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CONTINUOUS COHESION OVER SETS

M. MENNI

Abstract. A pre-cohesive geometric morphism p : E → S satisfies Continuity if the
canonical p!(X

p∗S)→ (p!X)S is an iso for every X in E and S in S. We show that
if S = Set and E is a presheaf topos then, p satisfies Continuity if and only if it is
a quality type. Our proof of this characterization rests on a related result showing
that Continuity and Sufficient Cohesion are incompatible for presheaf toposes. This
incompatibility raises the question whether Continuity and Sufficient Cohesion are ever
compatible for Grothendieck toposes. We show that the answer is positive by building
some examples.

1. Outline

In several papers Lawvere has emphasised the fact that “even within geometry (that
is, even apart from their algebraic/logical role) toposes come in (at least) two varieties:
as spaces (possibly generalized, treated via the category of sheaves of discrete sets), or
as categories of spaces” (analytical, algebraic, topological, combinatorial, etc.). See [11]
and references therein. Moreover, he proposed loc. cit. a set of axioms which help to
distinguish the toposes in the second variety from those in the first. We will work with
the version of this set of axioms presented in the more recent Axiomatic Cohesion [12].

During the International Category Theory Conference 2011 (Vancouver) Lawvere ex-
plained that the ‘Continuity’ condition that appears in Definition 2(b) in [12] was intended
to capture ‘continuous’ models of Axiomatic Cohesion, in opposition to ‘combinatorial’
ones such as simplicial sets. He later urged for an explicit theory of ‘combinatorial’ toposes
and conjectured a result saying that such combinatorial toposes cannot satisfy Continuity.

In the present first attempt to materialize this idea of ‘continuous vs combinatorial’ I
restrict to a familiar base topos Set, propose a reasonable class of ‘combinatorial’ toposes
over Set and prove a result of the sort suggested above.

In Sections 2 and 3 we recall the necessary material from [12, 7, 15]. In particular,
we recall the definitions of: pre-cohesive geometric morphism, quality type, Sufficient
Cohesion, and Continuity.

In Section 4 we discuss presheaf toposes and prove the following dichotomy: a pre-
cohesive presheaf topos is either sufficiently cohesive or a quality type. (See Corollary 4.6.)
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Section 5 recalls the construction of the colimit functor Ĉ → Set emphasizing certain
aspects that are needed later in the paper.

Sections 6 and 7 are devoted to the proof of one of our main results. Namely, Theo-
rem 7.4, which states that a pre-cohesive presheaf topos satisfies Continuity if and only if it
is a quality type. This is a nice positive characterization but, unfortunately, our proof uses
an argument by contradiction. A key ingredient is the fact (Proposition 7.3) that suffi-
ciently cohesive presheaf toposes cannot satisfy Continuity. This naturally raises the ques-
tion of whether Sufficient Cohesion and Continuity are ever compatible for Grothendieck
toposes. The remaining sections of the paper show that the answer is positive.

Section 8 introduces the concept of connector which is implicitly used in Section 9
to prove a sufficient condition on a site to induce a cohesive and sufficiently cohesive
Grothendieck topos (Proposition 9.6), and explicitly in Section 10 to discuss three con-
crete examples. Let us quickly mention two of them: the monoids of linear and of polyno-
mial endos of the unit interval may be extended to sites satisfying our sufficient condition.
These sites are not subcanonical though, so we also describe concrete subcanonical alter-
natives. In particular, the monoid of piecewise linear endos on the unit interval may
be equipped with a subcanonical coverage such that the induced topos is cohesive and
sufficiently cohesive.

2. Categories of cohesion

Let E and S be cartesian closed extensive categories.

2.1. Definition. The category E is called pre-cohesive (relative to S) if it is equipped
with a string of adjoint functors

E
p!
��

p∗
��

S

p∗

OO

p!

OO

with p! a p∗ a p∗ a p! and such that:

1. p∗ : S → E is full and faithful.

2. p! : E → S preserves finite products.

3. (Nullstellensatz) The canonical natural transformation θ : p∗ → p! is (pointwise) epi.

For brevity we may also say that p : E → S is pre-cohesive. Let us fix one such p.
As explained immediately after Definition 2 in [12], the two downward functors p∗ and
p! express the opposition between ‘points’ and ‘pieces’. For this reason, one pictures the
transformation θ : p∗X → p!X as assigning, to each point in X, the piece where it lies.
Also, an object X in E will be called connected if p!X = 1. An object Y in E will be called
contractible if Y A is connected for all A.
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2.2. Definition. We say that Sufficient Cohesion holds if for every X in E there exists
a monic map X → Y with Y contractible.

We may also say that p : E → S is sufficiently cohesive. ‘Sufficient’ here meaning
sufficient cohesion to provide a contractible envelope for any space or, as we will recall in
Proposition 3.1, to provide a connection of any truth value with True.

Definition 1 in [12] introduces a contrasting class of categories of cohesion.

2.3. Definition. The pre-cohesive p : E → S is called a quality type if the canonical
natural transformation θ : p∗ → p! is an iso.

In other words, the pre-cohesive p : E → S is a quality type if the full reflective sub-
category p! a p∗ : S → E is a quintessential localization in the sense of [5]. In terms of
the intuition suggested above, p is a quality type if, for every X in E , every piece of X
has a unique point. Concerning terminology, in [12], Lawvere defines intensive/extensive
qualities as special functors (between [pre-]cohesive categories) whose codomains have the
special feature that θ is an iso. This seems enough to justify transplanting from functorial
higher order logic the idea of a ‘type’ as a possible codomain. So, roughly speaking, qual-
ity types are the codomains of qualities. The next result explains in what sense sufficiently
cohesive categories and quality types are contrasting.

2.4. Proposition. [p.47 in [12].] If p : E → S is both sufficiently cohesive and a quality
type then S is inconsistent.

After Proposition 2.4 it is fair to say that Sufficient Cohesion is a positive way of
ensuring that ‘points’ and ‘pieces’ are different concepts.

The definition of category of cohesion in [12] requires an extra condition that, for rea-
sons that will become evident, we keep separate. The pre-cohesive p : E → S determines
a natural transformation p!(X

(p∗S))→ (p!X)S, with X in E and S in S.

2.5. Definition. We say that (the axiom of) Continuity holds if the canonical transfor-
mation p!(X

(p∗S))→ (p!X)S is an iso.

Definition 2 in [12] can now be formulated as follows.

2.6. Definition. The category E is a category of cohesion (relative to S) if it is equipped
with a pre-cohesive p : E → S that satisfies Continuity.

We may also say that p : E → S is cohesive.
Notice that over S = Set, Continuity simply says that for every object X in E and

set S the canonical p!(
∏

s∈S X)→
∏

s∈S(p!X) is an iso. In other words, that p! preserves
powers.

The axiom of Continuity is the key ingredient that makes the Hurewicz category
determined by p : E → S into a quality type over S (see Theorem 1 in [12]). Although we
are not going to consider the Hurewicz category explicitly, the reader should always bear
in mind its relation with Continuity since this relation is an important motivation for the
present paper.
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We end this section with some remarks on the choice of terminology. The general
principle was to be consistent with the terminology in [12]. So, in particular, we do not
introduce new names for concepts already existing loc. cit.; but, of course, in order to
study Continuity we needed a name for the concept loosely described as ‘cohesive minus
the Continuity condition’. This is how pre-cohesive categories arise. I believe it is a
sensible choice of terminology. Apart from being consistent with [12], notice that the
stronger notion (cohesive) receives an undecorated name (just as in the case of presheaves
and sheaves). Unfortunately, the choice of terminology is not perfect and, since there is
a risk of some confusion, we emphasize the following.

2.7. Remark. A sufficiently cohesive pre-cohesive category need not be cohesive. Recall
that a pre-cohesive category is sufficiently cohesive if it has ‘enough contractible objects’
and it is cohesive if it satisfies Continuity. They are two different things. For example,
we will show that every sufficiently cohesive pre-cohesive presheaf topos fails to satisfy
Continuity and so, by Definition 2.6, is not cohesive.

3. Cohesive toposes

Let E and S be toposes and p : E → S be a geometric morphism. We say that p is pre-
cohesive if p∗ a p∗ : E → S extends (necessarily in an essentially unique way) to a string
of adjoints p! a p∗ a p∗ a p! making E into a pre-cohesive category over S.

In the standard terminology for geometric morphisms, p : E → S is pre-cohesive if it
is connected (i.e. p∗ is full and faithful), essential (i.e. p∗ has a left adjoint p!), local (i.e.
p∗ has a full and faithful right adjoint) and, moreover, the Nullstellensatz holds and p!

preserves finite products.
It is relevant to mention that under certain reasonable conditions the Nullstellensatz

is stronger than what the above may suggest. If p : E → S is bounded, connected and
locally connected and S has a nno then the Nullstellensatz implies that p is pre-cohesive.
That is: p! preserves finite products and p∗ has a right adjoint. In fact, more is true: see
Theorem 3.4 and Proposition 3.5 in [7].

(The reader should be warned that the topological intuition that supports the standard
terminology for geometric morphisms, e.g. ‘locally connected’, is not as useful in the
present context as it is among localic morphisms. See the Proposition following Axiom 2
in [11] and also Lemma 1.1 in [7]. The original ‘molecular’ terminology [1] may be a more
neutral alternative.)

Assume from now on that p : E → S is pre-cohesive.
Naturally, among toposes, Sufficient Cohesion and quality types admit alternative

characterizations.

3.1. Proposition. [p.47 in [12].] A pre-cohesive p : E → S is sufficiently cohesive if and
only if the subobject classifier of E is connected (i.e. p!Ω = 1).

In order to state a characterization of quality types let us first make a small remark.
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3.2. Lemma. The map θU : p∗U → p!U is an iso for every subterminal U → 1 in E.

Proof. The diagram

p∗U

��

θU // p!U

��
p∗1 θ1

// p!1

shows that θU is mono, because the left vertical map is mono and the bottom one is iso.
Since θ is epi by the Nullstellensatz, θU is an iso.

The characterization of quality types may now be stated as follows.

3.3. Proposition. [3.7 in [7].] Assume that p : E → S is locally connected. Then p is a
quality type if and only if p! : E → S preserves finite limits. Moreover, in this case, every
connected object of E has a unique point.

Proof. The last part of the statement above does not appear in the statement of 3.7 in
[7], but it does appear in the proof. Let us repeat part of the argument. Consider points
a, a′ : 1→ A in E and let U → 1 be the equalizer of a and a′. If A is connected and p!

preserves equalizers then p!U = 1. By Lemma 3.2 we have a map 1 = p!U → p∗U and,
by adjointness, a map 1 = p∗1→ U . Then the mono U → 1 must be an iso and hence
a = a′.

Propositions 3.1 and 3.3 characterize sufficiently cohesive toposes and quality types
respectively. What about Continuity? As explained in Definition 2 of [12], it holds if S is
the category of finite sets. In particular, this implies that the sufficiently cohesive topos
of finite reversible graphs (Section V loc.cit.) satisfies Continuity. On the other hand,
Continuity does not hold for simplicial sets when considered as a pre-cohesive topos over
Set (see comment below Theorem 1 loc.cit.). This is no accident, in Theorem 7.4 we
prove that a pre-cohesive presheaf topos satisfies Continuity if and only if it is a quality
type.

4. Pre-cohesive presheaf toposes

Let E be a topos. Let us say that a pre-cohesive E → Set is combinatorial if E is a presheaf
topos. (Of course, this is not intended to be lasting terminology. We introduce it here for
emphasis.) It is well-known that presheaf toposes are locally connected so all the material
in [7] applies.

Recall (Section 5 in [1]) that for a locally connected (or molecular) p : E → Set, an ob-
ject A is connected (in the sense that p!A = 1) if and only if A is indecomposable (i.e. it has
exactly two complemented subobjects). Since representable objects are indecomposable
in a presheaf topos we have that p!(C( , C)) = 1 for every C in C.

Denoting the topos of presheaves on a small category C by Ĉ, the following fact is a
corollary of the results in [7]. We recall some of the details.
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4.1. Proposition. Let C be a small category whose idempotents split. The canonical
p : Ĉ → Set is pre-cohesive if and only if C has a terminal object and every object of C
has a point.

Proof. The canonical p : Ĉ → Set is locally connected and p!C = 1 for every repre-
sentable C in Ĉ. Example C3.6.3(b) in [6] shows that p is local if and only is C has
a terminal object. In this case, of course, p is connected. So we can assume that C has a
point and then p∗X = Ĉ(1, X) = X1 for every X in Ĉ. If the Nullstellensatz holds then
C(1, C) = p∗C → p!C = 1 is epi and so every object of C has a point. For the converse as-

sume that every object of C has a point and let P in Ĉ. Recall that an element of p!P may
be described as a ‘tensor’ x⊗ C with x ∈ PC. The natural transformation θ : p∗P → p!P
sends each y ∈ P1 to the tensor y ⊗ 1. Since every C in C has a point any tensor x⊗ C
is equal to one of the form y ⊗ 1. (See also Lemma 5.5.)

So far we have proved that p : Ĉ → Set is local and the Nullstellensatz holds if and
only if C has a terminal object and every object of C has a point. Proposition 1.6(iii) in [7]

shows that, in this case, p! : Ĉ → Set preserves finite products (because C is cosifted).

The simplest non-trivial example of a category C satisfying the conditions in the state-
ment of Proposition 4.1 consists of two objects, one of them terminal and the other non-
terminal but having exactly one point. In this case, the resulting Ĉ → Set is a quality
type (see Section VI in [12]).

The simplest sufficiently cohesive example is the topos ∆̂1 of (reflexive) graphs [11].
A similar example is that of reversible graphs used in [12].

To discuss further examples it seems useful to organize them in terms of their clas-
sifying role. I believe that this is justified by the following quotation borrowed from
[8]: “Since these combinatorial categories are usually toposes, some light is shed on their
particularity by determining what kind of structure they classify (in the established cate-
gorical sense, e.g., the simplicial topos classifies total orders with distinct endpoints, and
a simple cubical example classifies strictly bipointed objects). Concretely, there are many
different theories of algebraic structure for which the unit interval is a model, and having
chosen one, this structure should be preserved by geometric realization”.

4.2. Example. Sufficiently cohesive pre-cohesive presheaf toposes:

1. (Total orders with distinct endpoints.) As quoted above, this is the classical topos

∆̂ of simplicial sets.

2. (Non trivial Boolean algebras.) This topos may be described as that of presheaves
on the category of non-empty finite sets [9].

3. (‘Connected’ distributive lattices.) A distributive lattice is called connected if it
has exactly two complemented elements. The classifying topos may be described
as presheaves on finite connected posets. This is the Gaeta topos associated to the
theory of distributive lattices. See Section 2 in [13].



548 M. MENNI

4. (Strictly bipointed objects.) The classifier for the theory presented by two constants
0 and 1 and the sequent ‘0 = 1 ` ⊥’ is a presheaf topos. It may be described as SetA

where A is the category non-trivial finitely presented algebras for the algebraic the-
ory of bipointed objects. More concretely, the objects of A are finite bipointed sets
such that the distinguished points are different. The maps in A are just functions
preserving selected points. As far as I know, this topos has not been systematically
studied.

5. (‘Connected’ C-algebras.) A C-algebra is called connected if it has exactly two
idempotents. The classifying topos may be described as presheaves on the opposite
of the category of finitely presented connected C-algebras. This is the Gaeta topos
associated to the theory of C-algebras (see the last paragraph of p. 109 in [10]).
Notice that, in contrast with the previous examples, the site of the present one is
not locally finite. See also [15].

Of course, given a category C satisfying the conditions in Proposition 4.1, we don’t
always have immediate access to a simple presentation for the theory classified by Ĉ.

4.3. Example. [The topos of ball complexes [17].] The category B of balls has objects Bn

with n ∈ N (to be thought of as solid n-balls) and, for any n, two maps δ0, δ1 : Bn → Bn+1

(pictured as the inclusion of upper and lower hemispheres) and a common retraction
p : Bn+1 → Bn for δ0 and δ1 “squashing the ball onto its solid equator” (Chapter 1
loc. cit.). Also, for any n, the maps in the diagram below

Bn

δ0 //

δ1
// Bn+1

δ0 //

δ1
// Bn+2

satisfy δjδi = δkδi and no further relations. The presheaf topos B̂ is pre-cohesive and
sufficiently cohesive but I don’t know a simple presentation for the theory it classifies.
All the information I know about models of this theory is proved in Section 2.8 of [17]: if
F : B → Set is a filtering functor then F (Bn) has at most 2n+ 1 elements.

Let us also mention a non-example together with an explicit instance of how to use
the classifying role of a pre-cohesive topos.

4.4. Example. [The topological topos [4].] Let J be the topos of sheaves for the canon-
ical topology on the monoid of continuous endos of the one-point compactification of the
discrete space of natural numbers. It is, by definition, a Grothendieck topos but it is not
a presheaf topos and it is not pre-cohesive; in fact, the canonical geometric morphism
J → Set is not essential (the inverse image Set→ J does not preserve products). One
of the main features of J is that it embeds the category of sequential spaces. Moreover,
the interval I = [0, 1] is totally ordered in J and, of course, has two distinct points; so

it determines a geometric morphism r : J → ∆̂ such that r∗[1] = I where [1] denotes the
object representable by the total order with exactly two elements. Further, as shown in
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Theorem 8.1 loc. cit., the inverse image r∗ : ∆̂→ J coincides with the usual geometric
realization.

See also Proposition 10.6 where we present an analogous example of a geometric mor-
phism F → ∆̂ but where F is cohesive over Set.

Pre-cohesive presheaf toposes should be contrasted with (pre-cohesive) Grothendieck
toposes in general, whose colimits may not be calculated ‘as in Set’.

4.5. Proposition. Let C be a small category with terminal object and such that every
object of C has a point so that p : Ĉ → Set is pre-cohesive. Then the following hold:

1. p is sufficiently cohesive if and only if there is an object of C with two distinct points.

2. p is a quality type if and only if C has a zero object (i.e. its terminal object is also
initial).

Proof. The characterization of Sufficient Cohesion is proved in [15]. To prove the second

item observe that if C has initial object then p! : Ĉ → Set preserves finite limits by Ex-
ample C3.6.17(b) in [6] and so p is a quality type by Proposition 3.3. Conversely, assume
that θ : p∗ → p! is an iso and let C in C. Since C( , C) is connected, we can calculate:

1 = p!(C( , C)) ∼= p∗(C( , C)) = Ĉ(1, C( , C)) = C(1, C)

to conclude that every object of C has exactly one point.

It follows that, for combinatorial pre-cohesive toposes, the contrast expressed in Propo-
sition 2.4 may be strengthened to the following dichotomy.

4.6. Corollary. Let E be a presheaf topos and assume that the canonical p : E → Set
is pre-cohesive. Then exactly one of the following holds:

1. p is a quality type.

2. p is sufficiently cohesive.

Proof. Let E = Ĉ for a small category C. Without loss of generality we can assume that
idempotents split in C. Proposition 4.1 implies that C has a terminal object and that
every object in C has a point. Clearly, for such a C, exactly one of the following holds:

1. The terminal object is not initial. (Equivalently, there is an object of C with two
distinct points.)

2. The terminal object is also initial. (Equivalently, every object of C has exactly one
point.)

so the result follows from Proposition 4.5.
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If the reader accepts that, for pre-cohesive toposes over Set, ‘presheaf’ is a reasonable
formalization of ‘combinatorial’ then Lawvere’s suggestion that combinatorial toposes
should not satisfy Continuity admits the following confirmation: if a combinatorial pre-
cohesive topos satisfies Continuity then it cannot be sufficiently cohesive. Actually, we
will prove a stronger fact in Theorem 7.4.

5. Connected components

Fix a small category C and let p : Ĉ → Set be the canonical geometric morphism. We
recall well-known material on the functor p! and introduce some specific notation that
aids in the proof of the main results of the paper.

5.1. Definition. For P ∈ Ĉ, we say that a cospan

C σl
// U C ′σr
oo

connects the elements x ∈ PC and x′ ∈ PC ′ if there is a y ∈ PU such that x = y · σl and
x′ = y · σr.

If the cospan σ = (σl, σr) as above connects the elements x and x′ then we may denote
the situation by the following diagram

x y�oo � // x′

C σl
// U C ′σr
oo

or simply write xσx′.

5.2. Definition. A path from C to C ′ is a sequence of cospans σ1, σ2, . . . , σn as below

C0 σ1,l
// U1 C1σ1,r
oo

σ2,l
// U2 C2σ2,r
oo Cn−1 σn,l

// Un Cnσn,r
oo

with C0 = C and Cn = C ′.

The terminology may be non-standard but it only plays a role in auxiliary results so
we keep it for brevity.

5.3. Definition. A path σ1, σ2, . . . , σn from C to C ′ as above connects elements x ∈ PC
and x′ ∈ PC ′ if there exists a sequence of elements x0, . . . , xn with x0 = x, xn = x′ and
for every 1 ≤ i ≤ n, xi ∈ PCi and xi−1σixi.

We say that x ∈ PC and x′ ∈ PC ′ are connectable if there is a path from C to C ′ that
connects x and x′. The next fact follows from Theorem VII.2.2 in [14].
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5.4. Corollary. The set p!P may be defined as the set {(x,C) | x ∈ PC} quotiented by
the relation that identifies (x,C) and (x′, C ′) if and only if x and x′ are connectable.

For this reason, elements in p!P will be denoted by ‘tensors’ x⊗ C with x ∈ PC. It
follows that x⊗ C = x′ ⊗ C ′ if and only if x and x′ are connectable.

Assume now that the small C has a terminal object and is such that every object has
a point, so the canonical p : Ĉ → Set is pre-cohesive (Proposition 4.1). In this case the

Nullstellensatz says that for every P in Ĉ, θ : P1→ p!P is surjective. For illustration let
us give a direct proof of this fact.

5.5. Lemma. Let P ∈ Ĉ and C in C. For every x ∈ PC there is a y ∈ p∗P = P1 such
that x⊗ C = y ⊗ 1 in p!P .

Proof. By hypothesis, C has a point c : 1→ C. Define y = x · c and observe that the
cospan

C
id // C 1coo

connects x and y.

We will find it convenient to give another concrete description of the kernel pair of the
quotient p∗P = P1→ p!P ‘improving’ that given in Corollary 5.4.

5.6. Definition. A path as in Definition 5.2 is called restricted if all intermediate objects
are terminal. That is, if C1 = C2 = . . . = Cn−1 = 1.

In other words, a path is restricted if it looks as follows:

U1 U2 Un

C0

σ1,l

>>

1

σ1,r

__
σ2,l

??

1

σ2,r

__

1

σn,l

??

Cn

σn,r

``

Naturally, we say that x ∈ PC and x′ ∈ PC ′ are connectable via a restricted path if there
exists a restricted path that connects them.

5.7. Lemma. For every P in Ĉ and x, x′ ∈ p∗P = P1, x⊗ 1 = x′ ⊗ 1 ∈ p!P if and only
if x and x′ are connectable via a restricted path.

Proof. By Corollary 5.4 we need only prove that if x and x′ are connectable then they
are connectable via a restricted path. Consider first a path (Definition 5.3) of length 2
connecting x and x′ as in the diagram below:

x y1
�oo � // x1 y2

�oo � // x′

1 σ1,l
// U1 C1σ1,r
oo

σ2,l
// U2 1σ2,r
oo

By hypothesis there is a point c : 1→ C1 and it is clear that x = y1 · σ1,l is connectable
with y1 · σ1,r · c = x1 · c ∈ P1. It is also clear that the element x1 · c = y2 · σ2,l · c ∈ P1 is
connectable with x′ = y2 · σ2,r. This shows that x and x′ are connectable via a restricted
path. It is easy to apply the same idea to a path of arbitrary length.
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6. The spear of a topos with nno

Let E be a topos with nno. Let ⊥,> : 1→ I be a bipointed object in E . Define R as the
codomain of the following coequalizer diagram

N× 1
N×> //

suc×⊥
// N× I // // R

where 1 0 // N Nsucoo is the nno in E . We may picture R as

0 // 1 // 2 // . . . // n // . . .

which, in general, is only an intuitive aid; but in the case when E is the topos of reflexive
graphs and I is a single edge the picture above is a precise description.

There is a canonical map N→ R given by the composition

N 〈id,!〉 // N× 1
id×⊥ // N× I // // R

in E . The diagonal in the commutative square below

1

〈0,⊥〉
��

0 // N

��
N× I // R

will be denoted by 0 : 1→ R.
The canonical inclusion N→ R determines, by transposition, a point that we denote

by ~∞ : 1→ RN. On the other hand, the transposition of

N // 1 0 // R

will be denoted by ~0 : 1→ RN. The point ~0 : 1→ RN may be pictured as the constant
sequence (0, 0, . . .) and ~∞ : 1→ RN as (0, 1, 2, . . .).

6.1. Lemma. (With E, I and R as above.) If D is a topos and F : E → D preserves finite
colimits and terminal object then F preserves the nno. If moreover, F preserves finite
products then the diagram

N× 1
N×F> //

suc×F⊥
// N× FI // // FR

is a coequalizer in D.

Proof. The first part is a corollary of a more general result (see Lemma A2.5.6 in [6]).
The second part follows immediately.
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Lemma 6.1 applies if F is a product preserving left adjoint. For example, if F is
the ‘pieces’ functor of a pre-cohesive topos, or if it is the inverse image of a geometric
morphism.

6.2. Lemma. Let p : E → S be a pre-cohesive geometric morphism. If I is connected then
so is R. If, moreover, Continuity holds then RN is also connected.

Proof. By Lemma 6.1 the following diagram

N× 1
id×p!> //

suc×p!⊥
// N× p!I // // p!R

is a coequalizer in S. As I is connected, p!R is the coequalizer of the maps id, suc : N→ N
and hence p!R = 1 because N is a nno. To prove the second part of the result calculate

p!(R
N) = p!(R

p∗N) ∼= (p!R)N ∼= 1N ∼= 1

using Continuity.

Let us introduce some terminology.

6.3. Definition. The spear of a topos with nno is the object R in the coequalizer

N× 1
N×> //

suc×⊥
// N× Ω // // R

where >,⊥ : 1→ Ω are the standard points of the suboject classifier.

Proposition 3.1 and Lemma 6.2 imply the next fact.

6.4. Corollary. If the topos E has a nno and p : E → S is pre-cohesive and sufficiently
cohesive then the spear R of E is connected. If, moreover, Continuity holds then RN is
also connected.

We will use this result to prove that if p : E → S is a pre-cohesive and sufficiently
cohesive presheaf topos then p cannot satisfy Continuity.

7. The presheaf toposes that satisfy Continuity

In this section we characterize the pre-cohesive presheaf toposes that satisfy continuity.
Let C be a small category and p : E = Ĉ → Set be the resulting molecular topos over Set.
Denote the spear of E by R.

For any X in Ĉ and C in C,

(XN)C =

(∏
i∈N

X

)
C =

∏
i∈N

XC = (XC)N

so, in particular, RNC = (RC)N.
Recall that the subobject classifier Ω in E sends each C in C to the set ΩC of sieves

on C. Moreover, for every g : B → C in C and S ∈ ΩC, (Ωg)S = S · g = {h | gh ∈ S}.
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7.1. Lemma. The spear of E may be described as follows.

1. For any C in C, RC is the set of pairs (n, S) with n ∈ N and S a non-maximal sieve
on C.

2. For any g : B → C in C and (n, S) ∈ RC, (Rg)(n, S) = (n, S) · g is defined by cases:

(a) if S · g ∈ ΩB is not maximal then (n, S) · g = (n, S · g) and,

(b) if S · g ∈ ΩB is maximal then (n, S) · g = (n+ 1, ∅).

Also, the canonical map N→ R sends each n ∈ NC = N to (n, ∅) ∈ RC.

Proof. We first sketch the proof that R defined as in the statement is a presheaf.
It is clear that identities act as such. So let f : A→ B and g : B → C be maps in
C. For any (n, S) ∈ RC, it is easily seen that ((n, S) · g) · f equals either (n+ 1, ∅) or
(n, (S · g) · f) = (n, S · (gf)) depending on whether (S · g) · f = S · (gf) is maximal or
not. So ((n, S) · g) · f = (n, S) · (gf).

There is an obvious function qC : (N× Ω)C = N× (ΩC)→ RC that sends (n, S) in
the domain to (n+ 1, 0) or (n, S) depending on whether S is maximal or not. It is easy
to check that these functions induce a natural transformation q : N× Ω→ R.

It remains to show that the diagram on the left below

N× 1
N×> //

suc×⊥
// N× Ω

q // // R N× 1
N×> //

suc×⊥
// N× (ΩC)

q // // RC

is a coequalizer in E . Since E is a presheaf topos it is enough to prove that the fork on
the right above is a coequalizer in Set for each C in C; but this is easy.

Lemma 7.1 implies that for each C in C there is a ‘projection’ ΞC = Ξ : RC → N. If
r = (n, S) ∈ RC then Ξr = Ξ(n, S) = n will be called the signature of r.

The map ΞN : (RN)C = (RC)N → NN sends each ρ ∈ (RC)N to the function ΞNρ ∈ NN

defined by (ΞNρ)i = Ξ(ρi). The function ΞNρ will be called the signature of ρ.
Let us say that a function u : N→ N is bounded by k ∈ N if ui ≤ k for every i ∈ N.

Also, we say that u is bounded if it is bounded by some k ∈ N. We can conveniently
extend the terminology to figures of RN. We say that an element of (RN)C = (RC)N is
bounded if its signature is.

For example, if we let C have a final object then the signature of ~0 ∈ (RN)1 = p∗(R
N) is

the constant function N→ N that sends everything to 0. On the other hand, the signature
of ~∞ ∈ RN1 is the identity on N. Hence, ~0 is bounded and ~∞ is not.

7.2. Lemma. Let h : C ′ → C in C and ρ ∈ (RC)N. Then ρ is bounded if and only if ρ · h
is.
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Proof. Lemma 7.1 implies that for every r ∈ RC, ΞCr ≤ ΞC′(r · h) ≤ (ΞCr) + 1. Now,
if ρ in (RC)N is bounded then there is a k ∈ N such that, for every i ∈ N, the inequality
(ΞNρ)i = Ξ(ρi) ≤ k holds. Then

(ΞN
C′(ρ · h))i = ΞC′((ρ · h)i) = ΞC′((ρi) · h) ≤ (ΞC(ρi)) + 1 ≤ k + 1

for every i ∈ N, so ΞN(ρ · h) is bounded by k + 1. On the other hand, if ΞN(ρ · h) is
bounded by k then so is ΞNρ.

We can now prove that Sufficient Cohesion and Continuity are incompatible for pre-
sheaf toposes.

7.3. Proposition. Let E be a presheaf topos such that the canonical p : E → Set is pre-
cohesive. It p is sufficiently cohesive then it does not satisfy Continuity.

Proof. Let R be the spear of E . Since p is sufficiently cohesive, R is connected by
Corollary 6.4. Consider now the distinguished points ~0, ~∞ : 1→ RN and assume, for the
sake of contradiction, that p satisfies Continuity. Corollary 6.4 again implies that RN is
connected so p!

~0 = p! ~∞ : 1→ p!(R
N). By Corollary 5.4, ~0 and ~∞ are connectable and so,

by Lemma 7.2, ~0 is bounded if and only if ~∞ is. But this is absurd because ~0 is bounded
and ~∞ is not.

We can summarize the discussion so far as a characterization.

7.4. Theorem. Let E be a presheaf topos and assume that the canonical p : E → Set is
pre-cohesive. Then p satisfies Continuity if and only if p is a quality type.

Proof. One implication is trivial: if p is a quality type then p! = p∗ preserves all small
products so Continuity holds. For the converse assume that Continuity holds. By Corol-
lary 4.6, p is either sufficiently cohesive or a quality type; but Proposition 7.3 implies that
it cannot be sufficiently cohesive.

8. Bipointed objects and connectors

After Definition 2 of [12] Lawvere comments that: “This ‘continuity’ property [...] also
holds if the contrast with S is determined [...] by an infinitely divisible interval in E”.
This comment inspired our construction of cohesive and sufficiently cohesive Grothendieck
toposes. We formalize here the most basic ingredients.

Let D be a category with terminal object. (In practice this may be a small category
underlying the site of definition of a topos, or it may be the domain of a pre-cohesive
geometric morphism.) Let I be an object in D equipped with two points 0, 1 : 1→ I.

We stress that for the moment we are not requiring the points 0 and 1 to be different,
nor that I is ‘connected’ in any sense; but of course, these conditions are in the back of our
minds and guide our definitions and results. For example, if p : D → S is a pre-cohesive
geometric morphism we would like express that there is some close relationship between
the bipointed I and the functor p! : D → S. We propose the following concept.
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8.1. Definition. Assume that p : D → S is a pre-cohesive geometric morphism. The
bipointed object 0, 1 : 1→ I is called a connector for p if the following diagram

p∗(X
I)

p∗ev0 //

p∗ev1
// p∗X

θ // p!X

is a coequalizer in S for each X in D.

We will show that many pre-cohesive Grothendieck toposes have a connector. The
proof consists on identifying special objects in the sites of definition. The next definition
does not assume anything on D but, in practice, it will be a small category underlying a
site of definition.

8.2. Definition. An object C in D is called arcwise connected if for every cospan of
points a : 1→ C ← 1 : b in D there exists a map f : I → C making the following diagram

1

a
��

0 // I

f
��

11oo

b��
C

commute.

Let us look at some examples among the sites discussed in Example 4.2.

8.3. Example. [In the site for the classifier of non-trivial Boolean algebras.] Let C be
the category of non-empty finite sets. It may be equipped with the bipointed object
in0, in1 : 1→ 1 + 1. It is easy to check that every object in this category is arcwise
connected. The idea that non-empty finite sets are arcwise connected may sound strange
at first; but recall that representables are connected in Ĉ. In fact, in this case, the Yoneda
embedding C → Ĉ factors through the codiscrete inclusion Set→ Ĉ. See [9].

In contrast, consider the following.

8.4. Example. [In the site for the classifier of connected distributive lattices and ∆.] Let
C be the essentially small category of finite connected posets. Let 0, 1 : 1→ I in C be the
total order with two elements with 0 ≤ 1. In this case, I itself is not arcwise connected
because if we let a = 1 : 1→ I and b = 0 : 1→ I in Definition 8.2 then no f exists as
required there. This argument also shows that the same 0, 1 : 1→ I, as an object in ∆,
is not arcwise connected.

Assume now that C is a small category with terminal object and such that every object
has a point, so the canonical p : Ĉ → Set is pre-cohesive (Proposition 4.1). Assume further
that C is equipped with a bipointed object 0, 1 : 1→ I.



CONTINUOUS COHESION OVER SETS 557

8.5. Definition. A combinatorial arc is a path as in Definition 5.2 such that for every
1 ≤ i ≤ n, σi,l = 0 : 1→ I and σi,r = 1 : 1→ I.

In other words, a combinatorial arc is a path of the form

1
0
// I 1

1
oo

0
// I 1

1
oo 1

0
// I 1

1
oo

and it is clear that every combinatorial arc is a restricted path in the sense of Definition 5.6.

8.6. Lemma. If every object in C is arcwise connected (w.r.t. 0, 1 : 1→ I) then, for every

X in Ĉ and x, x′ ∈ p∗X = X1, x⊗ 1 = x′ ⊗ 1 ∈ p!X if and only if x and x′ are connectable
via a combinatorial arc.

Proof. Consider a diagram as in Definition 8.2. If the cospan a : 1→ C ← 1 : b connects
x, x′ ∈ X1 via an element y ∈ XC such that x = y · a and x′ = y · b then the cospan
0 : 1→ I ← 1 : 1 also connects x and x′, via y · f ∈ XI.

More generally, every restricted path

1 σ1,l
// U1 1σ1,r
oo

σ2,l
// U2 1σ2,r
oo 1 σn,l

// Un 1σn,r
oo

connecting x, x′ ∈ X1 can be transformed, using the same idea ‘cospanwise’, into a com-
binatorial arc also connecting x and x′.

The bipointed object 0, 1 : 1→ I in C determines a (representable) bipointed object

in the topos Ĉ.

8.7. Lemma. If every object in C is arcwise connected then the induced bipointed object
in Ĉ is a connector for p.

Proof. We need to check that the diagram on the left below

p∗(X
I)

p∗ev0 //

p∗ev1
// p∗X

θ // p!X XI
X0 //

X1
// X1 θ // p!X

is a coequalizer in Set for each X in Ĉ. In this case, p∗(X
I) = Ĉ(1, XI) ∼= Ĉ(I,X) ∼= XI.

So the problem is reduced to proving that the diagram on the right above is a coequalizer;
but this follows from Lemma 8.6.

We will use this result to prove that our cohesive examples have connectors, but
consider also the following application.

8.8. Example. [The classifier of non trivial Boolean algebras has a connector.] Combine
Example 8.3 and Lemma 8.7.

We will also need the next somewhat uglier but more general fact.
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8.9. Lemma. If the bipointed object 0, 1 : 1→ I in C satisfies that for every cospan of
points a : 1→ C ← 1 : b there is a commutative diagram

1

a
44

σ1,l // I

f1 22

1
σ1,roo

a1
,,

σ2,l // I

f2
��

1
σ2,roo

a2
��

1

an−1
oo

σn,l // I

fnll

1
σn,roo

b

kkC

where the top row is a restricted path all of whose maps equal 0 : 1→ I or 1 : 1→ I, then
the bipointed object 0, 1 : 1→ C( , I) is a connector in Ĉ.

Proof. Essentially the same proof as Lemma 8.7 suitably generalizing Lemma 8.6 to deal
with the more general restricted paths of the present statement instead of the simpler
combinatorial arcs.

We mention three relevant cases where Lemma 8.9 is applicable but Lemma 8.7 is not.

8.10. Example. [The topos of simplicial sets has a connector.] Let 0, 1 : 1→ I in ∆ be
the total order with two elements 0 ≤ 1. We have already observed that I is not arcwise
connected. Loosely speaking, Lemma 8.7 is not applicable because the bipointed object
0, 1 : 1→ I is not ‘symmetric’. On the other hand, Lemma 8.9 is applicable because
for every cospan a : 1→ C ← 1 : b in ∆, there exists an f : I → C such that one of the
diagrams below

1

a
��

0 // I

f
��

11oo

b��

1

a
��

1 // I

f
��

10oo

b��
C C

commutes. It follows that ∆( , I) is a connector for the pre-cohesive ∆̂→ Set.

8.11. Example. [The classifier of connected distributive lattices has a connector.] Let C
be the essentially small category of finite connected posets. Let 0, 1 : 1→ I in C be again
the total order with two elements with 0 ≤ 1. It is not difficult to check that Lemma 8.9
is applicable and so C( , I) is a connector in Ĉ → Set.

8.12. Example. [The classifier of strictly bipointed objects.] The reader is invited to
prove that the site for this topos has a strictly bipointed object which induces a connector
in the topos.

Since we are assuming that C is equipped with a bipointed object 0, 1 : 1→ I then, in
particular, C has a terminal object so every locally connected coverage on C is connected.

8.13. Lemma. Let J be a Grothendieck topology making (C, J) into a locally connected
site such that I is a J-sheaf. If every object in C is arcwise connected then the bipointed
0, 1 : 1→ I in Shv(C, J) is a connector for the pre-cohesive Shv(C, J)→ Set.
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Proof. Recall that in the proof of Proposition 1.3 in [7] it is observed that local connect-
edness of the site (C, J) implies that the left adjoint p! : Shv(C, J)→ Set is simply the

restriction of the colimit functor Ĉ → Set to Shv(C, J). In other words, the connected
components of a sheaf are those of it considered as a presheaf. The present result then
follows from Lemma 8.7.

9. Continuity and Sufficient Cohesion

In this section we prove a sufficient condition for a site to induce a cohesive and sufficiently
cohesive topos. Recall that a site (C, J) is called locally connected if each covering sieve (on
an object C) is connected as a full subcategory of C/C. A connected and locally connected
site is a locally connected one with a terminal object. The next result is a rewording of
some of the results in [7].

9.1. Proposition. A bounded geometric morphism p : E → Set is locally connected and
pre-cohesive if and only if E has a connected and locally connected site of definition (C, J)
such that every object of C has a point.

Let C be a small category with terminal object.

9.2. Definition. An abstract interval in C is a bipointed object 0, 1 : 1→ I equipped
with monic endos l, r : I → I and satisfying the following conditions:

1. (Sufficient cohesion) The cospan 0 : 1→ I ← 1 : 1 is disjoint (in the sense that it
cannot be completed to a commutative square).

2. The maps l : I → I and r : I → I make the following diagrams

1

0 ��

0 // I

l
��

1

1 ��

1 // I

r

��

1

1
��

0 // I

r

��
I I I

l
// I

commute and the square on the right is also a pullback.

These axioms are extracted from very basic intuition about the interval [0, 1] ⊆ R. In
particular, the maps l and r reflect the idea that the interval may be partitioned in two.
For example, the obvious linear inclusions [0, 1

2
]→ [0, 1] and [1

2
, 1]→ [0, 1] intersect in the

point 1
2

: 1→ [0, 1].

9.3. Definition. A coverage on C is called compatible with a given abstract interval
(I, 0, 1, l, r) if the family {l, r} covers I.

It seems natural at this point to discuss a non-example. Let Arc→ Top be the full
subcategory determined by the arcwise connected spaces. It has an obvious interval object
with underlying space [0, 1] and it is clear that every object in Arc is arcwise connected
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in the sense of Definition 8.2. One may naturally wonder if the canonical topology on
Arc is compatible with the interval object (in the sense of Definition 9.3). The answer is
negative. This is the result mentioned at the end of p. 239 in [4] (and attributed to Isbell
[3]): the sieve generated by l, r : I → I is not universally effective-epimorphic. See also
the first paragraph in p. 502 of [13].

Assume now that (C, J) is a (connected and) locally connected site.

9.4. Lemma. If J is compatible with the interval object I then the canonical functor
C → Shv(C, J) sends the square

1

1
��

0 // I

r

��
I

l
// I

in C to a pushout in Shv(C, J).

Proof. First observe that since toposes have ‘effective unions’ (see Proposition A1.4.3 in
[6]) then the following general fact holds. If, in a topos, the square below

A

b
��

c // C

r

��
B

l
// D

is a pullback with all maps mono and such that the maps in the cospan l : B → D ← C : r
are jointly epic then the square is also a pushout. Now assume that the square of monos is a
pullback in the site C and that the cospan l : B → D ← C : r J-covers D. The composite
C → Ĉ → Shv(C, J) of the Yoneda embedding followed by sheafification preserves the
pullback and sends the cospan to a jointly epic family, so we can apply the previous
observation.

Loosely speaking, every J-sheaf ‘perceives’ the square in the statement of Lemma 9.4
as a pushout in Ĉ.

9.5. Lemma. [Main Lemma] Assume that J is compatible with the interval object. If X
is in Shv(C, J) then for every x, x′ ∈ X1, x and x′ are connectable if and only if they can
be connected by a cospan 0 : 1→ I ← 1 : 1.

Proof. One direction is trivial. So assume that x and x′ are connectable. Lemma 8.6
implies that x and x′ are connectable by a combinatorial arc. For the moment let us
assume that they are connectable by a combinatorial arc of length 2 as in the diagram
below.

x y1
�oo � // x1 y2

�oo � // x′

1
0
// I 1

1
oo

0
// I 1

1
oo
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Lemma 9.4 implies the existence of a y ∈ XI such that y · l = y1 and y · r = y2. So the
following diagram

x y1
�oo y�oo � // x1

� // x′

1

0

88
0 // I

l // I I
roo 11oo

1

gg

shows that x and x′ can be connected by a single cospan of the form 0 : 1→ I ← 1 : 1.
Iterating the idea we can reduce a combinatorial arc of any length connecting x and x′ to
a single cospan.

We can now formulate our main tool to produce examples of cohesive and sufficiently
cohesive Grothendieck toposes.

9.6. Proposition. Let (C, J) be a connected and locally connected site such that every
object of C has a point, so that p : Shv(C, J)→ Set is pre-cohesive. Assume that C is
equipped with an abstract interval. If J is compatible with the interval and every object of
C is arcwise connected then p is cohesive and sufficiently cohesive.

Proof. We must show that p : Shv(C, J)→ Set satisfies Sufficient Cohesion and Con-
tinuity. Sufficient Cohesion follows from disjointness of 0, 1 : 1→ I (see [15]). To prove
that Continuity holds we must show that the canonical morphism γ : p!(X

p∗S)→ (p!X)S

is an iso.
The fact that γ is epi follows from general considerations about the Nullstellensatz

and Set. Indeed, the map θ : p∗X → p!X is epi by the Nullstellensatz, so the product
θS : (p∗X)S → (p!X)S in Set is also epi by Internal Choice. Moreover, the adjunction
p∗ a p∗ : E → S is strong if we consider E as an S-category (see p. 129 in [1]) so we have an
iso p∗(X

p∗S) ∼= (p∗X)S. Therefore, the top-right composite in the following commutative
diagram

p∗(X
p∗S)

θ
�� %%

∼= // (p∗X)S

θS

��
p!(X

p∗S) γ
// (p!X)S

is epi and hence, the bottom map is also epi.
It remains to show that γ : p!(X

p∗S)→ (p!X)S is mono. We show that the function
γ : p!(

∏
s∈S X)→

∏
s∈S p!X is injective. An element in p!(

∏
s∈S X) may be described as

a tensor (xs | s ∈ S)⊗ 1 where (xs | s ∈ S) is an indexed collection of elements xs ∈ X1
and γ sends it to the indexed collection (xs ⊗ 1 | s ∈ S) ∈

∏
s∈S p!X.

Let (xs | s ∈ S)⊗ 1 and (x′s | s ∈ S)⊗ 1 be two elements in the set p!(
∏

s∈S X) such
that (xs ⊗ 1 | s ∈ S) = (x′s ⊗ 1 | s ∈ S) in

∏
s∈S p!X. This means that for each s ∈ S,

xs ⊗ 1 = x′s ⊗ 1 in p!X. By Lemma 9.5 there is, for each s ∈ S, a ys ∈ XI such that
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ys · 0 = xs and ys · 1 = x′s. It follows that the collection (ys | s ∈ S) in
∏

s∈S XI wit-
nesses that the cospan 0 : 1→ I ← 1 : 1 connects (xs | s ∈ S) and (x′s | s ∈ S) in

∏
s∈S X1.

Hence, (xs | s ∈ S)⊗ 1 = (x′s | s ∈ S)⊗ 1 in p!(
∏

s∈S X).

10. Three concrete examples

For brevity let us define an interval to be a subset [a, b] ⊆ R with a ≤ b ∈ R. Of course,
there are two cases: a = b or a < b. A function f : [a, b]→ [c, d] is called linear if there
are u, v ∈ R such that fx = ux+ v for every x ∈ [a, b].

Let L be the category of intervals and linear functions between them. Notice that L
has a terminal object and every object has a point. (Indeed, L is equivalent to the result
of splitting all constant maps in the monoid of linear endos of [0, 1].) Similarly, we can
define A as the category of intervals and polynomial (with coefficients in R) functions
between them.

The categories L and A have an interval object ([0, 1], 0, 1, l, r) with lx = x
2

and
rx = x+1

2
. Moreover, all objects are arcwise connected because for every x, y ∈ [a, b] there

is a (unique) linear map f : [0, 1]→ [a, b] such that f0 = x and f1 = y.

10.1. Definition. A partition of an interval [a, b] ⊆ R with a < b is a sequence of reals
a < r1 < . . . < rm < b for some m ∈ N. For such a partition we may also denote a by r0

and b by rm+1.

For any a < b ∈ R define K[a, b] to be the set of families

([ri, ri+1]→ [a, b] | 0 ≤ i ≤ m)

of linear inclusions determined by a partition of [a, b] as above. Define also K1 to be the
set consisting only of the trivial family given by the identity.

10.2. Lemma. K is a basis for a Grothendieck topology on L and on A. Moreover, it is
connected, locally connected and compatible with the abstract interval described above.

Proof. Identities cover and it is clear that partitions can be ‘composed’. So we need
only prove that the ‘covering’ axiom holds. Let f : [a, b]→ [c, d] be a polynomial map
between two intervals in R. Let c < s < d and consider the (finite) set of zeros of the
polynomial fx− s. This set determines a partition a < r1 < . . . < rm < b and we claim
that for every i ≤ m, f [ri, ri+1] ⊆ [c, s] or f [ri, ri+1] ⊆ [s, d]. For assume otherwise, then
there exists a 0 ≤ j ≤ m such that f(rj) < s < f(rj+1) or f(rj+1) < s < f(rj). In any
case, the intermediate value theorem implies the existence of a rj < r < rj+1 such that
fr = s. But this is absurd because r would be a ‘new’ zero of fx− s. Using the fact just
proved and induction it is easy to show that for every partition c < s1 < . . . < sn < d of
[c, d] there is a partition a < r1 < . . . < rm < b such that for every i ≤ m there is j ≤ n
such that f [ri, ri+1] ⊆ [sj, sj+1].

The site has a terminal object and the covering families are obviously connected.
Finally, the family {l, r} is iso to the covering {[0, 1

2
]→ [0, 1], [1

2
, 1]→ [0, 1]} in K[0, 1] so

K is compatible with the abstract interval.
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Altogether both sites (L, K) and (A, K) satisfy the hypotheses of Proposition 9.6 so
they induce cohesive and sufficiently cohesive toposes over Set.

In order to visualize an arbitrary object in the resulting toposes, say (L, K), we can
apply a similar idea to that attributed to Lawvere in p. 239 of [4]. Consider the category
L as consisting of two objects I and 1. For an arbitrary X in Shv(L, K), we may think
of X1 as the set of underlying points and XI as the collection of ‘paths’ in X. Since
each map 1→ I determines a function XI → X1, each ‘path’ a in XI determines the
collection (a · i ∈ X1 | i : 1→ I) of points of X touched by the path.

The sites (L, K) and (A, K) are not subcanonical but it is not difficult to give a
subcanonical alternatives. Let us consider the case of (L, K).

10.3. Definition. Let f : [a, b]→ [c, d] be a continuous map between intervals. A dis-
section of f is a family (gv : Iv → [a, b] | v ∈ V ) in K[a, b] such that every fgv : Iv → [c, d]
is in L. The map f is called (continuous) piecewise-linear if it has a dissection.

Experience with traditional examples suggests the following fact.

10.4. Lemma. Identities are piecewise-linear and piecewise-linear maps are closed under
composition.

Proof. Identities are piecewise-linear because the trivial covering family in KB is a
dissection of the identity on B. To prove closure under composition let f and g as below

B0
g // B1

f // B2

be piecewise-linear, and let the following covering families (fu : Lu → B1 | u ∈ U) ∈ KB1

and (gv : Lv → B0 | v ∈ V ) ∈ KB0 be corresponding dissections. In particular, the com-
posite ggv : Lv → B1 is in L for every v ∈ V . So, as (L, K) is a site, there is a covering
(hv,w : Lv,w → Lv | w ∈ Wv) ∈ KLv such that for every w ∈ Wv there is a u ∈ U and a
commutative diagram

Lv,w

hv,w
��

// Lu

fu
��

Lv gv
// B0 g

// B1

in L. Now, the composite Lu
fu // B1

f // B2 is also in L by hypothesis so the composite

Lv,w
hv,w // Lv

gv // B0
g // B1

f // B2

is also in L, for every v ∈ V and w ∈ Wv. But the indexed collection

(gvhv,w : Lv,w → B0 | v ∈ V,w ∈ Wv)

is in KB0 because K is the basis of a Grothendieck topology on L. Hence, this family is
a dissection witnessing that fg : B0 → B2 is piecewise-linear.
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Let Lp be the category whose objects are those of L and whose maps are the piecewise-
linear ones. There is an obvious inclusion L→ Lp.

10.5. Lemma. The function K is a basis for a Grothendieck topology on Lp and the
induced Shv(L, K)→ Shv(Lp, K) is an equivalence. Moreover, the site (Lp, K) is sub-
canonical.

Proof. We must prove that the covering axiom holds for the pair (Lp, K). This can be
proved using an argument similar to that of Lemma 10.4. The equivalence between the
sheaf toposes will follow from an application of the Comparison Lemma (Theorem C2.2.3
in [6]). This result is formulated in terms of Grothendieck coverages so we give some of
the details. Let Jp assign to each object A of Lp the set JpA of sieves that contain all
the maps in some K-cover. By Exercise III.3 in [14] Jp is a Grothendieck coverage on
Lp and Shv(Lp, K) = Shv(Lp, Jp). We now prove that L→ Lp is a dense subcategory in
the sense of Definition C2.2.1 in [6]. Since L→ Lp is bijective on objects we need only
worry about proving that for any map f : B′ → B in Lp there is a Jp-covering sieve of B′

generated by maps g for which the composite fg is in L. For this, just take any dissection
of f . Now the Comparison Lemma implies that restricting along L→ Lp induces an
equivalence Shv(Lp, Jp)→ Shv(L, J) where J is the Grothendieck coverage defined by
declaring JA to be the set of sieves of the form S ∩ L for some S ∈ JpA. It is clear that a
sieve in L is in JA if and only if it contains all the maps in some K-cover. In other words,
J is the Grothendieck coverage induced by the basis K on A. So Shv(L, J) = Shv(L, K)
and, altogether:

Shv(Lp, K) = Shv(Lp, Jp)
∼= // Shv(L, J) = Shv(L, K)

is an equivalence.
To prove subcanonicity we must show that Lp( , A) is a K-sheaf for the site (Lp, K)

for any object A in Lp. So let (gv : Bv → B | v ∈ V ) be a cover of B in K and let
(fv : Bv → A | v ∈ V ) be a compatible family of maps in Lp. The K-coverings are finite
closed coverings in the classical sense and so they are effective epimorphic in Top (Propo-
sition 4 § 3.2 in [2]). Hence, there exists a unique continuous f : B → A amalgamating
the fv’s. Moreover, the fact that each of the fv’s is piecewise-linear implies that f also
is.

An analogous argument produces a subcanonical site for Shv(A, K) in terms of
piecewise-polynomial maps.

An alternative argument might show that the full image of L→ L̂→ Shv(L, K) co-
incides with Lp. The topos Shv(L, K) = Shv(Lp, K) may be a natural setting to develop
piecewise linear topology as treated in [16]. We still do not have enough evidence to
support this claim, but the following seems relevant.

Let us denote the pre-cohesive topos of simplicial sets by p : ∆̂→ Set and the ‘piece-
wise linear topos’ above by f : Shv(L, K)→ ∆̂.
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10.6. Proposition. There exists a geometric morphism g : Shv(L, K)→ ∆̂ such that
the diagram on the left below commutes

Shv(L, K)

f %%

g // ∆̂

p

��

p∗(g∗X)

=

��

θ // p!(g∗X)

λ
��

Set f∗X θ
// f!X

commutes and, also, g ‘preserves pieces’ in the sense that there exists a natural iso
λ : p!g∗ → f! such that the square on the right above commutes for every X in Shv(L, K).

Proof. Let us denote Shv(L, K) = Shv(Lp, K) by F . To prove the existence of the

morphism g : F → ∆̂ recall that ∆̂ classifies total orders with distinct endpoints. For
brevity let us call these structures orders, as in VIII.8 of [14]. (See also Section 7 in [4].)

It is clear from the discussion of F above that the sheafification of L( , I) in L̂ is Lp( , I)
in F . For comfort we write I instead of L( , I). Let us first prove that I is a partial order

with distinct endpoints 0, 1 : 1→ I in L̂. Let PI ⊆ I2I = L(I, I)× L(I, I) be the subset
of those pairs (α, β) of linear maps such that for every x ∈ I = [0, 1], αx ≤ βx where ‘≤’
here is the standard linear order of [0, 1]. It is easy to check that this defines a presheaf
P on L such that the subobject P → I2 is a partial order with the intended (distinct)

endpoints. The sheafification functor a : L̂→ F preserves this structure so aP → (aI)2 is
a partially ordered set in F with distinct endpoints. To prove that it is a linear order we
must show that aP + (aP )op → (aI)2 is epi in F , where (aP )op → (aI)2 is the opposite of
the partial order aP → (aI)2. In turn, it is enough to show that P + P op → I2 is locally

surjective in L̂ (see III.7.6 in [14]). The intuition is clear: I2 is a ‘unit square’, P → I2

is the ‘closed triangle’ above the diagonal and P op → I2 is the closed triangle below the
diagonal.

To prove local surjectivity let us consider a ‘path in the square’ t = 〈α, β〉 : I→ I2.
Such a ‘path’ is just an element (α, β) ∈ I2I = L(I, I)× L(I, I). For definiteness we fix
a, b, c, d ∈ R such that αx = ax+ b and βx = cx+ d for all x ∈ I = [0, 1]. If αx ≤ βx for
every x ∈ I then t factors through P . On the other hand, if βx ≤ αx for every x ∈ I
then t factors through P op. So let us analyse in more detail what happens if t ‘touches’
the diagonal. That is, let us assume that there exists an r ∈ I such that αr = βr. Then
ar + b = cr + d and so (a− c)r = d− b. Now either a = c or a 6= c. If a = c then 0 = d− b
so b = d and in this case t is the diagonal, which factors through P and also through P op.
In the case that, a 6= c then r = d−b

a−c and we can consider the K-cover on I determined
by the partition [0, r]→ I← [r, 1]. We claim that the restriction t0 of t to [0, r] factors
through P and that the restriction t1 of t to [r, 1] factors through P op. Indeed, if x ≤ r
then x(a− c) ≤ d− b and so ax+ b ≤ cx+ d which means that αx ≤ βx for every x ≤ r,
and hence that t0 : [0, r]→ I2 factors through P . Similarly, t1 : [r, 1]→ I2 factors through
P op. Altogether, aI = Lp( , I) in F can be equipped with the order structure described

above and so there exists a geometric morphism g : F → ∆̂ over Set.
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To prove the second part of the statement let [1] in ∆ be the total order with two
elements. By Theorem VIII.8.5 in [14] the representable ∆( , [1]) is the universal order
and so we may assume that g∗(∆( , [1])) = aI = Lp( , I) in F . By Example 8.10 ∆( , [1])

is a connector for p : ∆̂→ Set and by Lemma 8.13 Lp( , I) is a connector for f : F → Set.
So the two conspicuous horizontal forks below are coequalizers

p∗((g∗X)∆( ,[1]))

∼=
��

p∗ev0 //

p∗ev1
// p∗(g∗X)

=

��

θ // p!(g∗X)

��
f∗(X

g∗∆( ,[1])) =
// f∗(X

Lp( ,I))
f∗ev0 //

f∗ev1
// f∗X

θ // f!X

for every X in F . Also, for general reasons, there is a canonical iso p∗((g∗X)T )→ f∗(X
g∗T )

for every X in F and T in ∆̂. So the left rectangle above commutes and, since the vertical
maps are isos, the induced right vertical map is also an iso and makes the right square
commute.

The cohesive F → Set and others suggested below should be contrasted with the
topological topos J described in [4] and in Example 4.4. Although the details are still to
be checked, Proposition 10.6 suggests that our topos F contains a reasonable category of
polyhedra and continuous piecewise linear maps between them, and that the geometric
morphism g : F → ∆̂ behaves as a ‘geometric-realization/singular-complex’ adjunction.
Of course, the topos F is not as fully related to classical topology as J . On the other
hand, J → Set is not pre-cohesive.

(The ‘pieces preserving’ geometric morphisms between pre-cohesive toposes hinted at
in Proposition 10.6 are the theme of joint research with F. Marmolejo.)

As a third example, we may also consider the category C with the same objects
as L (and A) and, as morphisms, all the continuous f : A→ B such that for every
(hv : Bv → B | v ∈ V ) ∈ KB there exists a (gu : Au → A | u ∈ U) ∈ KA such that each
fgu factors through some hv. The pair (C, K) is obviously a site and the induced
Shv(C, K)→ Set is cohesive and sufficiently cohesive by Proposition 9.6. We don’t
know much about the continuous functions defining the site, but there it is. Facing
these examples one naturally wonders about the existence of other intermediate monoids
A ⊆M ⊆ C inducing cohesive toposes.

Also, the reader is invited to check if there are analogues of Proposition 10.6 for the
toposes Shv(A, K) and Shv(C, K).

Finally, it would be good if (at least some of) the results in this paper could be
proved over an arbitrary base. In particular, it should be possible to prove a version of
Theorem 7.4. Of course, the general aim is to understand the Continuity condition over
an ‘arbitrary’ base and without boundedness conditions. Recent progress to be discussed
elsewhere shows that the codomain of a cohesive geometric morphism must satisfy internal
choice. On the other hand, we don’t know if the pre-cohesive examples over atomic toposes
discussed in [15] satisfy Continuity.
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[16] C. P. Rourke and B. J. Sanderson. Introduction to piecewise-linear topology. Springer
Study Edition. Springer-Verlag, Berlin, 1982. Reprint.

[17] M. Roy. The topos of Ball Complexes. PhD thesis, University of New York at Buffalo,
1997.

Departamento de Matemática
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