, parallel algorithms based on broadcasting data
result simpler than those focusing on point-to-point
messages, where a neighborhood for each processor
has to be defined [15].

p Unidimensional data distribution, in order to: a) take
advantage of the logical bus defined by the standard
Ethernet, for which optimized performance can be
obtained, and b) avoid the bidimensional NP-complete
processing workload balancing problem.

2.1 Matrix Multiplication

As most of the parallel numerical computing
algorithms, the simple parallel multiplication algorithm
proposed follows the SPMD (Single Program-Multiple
Data) processing model, which can be stated in terms of an
initial data distribution plus a common program with
explicit sections devoted to data processing and data
exchange (communication) between processes. Data
distribution takes into account the possibly different speed
of each computer in the cluster to maintain a balanced
workload. For the P computers in the cluster, ws0, ..., wsP-1,
it is defined its normalized relative computing power pwi

such that pw0 + ... + pwP-1 = 1. The computers Mflop/s
(millions of floating point operations per second) to solve
a single matrix multiplication can be used to define the
pwi.

If square matrices of order n are involved in the matrix
multiplication C = A×B, data distribution to computers is
defined in terms of row blocks for matrices A and C and
column blocks for matrix B:
p wsi contains rAi = n×pwi rows of matrix A,
p wsi contains rCi = n×pwi rows of matrix C (rCi = rAi),

and
p wsi contains cBi = n/P columns of matrix B.
where x denotes the greatest integer such that x ≤ x.

Thus, the number of rows of matrix A (and C) assigned
to each wsi, (rAi) is proportional to the computer relative
processing power. This data distribution is not uniform
when the machines are heterogeneous. According to the
previous definitions, it is possible that dr = rA0 + ... + rAP-1

< n. The remaining rows can be uniformly distributed
among computers, ws0, ..., ws(n-dr-1), one row for each
computer. Given that the usual case is P << n, this
reassignment of rows can be considered irrelevant from the
point of view of proportional (according to the machines
relative processing power) data distribution. The same
kind of reassignment can be accomplished with dc = cB0 +
... + cBP-1 columns of matrix B.

Fig. 1 shows schematically the data distribution defined
above in computer wsi, which contains:

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

p A(i), the local block of matrix A, rAi×n elements,
p B(i), the local block of matrix B, n×cBi elements, and
p C(i), the local block of matrix C, rAi×n elements (rCi =

rAi).

Figure 1: Data Distribution for Matrix Multiplication.

Also, Fig. 1 shows that wsi has local data only for a
fraction of the local submatrix C(i), C(ii). The complete C(i)

will be calculated as a sequence of matrix multiplications
C(ij) between A(i) and B(j) blocks with j = 0, ..., P-1. There
are several ways of arranging communication and
computing steps in order to have the complete submatrix
C(i) calculated on each wsi. Fig. 2 shows the pseudocode of
the local processing in wsi arranged to take advantage of
overlapped communication in the computers where it is
available.

Figure 2: Simple Parallel Matrix Multiplication
Algorithm: Local Computing in wsi.

The operations (in Fig. 2) send_broadcast_b and
recv_broadcast_b are used to send and receive respectively
broadcast data in “background”, i.e. overlapped with other
processing in the computer. While libraries such as PVM,
MPICH and LAM/MPI can be used with this non-blocking
(or locally blocking) feature, overlapped (in background)

communication with computing depends on many factors
such as the NIC (Network Interface Card) hardware.
Heterogeneous machines in a LAN do not necessarily have
this facility though it will be used where available.

2.2 LU Matrix Decomposition

The simple parallel algorithm proposed and tested for
LU matrix decomposition assumes homogeneous
computers, at least from the point of view of relative
computing power. The arrangement for balanced workload
on heterogeneous computers is relatively simple, but it has
not been fully tested yet. Details of the simple parallel LU
factorization algorithm are given for data distribution and
computers local processing-communication steps. Data
distribution for LU decomposition is made taking into
account the evolution in data processing for Gaussian
elimination. Fig. 3 shows the data distribution of a matrix
A among four computers, ws0,..., ws3, often referred to as
row block cyclic partitioning [12], where the block size is
usually 32 or 64 [2].

A ws0

ws1

ws2

ws3

ws0

ws1

ws2

ws3

Figure 3: Data Distribution for LU Factorization.

The pseudocode of the local processing in wsi to obtain
matrices L and U from matrix A is shown in Fig. 4.

Figure 4: Simple Parallel LU Factorization
Algorithm: Local Computing in wsi.

n

C

C (i) pw
i
n

A

A(i) pw
i
n

n
B

B(i)

n/P

j

n/P

j

if (i == 0)
 send_broadcast B(i)
for (j = 0; j < P; j++)
{
 if (j != i)
 {
 recv_broadcast_b B(j)

 if ((j+1) == i)
 send_broadcast_b B(i)

 }
 C(i j) = A(i) × B(j)

}

A(i)

C(i) C(i0) C(i1) C(iP-1)

B(i)

ws
i

for (j = 0; j < blq#; j++)
{
 if (i == (j mod P))
 {
 LU on block j
 Broadcast_send
 }
 else
 Broadcast_receive
 Apply pivots
 Update L
 Update trailing matrix
}

ws
i

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

The simple parallel LU factorization algorithm is
directly based on the classical LU block algorithm [7],
where:
p Data blocks are numbered from 0 to blq#-1.
p LU factorization is made on a complete block, and

partial pivoting is applied in order to maintain
numerical stability

p On each communication step (Broadcast_send and
Broadcast_receive), the complete factored block along
with its corresponding pivots are communicated.

3. Initial Experimental Evaluation

Several installed local area networks were used to
evaluate the algorithms by experimentation. Two of the
clusters (LIDI-Duron, and LIDI-PIII) are homogenous
with eight identical computers each, whose characteristics
are summarized in Table 1 and 2 respectively; both of
them are interconnected by 100 Mb/s switched Ethernet.

Name CPU Clock Mem Mflop/s

lidipar{70..77} AMD Duron 850 MHz 256 Mb 1200

Table 1: LIDI-Duron Cluster.

Name CPU Clock Mem Mflop/s
lidipar{14, 13,

12, 9, 8, 7, 6, 5}
Pentium III 700 MHz 64 Mb 579

Table 2: LIDI-PIII Cluster.

Computers on the third cluster (LQT) are
heterogeneous, and their details are shown in Table 3; they
are interconnected by 10 Mb/s Ethernet with a single hub.
Mflop/s is obtained with fully optimized sequential code
(used also for local computing in the parallel algorithms).

Name CPU Clock Mem Mflop/s
lqt_07 Pentium III 1 GHz 512 Mb 625

lqt_06 Pentium III 1 GHz 512 Mb 625

lqt_02 Celeron 700 MHz 512 Mb 479

lqt_01 Pentium III 550 MHz 512 Mb 466

lqt_03 Pentium II 400 MHz 512 Mb 338

lqt_04 Pentium II 400 MHz 512 Mb 338

Table 3: LQT Cluster

3.1 Matrix Multiplication and LU Factorization

The matrix multiplication algorithm was first
implemented using PVM library calls for every data
communication. Performance results in terms of speedup
values are shown in Fig. 5 for a matrix multiplication in

the LQT cluster with matrices of order 9000 elements in
single precision floating point numbers. The reference
value of the sequential algorithm was taken in the fastest
computer (lqt_07), as expected in heterogeneous networks
[16]. Computers are included (indicated by a “+” prefixed
to the name in the x axis of the graph) to the “parallel
virtual machine” according to its relative processing power
following the usual better-to-worse approach. The speedup
values shown as “Opt” are the optimal expected for each
set of machines. The obtained performance is clearly
unacceptable.

Figure 5: Matrix Multiplication Performance with
PVM, LQT Cluster.

Experiments were carried out to take local execution
times for computing as well as communication steps. As an
example, local execution times on each computer taken
when the six machines are used, corresponding to the last
speedup value shown in Fig. 5:
1. Most of the running time each computer is waiting for

(executing) a message, the average time used for
communications is approximately 1700s.

2. The average computing time is approximately 630s.
The same kind of behavior in performance (local

running times) is found for every combination of
computers and algorithms. Evidently, the performance loss
is due to communications. As the PVM broadcast is the
only one communication routine used by the algorithm, the
PVM broadcast is the origin of the performance penalty
imposed to the algorithm. The same communication
performance penalty was found in every computing
platform (LQT cluster shown in Fig. 5, LIDI-PIII and
LIDI-Duron), so the diagnosis -at least with PVM- is
confirmed.

The simple parallel LU factorization was implemented
using the PVM broadcast, Fig. 6 shows performance
values on the LIDI-PIII network depending on the number
of computers used for a matrix of order 3500 elements,
and a row blocking size of 64 rows. According to Fig. 6,
the best obtained performance (speedup) is about 2 when 3
and 4 computers are used in parallel. Performance
degradation begins with 5 machines and it is worse when
more computers are used. The same kind of local timings

lqt_07 +lqt_06 +lqt_02 +lqt_01 +lqt_03 +lqt_04

0

1

2

3

4

5
Opt PVM

S
pe

ed
up

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

were taken as for the matrix multiplication, and the
resulting values were identical: communication (broadcast)
take much more time than expected on an Ethernet
network.

Figure 7: LU Factorization Performance with PVM,
LIDI-PIII Cluster.

As with the matrix multiplication algorithm, the same
communication problem was found in every computing
platform (LIDI-PIII cluster shown in Fig. 7, LIDI-Duron,
and LQT), so the diagnosis -at least with PVM- is
confirmed.

It is worth noting that the main performance penalty is
not due to message startup cost (latency) but on the low
MB/s (throughput) obtained with PVM. Taking into
account the number of computers and matrix sizes, the
algorithms impose a very little number of messages of
length in O(105) and O(106) bytes. In this sense, the
algorithms tend to have coarse granularity and, thus, the
communication performance depends heavily on data
bandwidth effectively obtained from the interconnection
network.

4. UDP Broadcasts

Although PVM, LAM/MPI, and MPICH are the most
widely used libraries for parallel processing in computer
clusters, they do not seem to be specifically designed
and/or implemented to take advantage of Ethernet
broadcast to optimize communication performance. There
are some issues concerning broadcast performance in
message passing libraries:
p Point-to-point communication routines are usually

optimized in terms of protocol handling and data
transmission.

p There are a large number of communication routines
(more than 100 on the MPI standard) and, thus, it
becomes impractical to optimize all of them, including
broadcasts.
From another point of view (the one taken in this

paper), having defined the parallel algorithms in terms of

broadcast communication and given that broadcast could
obtain optimized performance in Ethernet based clusters, it
is likely to obtain acceptable parallel computing
performance if broadcast messages are implemented taking
advantage of Ethernet characteristics (basically, the
standard Ethernet logical bus).

A broadcast message was implemented directly on top
of the UDP protocol, which makes use of the Ethernet
broadcasting facility on a wide range of operating systems
and computer hardware (it was tested on Linux-PCs, BSD-
Sun, Solaris-Sun, Solaris-PCs, and AIX-IBM). Some
consequences of this approach are:
p Portability, since the UDP protocol is available on

almost every computer.
p User level communication routine (it is not necessary

to modify the operating system kernel or to impose any
special or root level priority).

p If Ethernet is not found at the hardware level for
communications, the UDP protocol tends to optimize
the hardware capabilities. On ATM networks for
example, it is likely that the UDP broadcasting facility
will be better than every user-designed broadcast
message. One of the main reasons for this assumption
is that the UDP protocol is specifically oriented to
obtain the best available performance.

p Optimized performance and scalability. Performance is
optimized because UDP itself and its implementation is
explicitly focused on communication performance.
Scalability is optimized because the UDP protocol
implementations exploit directly the Ethernet broadcast
facility, thus communication time tends to be constant
and independent from the number of processes
involved in the communication routine.
The TCP protocol is used for control messages of the

implementation, and the number of control messages is
minimized to avoid many point-to-point data exchange for
a single broadcast message. Control messages are used for
two main reasons concerning the UDP protocol, since in
the UDP protocol:
p It is not guaranteed to avoid losing data, i.e. a (local)

successful sent data do not necessarily reach its
destination

p It is not guaranteed data ordering, i.e. if data da is sent
before data db, it is not guaranteed da will reach
destination before db. Relationship between control
data and user data is about 1/50000, i.e. approximately
one control byte is sent every 50000 bytes of user data
(pertaining to a broadcast message).
The layers of the resulting broadcast message are shown

in Fig. 8, where UDP and TCP layers are relatively
simple, just a few calls to the operating system socket
interface. The Broadcast API (Application Programmer
Interface) hides every implementation detail and follows
the common syntax and semantics of PVM and MPI.

The broadcast message implemented is maintained
independent from PVM and MPI implementations to

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8
OPT PVM

Number of Computers

Sp
ee

du
p

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

explicitly set aside this operation focused on optimization
over Ethernet broadcast from those provided by the
libraries.

Figure 8: Broadcast Layers.

From the point of view of data integrity, computers in
clusters have a highly uniform data representation, where:
p In general, PCs as well as workstations use IEEE

floating point standards.
p PCs have exactly the same data representation

regardless of microprocessors used.
p The only difference found in data representation when

using PCs and workstations in a cluster is usually about
byte ordering (little-big endian), which is easily solved
at each side, according to sender-receiver computer.

5. Full Experimental Evaluation

New experiments were carried out to evaluate this new
communication (broadcast) routine and the algorithms
proposed. The matrix multiplication results are shown in
heterogeneous as well as homogeneous clusters. Later, the
LU factorization performance values are given according
to those obtained in a homogenous cluster. Matrix
multiplication as well as LU factorization algorithms were
tested on each cluster described in Section 3. The most
representative set of results combining clusters and
algorithms were selected to show the effectiveness of the
algorithms along with the broadcast message implemented
taking advantage of the Ethernet broadcast facility.

5.1 Matrix Multiplication

Matrix multiplication is implemented now replacing
PVM broadcasts by the proposed UDP based broadcast
message. Fig. 9 shows the performance results obtained in
the LQT network including the UDP based broadcasts
(which appears as UDP), for different numbers of
computers. From Fig. 9, it is possible to note that
p performance is greatly improved when the broadcast

messages take advantage of the underlying (Ethernet)
network, thus avoiding the performance penalties
imposed by the PVM broadcast implementation.

p Even on a very low performance interconnection
network, such as the Ethernet 10 Mb/s (which is
usually discarded for parallel computing [14]), the

performance values are very close to the optimal ones,
as shown in Fig. 9.

p Performance grows when the number of computers
grows, thus showing the good scalability of the
algorithm even using high performance computers and
a low performance interconnection network.
The same kind of optimized (UDP compared with

PVM) results is obtained in the three clusters (LQT cluster
shown in Fig. 9, and LIDI-PIII and LIDI-Duron clusters).

Figure 9: Matrix Multiplication Performance with
UDP, LQT Cluster.

On the homogeneous clusters, it is possible to compare
the proposed matrix multiplication algorithm with the one
provided by ScaLAPACK [4] (more specifically, PBLAS),
which is assumed to be a high quality parallel code on
switched networks, given that:
p It has been designed to take advantage of simultaneous

point-to-point messages, also taking advantage of
optimized point-to-point performance of the message
passing libraries.

p The processing block size as well as the bidimensional
(grid) interconnection of computers can be tuned for
optimized parallel performance.
ScaLAPACK is oriented a priori to homogenous

parallel computers, thus preventing its use in clusters like
LQT, since computing power of processors are among 338
Mflop/s and 625 Mflop/s. Fig. 10 shows the results
obtained in the eight computers of the LIDI-Duron cluster
(with matrices of order 10000 elements), where it is
possible to compare performance of the simple parallel
algorithm proposed (which appears as UDP) with the one
provided by ScaLAPACK with different processor grids
(i.e. processors row and processors columns) and square
block sizes sorted according to the performance obtained.

Each bar of Fig. 10 is labeled with values for the three
parameters (processors row, processors column, and block
size), except the last one, which shows the performance
obtained with the simple matrix multiplication algorithm.
Different performance values show the ScaLAPACK
dependence on blocking size and processor grid settings.
On the other hand, the simple matrix multiplication
algorithm does not have such a dependence and also

UDP TCP

Broadcast

Broadcast API

lqt_07 +lqt_06 +lqt_02 +lqt_01 +lqt_03 +lqt_04

0

1

2

3

4

5
Opt PVM UDP

S
pe

ed
up

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

obtains better performance (given that the broadcast
message takes advantage of the Ethernet broadcast
facility). The best ScaLAPACK performance value was
obtained for a block size of 64 elements, 4 processors per
row of processors, and 2 processors per column of
processors in the processors grid. The optimum
performance value is 8, the best ScaLAPACK value is
about 5.5 and the one obtained with the simple parallel
matrix multiplication algorithm is about 7, which is shown
as UDP in Fig. 10. Results obtained in the LIDI-PIII
clusters are similar.

Figure 10: LU Factorization Performance with UDP,
LIDI-Duron Cluster.

5.2 LU Factorization

The simple parallel LU factorization was implemented
using the PVM broadcast and the UDP based broadcast.
Fig. 11 shows performance values for each implementation
on the LIDI-PIII network depending on the number of
computers used for a matrix of order 3500 elements, and a
row blocking size of 64 rows.

Figure 11: LU Factorization Performance, LIDI-PIII
Cluster.

From Fig. 11 it should be noted that UDP based values

are better than those obtained with PVM. However,
performance values are not as close to the optimal ones as
it could be expected taking into account the previous
matrix multiplication performance (speedup, more
specifically) values. It should be also noted that:
p LIDI-PIII computers have much less memory than

computers in LIDI-Duron and LQT clusters. Reducing
the matrix size also reduces the room for taking
advantage of the O(n3) processing requirements over
O(n2) memory requirements (thus resulting in a finer
granularity).

p LU factorization (as most of the matrix factorizations)
impose higher data dependency than matrix
multiplication, thus preventing large time intervals of
asynchronous computing.

p It was not tested any possible overlapping of
computing-communication.
As explained in section 2.2, the simple parallel LU

factorization algorithm assumes homogenous computers,
so it should be adapted to heterogeneous clusters before its
utilization in the LQT cluster. Some possibilities are being
tested, and the final results (and algorithm to be used) are
not obtained yet. Results obtained in the LIDI-Duron
cluster are similar in tendencies to those shown in Fig. 11,
but since LIDI-Duron computers have more memory, the
UDP implementation have better values (closer to the
optimal ones).

6. Conclusions and Further Work

Linear algebra operations defined in terms of the
LAPACK and ScaLAPACK libraries are very good
candidates for optimization as shown in the literature.
Specifically, BLAS level 3 operations are provided usually
optimized at a hardcoded level by each microprocessor
designer. In this sense, large number of applications and
the reduced number of LAPACK and BLAS level 3
operations provide good reasons for a one-by-one
optimization. This approach is taken specifically for
parallel computing algorithms proposed for Ethernet based
clusters of computers.

Two parallel simple algorithms and one optimized
broadcast message are presented specifically designed for
cluster computing. The matrix multiplication algorithm can
be used on heterogeneous as well as on homogeneous
clusters, where it is shown by experimentation that obtains
better performance that the high-quality parallel matrix
multiplication provided by ScaLAPACK. Also, the
broadcast message provided by PVM is shown highly
penalized in clusters, and implementations of MPI do not
provide a priori any confidence about performance. The
LU factorization algorithm presented is considered
preliminary and subject to optimizations, such as the
arrangement of communication overlapped with
computing.

The main advantages of the parallelization methodology

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8
PVM UDP OPT

Number of Computers

Sp
ee

du
p

10
00

-1
-8

10
00

-8
-1

10
00

-2
-4

25
6-

1-
8

64
-1

-8

32
-1

-8

25
6-

2-
4

32
-2

-4

64
-2

-4

10
00

-4
-2

25
6-

8-
1

64
-8

-1

32
-8

-1

25
6-

4-
2

32
-4

-2

64
-4

-2

U
D

P

0

1

2

3

4

5

6

7

S
pe

ed
up

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

as well as the specific parallel algorithms proposed for
matrix multiplication and LU factorization along with the
proposed broadcast can be summarized as:
p Parallel performance depends just on local computing

and the broadcast message. Local computing is made
with optimized BLAS libraries and it has been shown
that the broadcast message can be optimized for
Ethernet based clusters. Thus, parallel performance is
completely optimized.

p The unbalanced workload produced by cluster
heterogeneity can be solved easily by using
unidimensional data distributions, as it was shown by
the matrix multiplication algorithm.

p Simple algorithms can be considered optimized for
clusters, since simple algorithms are able to obtain
better performance than, for example, algorithms
provided by the ScaLAPACK library. Also, simple
algorithms do not depend on parameters such as the
configuration of processors grid arrangement.
For the currently installed clusters as well as local area

networks which can be used for parallel computing, the
algorithms as well as the broadcast message are scalable
and tend to optimize the available resources for linear
algebra parallel computing, at least for the two algorithms
presented. Simple algorithms should be proposed for other
linear algebra operations and/or methods, such as those
included in LAPACK and ScaLAPACK libraries.

Acknowledgments

Prof. Alicia Jubert and Prof. Reinaldo Pis Diez, from
the Laboratorio de Química Teórica, CEQUINOR,
Departamento de Química, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata, provided the LQT
cluster. Prof. Armando De Giusti, from the Laboratorio de
Investigación y Desarrollo en Informática, Facultad de
Informática, Universidad Nacional de La Plata provided
the LIDI clusters as well as numerous suggestions. Prof.
Dolores Rexachs has also offered continuos support in
many ways to this work.

References

[1] Anderson E., Z. Bai, C. Bischof, J. Demmel, J.
Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A.
McKenney, D. Sorensen, LAPACK: A Portable Linear
Algebra Library for High-Performance Computers,
Proceedings of Supercomputing '90, pages 1-10, IEEE
Press, 1990.
[2] Beaumont O., V. Boudet, A. Petitet, F. Rastello, Y.
Robert, “A Proposal for a Heterogeneous Cluster
ScaLAPACK (Dense Linear Solvers)”, IEEE Trans. on
Computers 50, 10, pp.1052-1070, Oct. 2001.
[3] Burns G., R. Daoud, and J. Vaigl, LAM: An Open
Cluster Environment for MPI. Ohio Supercomputer

Center, May 1994. LAM/MPI is available at University of
Notre Dame (http://www.mpi.nd.edu/lam) - 1998-2001.
[4] Choi J., J. Dongarra, R. Pozo, D. Walker,
“ScaLAPACK: A Scalable Linear Algebra Library for
Distributed Memory Concurrent Computers”, Proc. 4th
Symposium on the Frontiers of Massively Parallel
Computation, Ieee Computer Society Press, pp. 120-127,
1992.
[5] Dongarra J., J. Du Croz, S. Hammarling, R. Hanson,
“An extended Set of Fortran Basic Linear Subroutines”,
ACM Trans. Math. Soft., 14 (1), pp. 1-17, 1988.
[6] Dongarra J., A. Geist, R. Manchek, V. Sunderam,
Integrated pvm framework supports heterogeneous
network computing, Computers in Physics, (7)2, pp. 166-
175, April 1993.
[7] Dongarra J., D. Walker, “Libraries for Linear
Algebra”, in Sabot G. W. (Ed.), High Performance
Computing: Problem Solving with Parallel and Vector
Architectures, Addison-Wesley Publishing Company, Inc.,
pp. 93-134, 1995.
[8] Gropp W., E. Lusk, N. Doss, A. Skjellum, “A high-
performance, portable implementation of the MPI message
passing interface standard”, Parallel Computing, Vol. 22,
No.6, pp 789-828, Sep, 1996.
[9] Hoare C., Communicating Sequential Processes,
Englewood Cliffs, Prentice-Hall, 1986.
[10] Lawson C., R. Hanson, D. Kincaid, F. Krogh, “Basic
Linear Algebra Subprograms for Fortran Usage”, ACM
Transactions on Mathematical Software 5, pp. 308-323,
1979.
[11] Institute of Electrical and Electronics Engineers,
Local Area Network - CSMA/CD Access Method and
Physical Layer Specifications ANSI/IEEE 802.3 - IEEE
Computer Society, 1985.
[12] Kumar V, Grama A, Gupta A, Karypis G,
Introduction to Parallel Computing. Design and Analysis
of Algorithms, The Benjamin/Cummings Publishing
Company, Inc., 1994.
[13] Message Passing Interface Forum, MPI: A Message
Passing Interface standard, International Journal of
Supercomputer Applications, Volume 8 (3/4), 1994.
[14] Nagendra B., L. Rzymianowicz, “High Speed
Networks”, in in R. Buyya Ed., High Performance Cluster
Computing: Architectures and Systems, Vol. 1, Prentice-
Hall, Upper Saddle River, NJ, USA, pp. 204-245, 1999.
[15] Wilkinson B., Allen M., Parallel Programming:
Techniques and Applications Using Networking
Workstations, Prentice-Hall, Inc., 1999.
[16] Zhang X., Y. Yan, “Modeling and characterizing
parallel computing performance on heterogeneous NOW”,
Proceedings of the Seventh IEEE Symposium on Parallel
and Distributed Processing, (SPDP'95), IEEE Computer
Society Press, San Antonio, Texas, October 1995, pp. 25-
34.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

