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Abstract. Model Driven Engineering (MDE) proposes a software development 
process in which software is built by constructing one or more models, and 
transforming these into other models. In turn these output models may be 
transformed into another set of models until finally the output consists of 
program code that can be executed. Model transformation is the MDE engine. 
The QVT Language is a concrete linguistic object for expressing model 
transformations with a hybrid declarative/imperative nature. The semantics of 
the QVT is informally defined in natural language or  by its translation to a 
formal language, but these approaches are only focused on one dialect of QVT: 
Relations Language or Operational Mappings Language. They do not cover the 
hybrid nature of QVT. In this paper we provide a formal semantics for the 
entire QVT language, embracing and synchronizing its two dimensions: 
declarative and operational. 
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1. Introduction 
 
    Model Driven Architecture (MDA) [1] [2] and Model Driven Engineering (MDE) [3]  
[4] propose a software development process in which the key notions are models and 
model transformations. In this process, software is built by constructing one or more 
models, and transforming these into other models. In turn these output models may be 
transformed into another set of models until finally the output consists of program code 
that can be executed.  
    Model transformation is the MDE engine, playing a relevant role; models are no 
longer mere contemplative entities and become productive entities. The MDE initiative 
covers a broad spectrum of research areas: modeling languages, definition of languages 
for model transformation, construction of support tools, etc. Currently, some of these 
aspects are well-based, and are being applied with some success; however, other aspects 
are still undergoing their definition process. In this context, it is necessary to make every 
effort to convert MDE and its concepts and related techniques into a coherent proposal, 
based on open standards, and supported by mature tools and techniques. The definition of 
model transformations requires the application of specific languages; these languages 
should have a formal base, and at least a metamodel describing their abstract syntax and 
they should be amenable to be automatically treated.  
    In MDA, model transformations have become a relevant issue by means of the 
forthcoming standard Query/Views/Transformations (QVT) [5]. The QVT Language 



is a concrete linguistic object for expressing model transformations with a hybrid 
declarative/imperative nature. QVT includes an abstract syntax that is rigorously 
defined trough a metamodel, but its semantics, like the semantics of others languages 
inspired by QVT, such as: ATL[6], Kent[7] and TefKat [8], is only informally 
expressed by using natural language (see Section 7.10 and Annex B in [5]).  
    The aim of this article is to formally define a semantics for QVT, - considering 
both declarative level and imperative (or operational) level - applying the intuitive 
Theory of Problems [9] [10]. By having the semantics of this language defined in a 
precise form, we will be able to prove the fulfillment of certain properties and 
correctness conditions between its declarative and operational levels. 
    The organization of this paper is as follows: the theory of problems formalism is 
presented in Section 2. Section 3 shows the relationship between computational 
languages and the aforementioned formalism; in particular the connection between 
QVT and the theory of problems is analyzed. Section 4 presents a precise definition of 
the QVT semantics and enunciates its correctness condition. Finally, conclusions and 
related works are presented.  
 
2. The basic formalism: the concept of problem and the concept of 
solution 
 

In this section we will summarize the main concepts comprising the intuitive 
theory of problems. In the last years the algebraic theory of problems has been used as 
foundation for calculus for program derivation, such as Fork algebras [11].  
    A problem for this theory is a quadruple P = < D,R,q,I> where D is the data domain 
and R is the result domain (both subsets of a fixed set U which will be called 
discourse universe), while q is a binary relation on DxR which is the specification of 
the problem, i.e., an element d of the data domain D and an element r of the result 
domain R are in the relation q if and only if r is an accepted result for d in that 
problem. In other words, q is the condition of the problem. The fourth element of the 
quadruple will be treated later.  

For example, if we want to derive Java code from UML class diagrams, the data 
domain D will consist of UML classes and associations among others; the result 
domain will be the set of Java programs and the condition q will relate every UML 
class d belonging to D with some elements in R, each of which will be an acceptable 
Java implementation for the UML class d. 

We may be interested in deriving the code only for persistent classes, which is 
obviously a subset of the domain of all the UML classes. In this case, we will say that 
the subset made up from persistent classes is the set of interest instances of our 
problem¸ which is the fourth element, I, of our quadruple.   

We will say that a problem is feasible if and only if  there is for each datum d of 
the set I of the interest instances at least an element r belonging to the results domain 
R, so that the pair <d,r> belongs to the condition q. That is to say, q must be defined 
for the whole set of the interest instances: 
(Feasibility condition)    (∀d) ( d ∈ I  →  (∃r) ( r ∈ R  ∧  q(d, r) ) )  

Now, what does a solution for the problem P mean? The existential quantification 
in the feasibility condition means that for a given datum there is a result related with it 



because of the condition¸ or what is the same, for a given datum d there are pairs 
<d,r> in the condition of the problem, and we must choose which one we are 
interested in. It seems impossible to generalize the choice of an arc of the condition 
containing a given datum in an effective method (in a reasonable sense) for obtaining 
problem solutions.    For example, consider the derivation of Java code from UML 
class diagrams, a typical algorithm of the British Museum type, such as taking 
elements from the set of Java programs and verifying which ones implement the UML 
classes, does not seem the most satisfactory method to solve the problem of code 
derivation. Now then, having an effective procedure for building the result is very 
different from having to choose points in a relation. In our example of code 
derivation, using the British Museum algorithm is very different from knowing an 
algorithm to calculate the code from UML classes.  So, a solution must be a function 
of D in R which fulfills the condition q for the set of interest instances. But, also a 
solution should hold the property α, which is called the admissibility context.  In 
particular, we are interested in solutions being amenable to be calculated by an 
efficient computer algorithm (i.e. no more than polynomial complexity). Let us call 
α-solution to functions having such characteristics and let us call  ΩP to the set of all 
α-solutions of a problem P. 
 
3. The QVT language and the theory of problems  
 
    Before presenting the relationship between QVT and the theory of problems, in this 
section we analyze, from a more general point of view, the relationship between 
computational languages and this theory, as follows: 
Problems as well as solutions are expressed by means of statements that are written in 
a given language which has its own syntax and semantics. Let us introduce some 
simple considerations about declarative languages and imperative languages, from 
the perspective of the theory of problems, pointing out the difference between 
syntactic and semantic aspects. 
    Declarative Languages for the description of problems: Problems are expressed 
by means of statements that are written in a declarative language LD which has its own 
syntax and a semantics given by a function μ. The role of this semantic function μ is 
to allow us to give a meaning to the statements of problems, associating each 
statement Spec, written in language LD, to the problem P = μ[Spec] specified by the 
statement. Thus, we must distinguish statements from problems. A problem is an 
abstract and ideal mathematical object.  On the other hand, a statement is a concrete 
linguistic object, to the effect that its text consists of a group of symbols (or 
diagrams). The connection between them occurs by means of the semantic function μ 
which allows us to define problems from its statements. 
    Imperative languages for the description of solutions: Solutions are expressed 
by means of programs, now written in a given algorithmic language LA, which, 
besides its syntax, has semantics given by a function υ. The role of this function is, as 
in the case of μ for problems, to associate each (text of) program Impl, written in 
language LA, to the α-function δ = υ [Impl] denoted by Impl.  As in the case of 
problems, it is important to distinguish programs from functions: a function is an 
abstract and ideal mathematical object, while a program is a concrete linguistic object 



(to the effect that it consists of a set of symbols or diagrams). The connection between 
both of them occurs by means of the semantic function υ. That is to say, a program is 
a description of an α-function. 
   Due to the hybrid nature of QVT that embraces two kinds of languages, to apply a 
two-level formalism for defining its semantics seems to be the right choice. There is a 
close connection between the central concepts of the formalism (problem and 
solution) and the two levels of QVT (declarative and imperative). 

3.1 Declarative QVT vs. imperative QVT  

The QVT Language [5] is a concrete linguistic object for expressing model 
transformations with a hybrid declarative/imperative nature, so it allows developers to 
express problems as well as solutions in the domain of model transformations. In this 
section we will explain the connection between the standard QVT language and the 
algebraic theory of problems. 

The declarative parts of QVT (named Relations Language) allows for the creation 
of declarative specification of the relationships between MOF [12] models. It supports 
complex object pattern matching. In the Declarative QVT a transformation defines 
how one set of models can be transformed into another. It contains a set of relations, 
which are the basic units of transformation behavior specification in the relations 
language. A relation is defined by two or more relation domains that specify the 
model elements that are to be related, a when clause that specifies the conditions 
under which the relationship needs to hold, and a where clause that specifies the 
condition that must be satisfied by the model elements that are being related.  

In addition to the declarative language there is an operational language (named 
Operational Mappings Language) for invoking imperative implementations of 
transformations. This language provides OCL [13] extensions with side effects that 
allow a more procedural style, and a concrete syntax that looks similar to the syntax 
of imperative programming languages. The imperative expressions in QVT realize a 
compromise between some functional features found in OCL and the more traditional 
constructs that we found in general purpose languages like Java. An operational 
transformation represents the definition of an unidirectional transformation that is 
expressed imperatively. It consists on a list of mapping operations which are 
operations that implement a mapping between one or more source model elements 
into one or more target model elements. A mapping operation is syntactically 
described by a signature, a guard (a when clause), a mapping body and a post-
condition (a where clause). A mapping operation is always a refinement of a relation 
which is the owner of the when and where clauses. Thus, when we refer to the QVT 
transformation language, we must bear in mind two different kinds of linguistic 
constructions:  
- the statements of relations written in declarative QVT language, which denote 
problems in the terms of the algebraic theory of problems,  
- and the descriptions of mappings written in operational QVT language, which 
denote solutions in the terms of the algebraic theory of problems. Notice that the 
operational mappings language is executable [18]. Figure 1 shows the connection 
between the two QVT linguistic levels and the theory of problems. Function 



μ defines the semantics of declarative expressions in terms of problems, while 
function υ gives the semantics of imperative constructions in terms of solutions.  In 
the following sections, we present the formal definition of both semantic functions. 

 
Figure 1. QVT language semantics in terms of the algebraic theory of problems. 

 
4. A two-level semantics for QVT  
 
    In this section we will define the semantic functions on the QVT language. For the 
definition of these functions we choose to use the OCL specification language instead 
of some another first order-logic language, for being a standard language widely 
known by the modeling community; it is also sufficiently expressive and friendly to 
use.  
 
4.1 Semantics for Relational QVT  
 
    The abstract syntax of the declarative level of QVT is specified by means of the 
Relational Transformation metamodel, that is shown (lightly simplified) in Figure 2.    
As we already said, a relational transformation T basically consists of relations, 
therefore the semantics of T will be defined in terms of the semantics of its 
component relations. Let's analyze the semantic function μ applied on a 
transformation T, written in Relational QVT. This function interprets the relational 
language in the problems space of the Theory of Problems, as follows: 
 
μ: RelationalTransformation -> PROBLEM 
 
   Before defining the semantics of the whole transformation, let's see how the 
semantics of the Relations conforming the transformation are defined and then how to 
define the semantics for the whole Transformation. 
 
 μ: Relation -> PROBLEM 



 
Figure 2. Relational Transformation metamodel. 

 
   The semantics domain, named  PROBLEM, is a tuple  <D, R, q, I> and is specified 
in OCL in the following way:   
PROBLEM = TupleType (dom: Set(NamedElement), res: Set(NamedElement), 
q: Set (TupleType ( d: NamedElement, cod:  NamedElement ) ), i: 
Set(NamedElement) ) 
 
   Let r be a Relation: 
μ (r).dom  = r.dom().pattern.templateExp.bindTo.type.allInstances    
The data domain of the relation is the set of all instances of the variable type defined 
in the domain1. 
μ (r).res  = r.coDom().pattern.templateExp.bindTo.type.allInstances    
The result domain of the relation is the set of all instances of the variable type defined 
in the coDomain,  
where dom() and coDom() are query operations that respectively result in domain and 
codomain of a Relation. They are defined as follows: 
Relation:: dom(): RelationDomain,   
dom = self.domain->first()  
Relation:: coDom(): RelationDomain,   
coDom = self.domain->last() 
μ (r).q =   μ ( r).dom  -> product ( μ ( r).res ) -> select (Tuple { d , cod } |  
r.where.predicate.conditionExpression [r. 

                                                 
1 We think, for simplicity, that domain and codomain of every relation are composed by only 
one variable declaration, that is to say: r.dom ().pattern.templateExp.bindTo-> size () = 1 and 
r.coDom (). pattern.templateExp.bindTo-> size () = 1 
 



dom().pattern.templateExp.bindTo.varName /d.name] 
[r.coDom().pattern.templateExp.bindTo.varName/cod.name ] ) 
The relation condition q is the set of pairs of instances of domain and codomain 
respectively, that satisfy the where clause of the relation. 
μ (r).i =μ (r).dom -> select ( d | r.when.predicate.conditionExpression  
[r.dom().pattern.templateExp.bindTo.varName / d.name]) 
The set of interest instances of the Relation is the set of instances of the variable 
defined in the domain that satisfy the when clause of the relation. Like in the case of 
q, the corresponding replacement of variable names was applied.  
    After having defined the semantics for Relations, we can define the semantics for 
RelationalTransformation: every component of the transformation semantics is the 
union of the corresponding components of every topLevel Relation in the 
Transformation, for example, the data domain of the transformation is the union of 
the data domain of all the top level relations that make up the transformation. 

Let t be a RelationalTransformation: 
μ (t).dom  =  t.rule -> select (r : Relation | r.isTopLevel) -> collect (r: Relation | μ( 
r).dom) -> flatten( ) -> asSet 
μ (t).res  = t.rule -> select (r : Relation | r.isTopLevel)-> collect (r: Relation | μ( r).res) 
->  
flatten( ) -> asSet 
μ (t).q = t. rule -> select (r : Relation | r.isTopLevel)-> collect (r: Relation | μ( r).q) ->  
flatten( ) -> asSet 
μ (t).i = t.rule -> select (r : Relation | r.isTopLevel) -> collect (r: Relation | μ( r).i) ->  
flatten( ) -> asSet 
 

4.2 Semantics for Operational QVT  
 
   The operational level of QVT has an abstract syntax that is specified by means of 
metamodels. Figures 3, 4 and 5 show the principal metaclasses: 
OperationalTransformation,  ImperativeOperation2 and ImperativeExpression. In 
Operational QVT, the imperative expressions constitute an extension of OCL since 
they are subclasses of OCLExpression, but they can produce changes in the 
environment and in the store. Therefore, the Operational QVT semantics, which 
includes the imperative expressions semantics, was expressed following the notation 
used in the definition of the OCL semantics (i.e., semantic function I defined in 
Annex A of [13]) which is based on the Ph.D thesis of Richters [15].  
   The semantics is defined for no-blackbox transformations, which start their 
execution by invoking an entryOperation. This operation rises the execution of the 
remaining imperative expressions.  The EntryOperation is special with regard to the 
rest of the imperative operations. It has no parameters and in its body it has 
invocations that provoke the execution of other imperative operation or the execution 
of another transformation. That is to say, the rest of the operations will not be 
executed in isolation. In the following paragraphs, we define the necessary semantic 
domains and functions to define the semantic function υ  for operational 
transformations: 

                                                 
2 The Imperative Expressions metamodel, with adaptations, can be found in [14], chapter 3. 



Semantic Domains 
   Let´s consider the following domains: 
 
Bvalue, primitive domain for basic values (for example: bool, nat) 
Oids, primitive domain for identifiers of storable values  
Vars, primitive domain for names of variables 
Evalue = Bvalue + Oids, domain for expressible values (i.e. basic values and 
identifiers)  
 

 
Figure 3. Operational Transformation metamodel. 

 
Svalue, domain for storable values (objects) 
Env = [ Vars  -> Evalue ] domain for the environment of variables. An environment 
is a function that binds variable names with expressible values. 
Store = [ Oids  -> Svalue ] domain for the store of objects. A store is an injective 
function that binds object identifiers with objects. 
Σ = ( Env x Store ) domain for states that represents the assignment of values to 
variables. Each state is represented by the environment of execution (Env) and the 
store (Store).    
To evaluate free-side effects OCL expressions, we use the above mentioned standard 
semantics of OCL, named I, which is defined as follows:  
I : OclExpression -> ( Store x Env ) -> Evalue 
    That is to say, the function I considers the states represented by the pair Store x 
Env, in this order, while function υ,  that we define next, considers the states 
represented by the pair Env x Store. 
The semantic function υ    
    The semantic function υ  is applied to the language constructions (expressions) of 
model transformations. This semantics is defined as a function from an initial state to 
a final state. The function is defined on the metamodel hierarchic structure, as 
follows:  
 



 

Figure 4. Imperative Operation metamodel. 

υ : ΟperationalTransformation −>  ( Env x Store ) ->  ( Env  x Store )   
υ : ImperativeOperation −>  ( Env x Store ) ->  ( Env  x Store )   
υ : OperationBody −>  ( Env x Store ) ->  ( Env x Store )   
υ : ImperativeExpression −>  ( Env x Store ) ->  ( Env x Store )  
 
Let δ: Env, σ: Store: 
υ (ot: ΟperationalTransformation) (δ,σ) = υ (ot.entry) (δ,σ) 
The semantics of an OperationalTransformation construction is the result of applying 
υ  to the "main" operation (an EntryOperation) of the transformation, obtained by the 
entry association. 
υ (entry: EntryOperation) (δ,σ) = υ ( entry. body) (δ,σ) 
The semantics of a EntryOperation is the result of applying υ  to the operation body, 
obtained by the body association. 
υ ( body: OperationBody) (δ,σ) = υ  (body.content) (δ,σ) 
The semantics of an operation body is the result of applying υ  to the operation body 
content, obtained by the content association. The body content corresponds to one 
instance of the ImperativeExpression hierarchy. Consequently, from this point of 
view, υ  is the semantic function applied to the ImperativeExpression. In general, the 
execution of ImperativeExpressions produces changes in the environment (Env), not 
in the Store, except when objects are created, for example, by the ObjectExp 
expression.  
Function υ  is applied to ImperativeExpression as follows: 
υ  (e: NullExp) (δ, σ) = (δ, σ)    
The semantics of the NullExp expression is a function that does not produce 
modifications nor in the Env, nor in the Store. 
υ  (e: SeqExp) (δ, σ) = υ  (e.e2 ) (υ  (e.e1) (δ, σ))  



The semantics of the SeqExp expression is the result of firstly apply υ to the first 
component expression of e (e.e1), and soon, in that modified state, to apply υ to the 
second component of e, (e.e2). 
υ  (e:AssigExp) (δ,σ) =  ( δ [ e.left / I (e.value) (σ, δ)], σ)   
The semantics of the AssigExp expression is a function that only modifies the 
environment (Env), binding the left part of e with the result of evaluating by the 
function I, the e.value expression.  
υ  (e:IfExp) (δ, σ) =    υ  (e.thenExpression) (δ, σ), I (e.condition) (σ, δ)  = tt 
   =    υ  (e.elseExpression) (δ, σ),  I (e.condition) (σ, δ)  = ff 
The IfExp expression works like the IfExp of the original OCL. The difference is that 
in this case thenExpression and elseExpression belong to the ImperativeExpression 
hierarchy. 
υ  ( e:WhileExp) (δ, σ) =  (δ, σ) ,     I (e.condition) (σ, δ)  = ff  
                                      =  υ ( e) (υ (e.body) (δ, σ)),  I (e.condition) (σ, δ)  = tt  
The WhileExp expression represents the conditional iteration, with recursive 
definition. It depends of the e.condition evaluation, by the function I. 
υ  ( e:ImperativeCallExp) (δ, σ) =  

υ ( e.referredOperation.body) (δ [self / I ( e.source) (σ, δ)] [ pi / ai], σ) 
The ImperativeCallExp expression (see figure 6) works like the OperationCallExp 
expression. The difference is that in this case the invoking operation belongs to the 
ImperativeExpression hierarchy. In the environment (Env), the pseudo-variable self 
binds to the result of evaluating the receive expression (e.source) and where: 
[ pi / ai ] is the substitution function of every formal parameter named pi for its 
corresponding real argument. The function I must be applied to every argument 
named ai, to obtain its value. 
The index i is such as:  
 i = 1.. (e.referredOperation.parameter-> size());  
pi =e.referredOperation.parameter -> at ( i ).name; ai = I (e. arguments -> at( i )) (σ, δ) 
    Particularly, the invocation to a MappingOperation is defined by a 
MappingCallExp, subclass of ImperativeCallExp (see figure 6). Its structure differs 
from the rest of the imperative operations: it can have initSection, middleSection and 
endSection. On the other hand, TransformationCallExp is also a ImperativeCallExp 
subclass and is used to explicitly invoke another transformation from the body of an 
ImperativeOperation. 
   The class ImperativeCallExp is used for the invocation of the remaining 
ImperativeOperation. 
υ  ( e:MappingCallExp) (δ, σ) =  υ ( e.referredOperation.body.endSection ) 
(υ (e.referredOperation.body.middleSection) 
(υ (e.referredOperation.body.initSection) (δ [self / I ( e.source) (σ, δ)]  [pi / ai ], σ) ) ) 
The semantics of the MappingCallExp expression is the result to incrementally apply 
υ to each body section (from the initial to the ended ones) of the referred operation. 
υ  ( e:TransformationCallExp) (δ, σ) =  υ ( e.referredTransformation) (δ, σ)  
The semantics of the TransformationCallExp expression is the result to apply υ to the 
referred transformation. 
 
 



 
Figure 5. Imperative Expression metamodel. 

 

 
Figure 6. Imperative Expression for invocation and object instantiation. 

 
υ  ( e:ObjectExp) (δ, σ) = (δ [e.referredObject.varName / id], σ [id / obj]) 
An ObjectExp expression (see figure 5) is used for instantiation or creation of new 
objects. ObjectExp has a body and references to a VariableDeclaration 
(referredObject), which has varName and type.  
    Here, the function next_id returns an identifier not used in the store, be id = next_id 
(σ). The identifier is bound to the referred variable by the expression, in the 
environment (δ). The new instance, named obj, binds to the new identifier in the store. 
Obj is an instance conforming the referred variable type, that is to say: 
e.referredObject.type.allInstances -> includes (obj) and satisfices e.body, which 
conforms a ConstructorBody and defines the instance initialization. 



4.3 QVT correctness in its two levels   
    By having the semantics of the QVT language -in its two levels- expressed in terms 
of the theory of problems we are able to formally verify whether a QVT 
implementation is correct with respect to its QVT specification or not. Such 
correctness condition is illustrated by the horizontal arrows in Figure 7 and it is 
defined as follows, 
 
Definition 1. (QVT correctness condition) 
    Let Spec be a transformation specification written in Declarative QVT, and let Imp 
be an implementation written in Operational QVT.  Imp is a correct implementation 
for Spec if and only if the function δP=υ[Impl] is an α-solution for the problem 
P=μ[Spec]. 
 
5. Conclusions and related works 
  
    The QVT Language is a concrete linguistic object for expressing model 
transformations with a hybrid declarative/imperative nature. The QVT language, like 
other MDE concepts, lacks a formal semantics. This drawback hinders the rigorous 
and automatic treatment of the transformations expressed in such language.   
 

 
Figure 7. QVT correctness condition. 

 
    In this paper we have formally defined a semantics for QVT- considering the 
declarative level as well as the operational level - applying the intuitive Theory of 
Problems. As we have already mentioned, the hybrid nature of QVT has a close 
connection with the central concepts of this formalism, that is to say, we identify the 
declarative level with the concept of “problem” and the imperative level with the 
concept of “solution”. For this reason the selection of the theory of problems as 
semantics domain seems to be a reasonably acceptable choice. Regarding the 
correctness of our semantics definition, we are only able to corroborate it intuitively. 
But we are not capable to perform a more deep analysis due to the absence of other 
formal semantics for QVT.  



   On top of this formalization we are able to enunciate correctness conditions between 
both levels of expression. This proposal constitutes a contribution to the maturity of 
the QVT language. By having the semantics of the QVT language expressed in terms 
of the theory of problems we are able to formally specify other mechanisms of model 
transformation languages, for example composition of hybrid transformations. In this 
direction we have implemented an algebra for composing model transformations that 
is supported by this formalization [20]. 
    With respect to works that are related to our approach, the proposal presented in 
[16] develops an algebraic semantics for the MOF metamodeling framework, 
formalizing notions not yet clear in the MOF standard: metamodel, model and 
conformance of a model to its metamodel. By using the Maude language, this formal 
semantics is furthermore executable, and can be used to perform useful formal 
analyses. The authors plan to use this proposal as the kernel of a model management 
tool suite that provides support for QVT and graph-based model transformations 
within the EMF (Eclipse Modeling Framework). 
    In [17] the authors present a model transformation mechanism that is embodied by 
the ModelGen operator. ModelGen has been algebraically specified in Maude 
allowing developers to use formal tools to reason about transformation features, such 
as termination and confluence. The authors indicate how the ModelGen operator 
provides support for the QVT Relations language in the MOMENT (Model 
manageMENT) Framework.  
    In summary, the Semantics of the QVT is semi formally defined using a 
combination of natural language and mathematic notation as we can see in [5] or it is 
implicitly defined by its translation to a formal language, for example, the above 
mentioned translation of QVT Relations language to Maude. On the other hand, the 
implementation of execution engines for QVT- such as SmartQVT [18] for 
operational transformations and ModelMorf [19] for relational transformations – can 
be regarded as operational definitions of the QVT semantics  
   In general, all these works are only focused on one dialect of QVT: Relations 
Language or Operational Mappings Language. However, they do not cover the hybrid 
nature of QVT. This is the main difference with respect to our approach, which is 
expected to provide a formal semantics for the entire QVT language, embracing and 
synchronizing its two dimensions: declarative and operational. Finally, Poernomo in 
[22] develops an approach, not particularly for QVT, defining model transformation 
specifications as types and provably correct transformations as inhabitants of 
specification types.  
   As part of future work we intend to extend our approach, considering other 
semantics issues proposed by Stevens in [21], such as which transformations has 
sense to give them semantics and then, to specify the result of applying such 
semantics. 
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