
Understanding Refinement and Specialization in the UML

C.Pons1, G.Perez1, R.Giandini1 and R.Kutsche2

1 LIFIA – Laboratorio de Investigación y Formación en Informática Avanzada

University of La Plata, Buenos Aires, Argentina - email: cpons@info.unlp.edu.ar
2 TU-Berlin, FB Informatik, Berlin, Germany

ABSTRACT

The old technique of "abstraction and
refinement" makes it possible to understand
complex systems by describing them in successive
levels of detail. On the other hand the more
modern technique of "generalization and
specialization" (or Inheritance) facilitates the
construction of systems by enabling reuse of
specifications. Both techniques enable developers
to specify a taxonomic relationship between a
more general element and a more specific one.

 Abstraction is frequently used as a mere
synonym for generalization -respectively
refinement as a synonym for specialization.
Confusion also stems for the occasional use of the
same specification notation for both concepts.

 However, these terms have different
implications and the lack of distinction is the cause
of much wrong model interpretations.

 The purpose of this article is to analyze both
refinement and specialization relationship between
UML model elements, in order to clarify the main
differences (and similarities) between them.

 Keywords: modeling languages, UML,
semantics, formalization, abstraction, refinement,
generalization, specialization..

1 Introduction
Modeling is the central issue of analysis and

design. A model is a blue print for systems, it
describes the structure and behavior of things
either as they exist or as it is intended to build
them. The model constitutes the fundamental base
of information upon which the problem domain
experts, the analysts, the software developers and
the testers interact. Thus, it is of a fundamental

importance that it clearly and accurately expresses
the essence of the problem, but this goal is difficult
to achieve; models tend to contain errors,
omissions and inconsistencies because they are the
result of a complex and creative activity .

There is an old technique, named "abstraction
and refinement" ?Dijkstra, 76? which provides
great advantages towards the improvement of
model’s clarity and understandability (and as a
consequence model’s accuracy). Abstraction
makes it possible to understand complex systems
and to deal with the major issues before getting
involved in the detail. An abstract model shows
information in only as much detail as necessary; a
refinement is a more detailed description that
conforms to another (its abstractions). Every
property specified in the abstract model holds in
the refinement too, but possibly more properties
hold in the refinement.

Apart from enabling for complexity
management, the refinement technique captures the
essential relationship between specification and
implementation. Development by refinement steps
allows one to check whether the code meets its
specification or not. This relationship can be traced
across refinement steps, from the requirement
specification to the code.

On the other hand, there is a more modern
technique named "generalization and
specialization" (or Inheritance) [Booch, 91? which
is a central issue in the object oriented paradigm. It
is applied to enable reuse, so that less effort is
spent when we re-specify things that have already
been specified in a more abstract or more general
way. In the object oriented paradigm a Class
describes the structure and behavior of a set of
objects (all the instances of that Class). However it
does so incrementally by describing extensions
(increments) to previously defined classes (its

parents or superclasses). Incremental development
applied to Classes originates a subtype relation
between the parent class and the child class. The
more specific element is fully consistent with the
more general element (it has all of its properties,
members, and relationships) and may contain
additional information. For example, to say that all
Savings are BankAccounts is the same as saying
that Savings is a subclass (or subtype) of
BankAccounts. Notice that this mechanism can be
misused leading to subclasses which are not
subtypes, this problem was deeply analyzed in
?Wegner and Zdonik, 88? ?Cook, Hill, and
Canning, 94?.

The standard modeling language UML (Unified
Modeling Language) [UML-OMG, 2001] provides
special notations to specify both relationships
described above: generalization/specialization
relationship is expressed by means of an artifact
named Generalization, while
abstraction/refinement relationship is represented
by an artifact named Abstraction. Figures 3 and 4
show the UML notation for Generalization and
Abstraction, respectively.

 Abstraction artifact relates sets of elements
that represent the same concept at different level of
abstraction or from different point of view.
Frequently this relationship is established between
model elements at different steps in the
development process, such as analysis and design.
Notice that abstraction/refinement relationship can
be established between either two model elements
of the same kind (e.g. an analysis class and a
design class) or two model elements of different
kind (e.g. a use case model being refined by a
collaboration model). On the contrary,
Generalization artifact always appears connecting
two model elements of the same kind.

 There exists strong semantic overlapping
between both relationships; both of them specify a
taxonomic relationship between a more general
element and a more specific one. In practice, this
overlapping is reflected in the fact that abstraction
is often used as a mere synonym for generalization
-respectively refinement as a mere synonym for
specialization. However, each one of these terms
has different implications and the lack of
distinction is the cause of much wrong model
interpretations. .

 The contribution of this article is to provide
insight on the informal dialectic by appealing to
both intuition and to formal definitions. By putting
these concepts on a solid footing we disambiguate

the discourse and provide a foundation for formal
reasoning and analysis.

 Moreover, the UML defines the concept of
GeneralizableElement, which is a model element
that may participate in a Generalization
relationship. As expected, UML defines that a
Class is a GeneralizableElement, but also UML
considers that other model element, such as
Association, Stereotypes, Collaborations and Use
Cases, may be treated as GeneralizableElements.
The concept of generalization/specialization
hierarchy is well understood when it is applied on
Classes and in general it is compatible with the
concept of incremental inheritance hierarchy. In
other words, any element in a
generalization/specialization hierarchy is
considered as an increment of its parents. But, if
we try to keep this compatibility with inheritance,
when the concept of generalization/specialization
hierarchy is extended to other model elements
several contradictions and ambiguities arise.

 In addition we will look for argumentations to
discern which kind of UML model elements can
(properly) participate in a
generalization/specialization hierarchy or in an
abstraction/refinement hierarchy, and which is the
role each model element plays in each hierarchy.

 Our discussion will be organized according to
the primary modeling concepts of the OO
paradigm offering a simple view of a system as a
group of collaborative objects. Therefore, the
primary modeling concepts we will consider are:

1- individual objects (structure and behavior of
individual objects)

2- relationships between individual objects
(associations, aggregations)

3- joint actions (how a group of individual
objects collaborates with each other)

 Abstraction/refinement and
generalization/specialization techniques can be
applied on each one of these modeling concepts.
Considering that objects, its associations and its
collaborations are not independent of each other,
the refinement and/or specialization of one concept
in general impacts on the others.

2 Object Refinement

Let’s analyze the task of creating models of a
single kind of object using the refinement
technique. Let U be an object universe. Let W be a

part of the universe we are interested in describing
(i.e. W? U). The world W can be characterized in
different ways or in different abstraction levels, as
follows:

Let Pw
1, ..., Pw

k be predicates characterizing the
world W.

Each characteristic predicate Pw
i allows one to

distinguish the set of objects in W from the rest of
individuals in the universe; that is to say x belongs
to W if and only if Pw

i (x) holds. Predicate Pw
i is

constructed using observable characteristics of
objects in the universe. For example:

Let U be the set of financial objects, W be the
set of bank accounts, PAccount

1, PAccount
2, PAccount

3 be
predicates characterizing to W, as follows:

PAccount
1(x): "x is a statement of money kept at a

bank”

PAccount
2(x): "x is a record of the valuables that a

customer deposited in a bank, which can be
withdrawn later on"

PAccount
3(x): " x is a statement of money kept at a

bank, identified by a unique number"

A partial order can be defined between the
characteristic predicates in the following way:

Pw
i ? Pw

j if and only if (Pw
i (x) ? Pw

j(x))

We say that Pw
j is more abstract that Pw

i and
that Pw

i is more detailed (or refined) that Pw
j

For example: PAccount
3 ? PAccount

1 , while no
order can be established neither between PAccount

1

and PAccount
2, nor between PAccount

2 and PAccount
3.

Noticed that all the predicates describe the same
world, but in different level of detail or from

different point of view, that is to say:

W= instances(Pw
1) = ... = instances(Pw

k)

Where instances is a function returning the set
of objects characterized by Pw

i , that is to say:
instances(Pw

i) = {x? U | Pw
i(x)}.

Refinement relationship between sets of objects
can be obtained in different ways; the more
frequently occurring form of refinement is the
incremental refinement consisting in defining an
extension (or increment) of a model in order to
obtain a more detailed or specific one. If P is a
predicate characterizing world W, and P´ has the
form (P? Q) being Q any predicate, it is
straightforward to prove that P´ ? P, because the
formulae (P? Q? P) is a tautology. We have
observed two forms of incremental refinement:

Case a. "Homogeneous Refinement".

An homogeneous incremental object refinement
occurs when the increment applies to all the
individuals in the world. For example PAccount

3 is a
homogeneous refinement of PAccount

1. Figure 1
shows on the left hand side a hierarchy of Bank
Account specification and on the right hand side a
possible set of instances described by them. The
top level contains an abstract description of Bank
Account, then the bottom level contains a more
refined descriptions obtained by adding details to
the previous one that apply to all the individuals in
the set (i.e. all the accounts in the bank have got a
unique identification number).

Case b: "Heterogeneous Refinement".

As a consequence of adding more and more
detail to the description, we usually discover a new
characteristic that it is not present in all the

Figure 1: Homogeneous refinement

<<refine>>

a1: Account
balance=1000

a2: Account
balance=5400

a3: Account
balance=250

a1: Account
balance=1000
id-number=224-99

a2: Account
balance=5400
id-number=34-98

a3: Account
balance=250
id-number=344-01

ZOOM OUT ZOOM IN

PAccount
1

PAccount
3

<<specify>>

<<specify>>

individuals in the world, that is to say different
subsets have different characteristics. Then world
W becomes partitioned into two or more sub-
worlds:

W = W1 ? ...? Wn

Characterization of world W is obtained from
the characterization of its sub-worlds, as follows:

? x ? (PW(x) ? PW1(x) ? ... ? PWn(x))

That is to say, an individual belongs to W if and
only if the individual belongs to some sub-world
Wi.

For example: figure 2 shows two kinds of
Accounts: Savings Account and Checking
Account. Let PSavings and PChecking be the
characteristic predicates of each sub-world
respectively:

PSavings(x): " x is a statement of money kept by a
customer at a bank on which interest is paid"

PChecking(x): " x is a statement of money kept by
a customer at a bank that enables the customer to
pay by check until a certain limit of credit”.

We can see that PSavings-or-Checking is a
heterogeneous incremental refinement of PAccount

1,
where predicate PSavings-or-Checking is the joint of both
PSavings and PChecking.

The two forms of incremental refinement
described above gives rise to the main difference
between refinement and specialization of object’s
description, as we explain in the following
sections.

2.1 Heterogeneous Object
Refinement vs. Specialization
in the UML

The UML semantics document explains the
meaning of the Generalization construct in terms
of segment descriptors. A full descriptor is the full
description needed to describe an instance. It
contains a description of all the attributes,
associations, and operations that the instance
contains. In OO languages, the description of an
instance is built out of incremental segments that
are combined using inheritance to produce a full
descriptor for an instance. The mechanism of
inheritance defines how full descriptors are
produced from a set of segments connected by
generalization.

In the UML metamodel the prefix all is used to
denote inherited features. For example, the
additional operation allFeatures can be applied on
any Class, resulting in a set containing all Features
of the Class itself and all its inherited Features, as
follows:

allFeatures =

 self.features ->union (self.parents.allFeatures)

Figure 3 shows a UML generalization-
specialization hierarchy, where Account is the
generalization and Savings is the specialization,
the expression Savings.allFeatures evaluates to the
set integrated by balance, interestRate, deposit(),
withdraw() and payInterest().

In ?D´Souza and Wills, 1998? experts say that
the difference between incremental development

Figure 2: Heterogeneous refinement

<<specif

a1:
Account

a2: Account
balance=5400

a3: Account
balance=250

a1: Checking
balance=1000
creditLimit = 500

a2: Checking
balance=5400
creditLimit =1000

a3: Savings
balance=250
interestRate=0.3

ZOOM OUT ZOOM IN

<<refine>>

PSavings-or-Checking

<<specify>>

PAccount
1

(i.e. generalization-specialization hierarchies) and
refinement is that the refinement is a self contained
model, nor just an extension. But this assertion
alone is insufficient to characterize the differences.
We think we have to consider two dimensions:
syntax and semantics.

The assertion "one model is self-contained
while the other is just an extension" only takes into
consideration the dimension of syntax, which is not
really important because from an incremental
development we can derive a self-contained
refined model in a straightforward way. For
example, when people read the model in figure 3,
people think of Savings as being a complete self-
contained model, not just an extension, that is to
say:

Savings = Account + ? Savings, where
? Savings is the increment specified by the lower
class in the hierarchy in Figure 3.

Figure 4 shows the refinement relationship
induced by the specialization relationship in Figure
3. Therefore, the example makes evident that in

this dimension the difference between incremental
development (i.e. specialization) and refinement is
not substantial, it is just a syntactical abbreviation
matter, while the intuitive interpretation of both
descriptions of Savings (the one in figure 3 and the
one in figure 4) remains the same.

 Now let’s turn our attention to the dimension
of semantics, considering the object domain
denoted by each specification. Notice that although
in figure 4 Savings is a self-contained model, it is
not a complete refinement of Account, because it
describes just a part of the world of Accounts. A
refinement should describe the very same world
(eventually in different level of detail). That is to

say, we have a "heterogeneous refinement" that
generates a partition of the world of Accounts into
two sub-worlds: Savings and No-savings. Where
No-savings denotes the set of individuals
belonging to Account but not to Savings (i.e. No-
savings = Account - Savings). The joint (Savings È
No-savings) is effectively a complete refinement of
Account, as depicted in figure 5 (notice that the
notation represents a UML Abstraction artifact
with one Supplier (the Account) and two Clients
(Savings and No-savings). Notice that Abstraction
relationship whit more than one Client is described
in the UML metamodel but there is not a standard
notation to represent it).

Account
balance

depos i t()
wh itdra w()

Savings
balance
interestRate

deposit()
whitdraw()
payInterest()

No-savings
balance

deposit()
wh i tdraw()

Figure 5: complete refinement of Account

Account

balance

depos it ()
w h i td raw()

Savings

balance
interestR ate

depos it ()
whitdraw()
payIn terest()

<<refine>>

Figure 4: abstraction/refinement in the UML.

<<refine>>

Account
balance

deposit()
w ithdraw()

Savings

interestRate

payInterest()

<<s pecial ize>>

Figure 3: generalization/specialization

hierarchy in UML

 In conclusion, the difference between
specialization and refinement techniques encloses
two conceptual dimensions: a syntactic one and a
semantic one which considers the scope of models.
The former is of a little relevance, it is just an
abbreviation, while the later is of a fundamental
importance to understand the concept of model
refinement and to distinguish it from the concept of
model specialization. For example, Savings is a
specialization of Account, but not a refinement. A
refinement should describe the very same world as
the one described by its abstraction, nor just a part
of it.

In short, Generalization artifact allows
modelers to implicitly specify heterogeneous
incremental refinements.

2.2 Homogeneous Object
Refinement in the UML

 In this section we present some examples of
frequently occurring forms of homogeneous
refinement.

Homogeneous object refinement by
composite

 One case of homogeneous object refinement
occurs when the object is refined revealing its
constituent parts. Figure 6 shows an example in the
Banking domain, where ManagementDepartment
is refined revealing three parts inside:
ClientManager, LoanManager and

AccountManager.

 Homogeneous object refinement by
realization

A homogeneous object refinement by
realization is usually used in programming
languages, such as Java. In figure 7 the Account
class implements the BankAccount interface, i.e.
the class is obliged to define all operations
specified in the interface.

An interface is a specification for the
externally-visible operations of a class, component,
or other classifier without specification of internal
structure.

Conceptually, the relationship between
BankAccount and Account is a homogeneous
refinement. In UML, this relationship is
represented by an Abstraction relation with
stereotype <<realize>>, named Realization.

Graphically, the Realization relationship from a
class to an interface that it supports is depicted by a
dashed line with a solid triangular arrowhead (a
“dashed generalization symbol”).

This notation could generate confuse
interpretations due to the fact that the Realization
notation is very similar to the Generalization
notation but, semantically, these two relationships
represent different concepts, as explain in section
2.1.

3 Association Refinement
During the development process both objects

and its relationships are gradually refined. It is
usual to zoom in or out in both dimensions at the
same time. As soon as you resolve one object into
several, you must introduce new relationships

ManagementDepartment

ClientManager

AccountManager

LoanManager

ManagementDepartment

<<refine>>

Figure 6: Object homogeneous refinement by

composite

Account

deposit()
withdraw()
transfer()

BankAccount

deposit()
whitdraw()
transfer()

<<Interface>>

 Figure 7: Object homogeneous refinement by

realization

specifically between them. And as soon as you
discriminate a set of objects you must discriminate
the relationships between them too.

 The UML provides an artifact named
Association to specify relationships between
objects. An Association defines a semantic
relationship between Classes. Each instance of an
Association is a set of tuples relating instances of
the corresponding classes. An Association has at
least two Association Ends. Each End has a name
and defines a set of properties of the connection
(e.g. which Class is connected, multiplicity,
navigability).

An instance of an Association is a set of tuples.
In the simplest case of binary association, its
potential instances are sets of pairs of classifier
instances, as follows:

 instances: Association -> Set Set(Instance x

Instance)

 For example, in figure 8:

 instances(keeps) ? ? { (x,y) (x ?
instances(ManagementDepartment) and y ?
instances(Account) }

 Where the function named instances applied
on a Classifier returns the set of instances of that
Classifier.

 As well as Classes, Associations are
amenable to be both refined and specialized. In a
parallel direction with the classification of Object
refinement, we define two different kinds of
refinement between Associations: homogeneous
refinement and heterogeneous refinement, as
follows:

Case a: "Homogeneous Refinement".

A homogeneous refinement takes place when
an abstract association is described in more detail,
for example adding information about multiplicity
or visibility, etc. The most interesting case of
homogeneous refinement occurs when one or more
participants are refined revealing several parts. For
example, figure 8 shows an abstract association
between Account and ManagementDepartment.
Afterwards, as a consequence of applying the
homogeneous refinement showed in figure 6, the

abstract association between
ManagementDepartment and Account has to be
refined to show that the Account is related to the
AccountManager instead of being related to the
ManagementDepartment as a whole. Figure 9
illustrates this situation.

Case b: "Heterogeneous Refinement".

A heterogeneous refinement occurs when an
abstract association is described in more detail and
as a consequence of adding more detail some
differences between the set of links emerge.
Abstract association becomes partitioned into two
or more sub-associations.

3.1 Heterogeneous Association
Refinement

The most usual forms of heterogeneous
refinement occur when one or more participants

are refined revealing either a composite or a sub
classification:

Case b.1 Heterogeneous refinement by
composite

Figure 10 shows an abstract association
between ManagementDepartment and Client.
When the ManagementDepartment is refined
(figure 6), this association is refined by two
associations: one between ClientManager and
Client and the other between LoanManager and
Client This situation is showed in figure 11.

This is a heterogeneous refinement, due to the
fact that it splits the initial set of links into two
subsets.

AccountManagementDepartment

**

k eeps

Figure 8: Abstract Association between

ManagementDepartment and Account

ManagementDepartment

ClientManager

LoanManager

Account ManagementDepartment
*

keeps
Account

AccountManager

*

keeps´

<<refine>> <<refine>>
*

Figure 9: Homogeneous refinement of

Association

Notice that a homogeneous object refinement
can originate either a homogeneous or a
heterogeneous refinement of the associations
connecting the refined objects, as we showed in the
two examples above (Figure 9 and Figure 11).

Case b.2 Heterogeneous refinement by
subclassification

Figure 12 shows an association between
Account and Client. Afterwards a heterogeneous
refinement is applied to Account generating two
classes: Savings and Checking. At the same time, a
heterogeneous refinement is applied to Client and
two new classes show up: NormalClient and
SpecialClient. In this domain normal clients are
only allowed to open Savings while special clients
are only allowed to open Checking accounts.
Model in figure 13 illustrates this situation.

The UML specifies that Association is a
GeneralizableElement. According to the definition
of inheritance, it is expected that a child
association inherits some properties from its
parents, but this is not the case: in the context of
the Association artifact the only additional
operation with prefix all in the UML specification

document is allConnections that results in the set
of all AssociationEnds of the Association itself. It
is defined as follows (see that connections
belonging to parents are not considered at all):

allConnections:Association(Set(AssociationEnd)

allConnections = self.connection

Consequently, it becomes clear that the
meaning of generalization hierarchy of
Associations is different from that of Classes.
While generalization hierarchy of classes reflects
incremental refinement, generalization hierarchy of
association seems to be not incremental at all.

Analyzing the UML model in figure 13, we see
that the UML definition of allConnections is
reasonable because child Association does not
inherit parent’s properties (such as parent’s
connections); child association specializes parent’s
connections. Let A, B and C be the associations
Client-holds-Account, NormalClient-holds-
Savings and SpecialClient-holds-Checking
respectively:

A.connections={e1,e2}where e1.type= Client
and e2.type= Account

B.connections={e3,e4} where e3.type=
NormalClient and e4.type=Savings

It makes no sense that Association B inherits
parent’s connection between Account and Client,
because it would become a quaternary association
which is not the intended meaning of the diagram.

Semantically, the generalization/specialization
relationship between associations denotes an
inclusion relation between the corresponding sets
of instances. That is to say, if B is a specialization
of A, then instances(B) ? instances(A).

In the example in figure 13 the association A is
partitioned into two sub-associations: B and C. The
conjunction of both sub-associations gives rise to a
refinement of A:

A = B ? C

ClientManagementDepartment

Figure 10: Abstract Association between

ManagementDepartment and Client.

ManagementDepartment

AccountManager

<<refine>>

ClientManager

Client

* *

LoanManager

* *

Client ManagementDepartment

<<refine>> <<refine>>

Figure 11: heterogeneous refinement of

Association by composite

Client Account

*

ho lds

*
Figure 12: Abstract Association between

Client and Account

Client Account

*

holds

CheckingSpecialClient

*NormalClient Savings

*

*

holds

holds
*

*

 Figure 13: heterogeneous refinement of
Association by subclassification

A pair (x,y) belongs to an instance of A if and
only if the pair belongs to either an instance of B
or an instance of C, that is to say:

instances(A) = instances(B) ? instances(C)

For example, figure 14 illustrates an
instantiation of the abstract Association A and its
refinements B and C, as follows:

instances(A) = {(juan, a1),(pedro, a2),(pedro, a3) }

instances(B) ={ (juan, a1) }

instances(C) = { (pedro, a2), (pedro, a3) }

Some notes about methodology:

? As it happens with method overriding, child
association should have the same name as
parent association. For example NormalClient
overrides the association holds which it
inherited from Client. Overriding simplifies
the notation because the relationship between
both associations becomes obvious, then the
Generalization diagram can be removed (figure
15).

? Frequently, we face heterogeneous refinement
of Association of the form A ? B ? C where
dom(B)? dom(C)? ? or ran(B)? ran(C)? ? . For
example, model in figure 15 specifies that
Normal Clients are allowed to hold only
Savings Accounts while Special Client can
have both Savings and Checking accounts.
Class SpecialClient inherits the Association
with Account from its parent, so any instance
of SpecialClient can be connected to any
instance of Account (including subclasses). In
this case the refinement of the abstract
association holds is not explicitly depicted in
the model. That is to say, holds ? Normal-
holds-Savings ? Special-holds-Account,
where association Special-holds-Account is
implicit in the model, as follows:

Instances(holds) ?

 ? { (x,y) ? x? instances(Client) ^

y? instances(Account) }

Instances(Normal-holds-Savings) ?

? { (x,y) ? x? instances(NormalClient) ^

y? instances(Savings) }

Instances(Special-holds-Account) ?

? { (x,y) ? x? instances(SpecialClient) ^

(y? instances(Savings) ? y? instances(Checking) }

3.2 Homogeneous Association
Refinement

 In the case of homogeneous refinement the
association is not partitioned in several sub-
associations, instead of that each link is "refined".
For example, in figure 9 the association established
between Account and AccountManager is a
refinement of the abstract association established
between Account and ManagementDepartment:

instances(keeps) ? instances(keeps´)

For example, figure 16 illustrates an
instantiation of the abstract Association keeps and
its refinement keeps´, as follows:

instances(keeps) = { (MDOfBostonBank, a1)
(MDOfCitiBank,a2) (MDOfCitiBank,a3) }

instances(keeps´)= {(BostonAM, a1)
(CitiAM,a2) (CitiAM,a3) }

Notice that each link forming the association is
described in more detail. Instead of showing the
connection between Account and
ManagementDepartment, the refined association
shows the connection between the Account and the
specific part of the ManagementDepartment that is
in charge of it.

a1: Savings

a2: Checking

a3: Checking

j uan: NormalClient

p edro: SpecialClient

Figure 14: instantiation of association between

subclasses of Client and Account.

Client Account

CheckingSpecialClient NormalClient Savings

**

holds

**
holds

Figure 15: implicit refinement

Another example

This example illustrates another case of
homogeneous association refinement. When two
interfaces are related by an abstract association, the
classes implementing the interfaces must be related
between them, too. The later association represents
a homogeneous refinement of the former, as
depicted in figure 17, where the interfaces
BankClient and BankAccount are related by an

abstract association. Then class Client realizing
BankClient must be associated to a class realizing
BankAccount, in this case Account.

4 Joint Action Refinement
A joint action is a description of how a group of

individual objects collaborate with each other. A
joint action is described by a collection of actions
that take place between the objects. The UML
provides a number of artifacts to specify actions,
we restrict our discussion here only to Use Case
diagrams.

Action abstraction is the technique of treating
an interaction between several participants as one
single action. Then it is possible to zoom into, or
refine, an action to see more detail. What was one
single action is now seen to be composed of
several actions. Each one of these actions can be
split again into smaller ones, into as much detail as
required. Figure 18 shows an abstract use case and
its refinement. In the abstract model the action Buy
is treated as a single action then the more refined
model shows that the Buy action is composed by
three sub actions: Pay, Select and Collect. To
specify composite actions UML provides a
relationship between Use Cases called Include.

Client Buy
ShopGirl

Client
ShopGirl

Select Pay

Buy

Collect

<<include>>
<<include>>

<<include>>

Figure 18: use case refinement

On the other hand, the UML defines that Use
Cases are GeneralizableElements, so a use case
may specialize a more general one. More exactly,
UML specification document says, “a
generalization relationship between use cases
implies that the child use case contains all the
attributes, sequences of behavior and extension
points defined in the parent use case, and
participates in all the relationships of the parent use

ZOOM OUT

ZOOM IN

a1: Account MDOfBostonBank:
ManagementDepartment

MDOfCitiBank:
ManagementDepartment

a2: Account

a3: Account

a1: Account

a2: Account

a3: Account

BostonAM:
AccountManager

CitiAM:
AccountManager

Figure 16: instantiation of association between
ManagementDepartment and Account

BankAccount
<<Interface>>

BankClient
<<Interface>>

holds

AccountClient holds

<<refine>>

Figure 17: homogeneous refinement of

Association

<< specialize >>

 PaybyCash
PaybyCheck

Pay

Client

Figure 19: Use Case specialization

case”. Figure 19 shows a general use case and its
specializations?Cockburn, 2000?. The general use
case describes a Payment, while each
specialization describes a particular kind of
payment: PaybyCash and PaybyCheck.

These two examples illustrate the differences
between refinement and specialization of use
cases. It is quite evident the correspondence
between these two use case relationships and the
two forms of refinement discussed before (i.e.
homogeneous and heterogeneous refinement). In
the first case we have a homogeneous refinement,
instances(BUY) ? instances(BUY´), while in the
second case we have a heterogeneous refinement,
instances(Pay) ? instances(PaybyCash) ?
instances(PaybyCheck), where instances of a use
case is the set of all allowed traces described by it
?Harel and 2002?.

5 Conclusion
At the present the Unified Modeling Language

is considered the standard modeling language for
object oriented software development process. The
specification of UML constructs and their
relationships is semi-formal, i.e. certain parts of it
are specified with well-defined languages while
other parts are described informally in natural
language. There is an important number of
theoretical works giving a precise description of
core concepts of UML and providing rules for
analyzing their properties. See for instance the
works of [Evans et al.,1998;1999], [Kim and
Carrington, 1999], [Breu et al., 1997], [Övergaard,
1998, 1999], [Pons and Baum, 2000, 2002], [Pons
et al., 2000]. But, several UML concepts still need
deeper analysis and formalization.

In this article we focus on two UML artifacts -
Abstraction artifact specifying
abstraction/refinement hierarchies and
Generalization artifact describing
generalization/specialization hierarchies -
providing a formal basis for the distinction
between these terms. This paper is based on our
previous works reported in [Pons 2002] [Giandini
et al., 2002].

We formulated a mathematical description of
these artifacts which makes it evident the existence
of a partial overlapping between the semantics of
both artifacts: the later corresponds to one
particular case of the former, named
"heterogeneous refinement".

The analysis reported in this article contributes
to the improvement of UML syntax and semantics.
Formalization of the UML is an important task
because the lack of accuracy in its definition
causes wrong model interpretations and discussion
regarding the model meaning. The interpretation
done by the people who read the model may not
coincide with the interpretation of the model
creator. These misunderstandings lead to the
highly expensive problem of construction of
systems that do not meet user expectations.
Finally, tools supporting graphical specifications,
where intuitive perceptions are insufficient, will
benefit by accurately defining this distinction.

Our analysis not only copes with
generalization/specialization hierarchies of Classes
which is the more frequently occurring form of
generalization/specialization hierarchy in OO
modeling, but also considers hierarchies of
Associations and Use Cases and it can be extended
in order to consider the remaining UML
generalizable (and refinable) elements too.

References
Booch, G.,Object Oriented Analysis and Design with

Applications. Benjamin Cummings, 1991.
Cook, W, Hill, W.and Canning, P Inheritance is not

subtyping, In Theoretical Aspects of OO Languages,
MIT Press, 1994.

Breu,R., Hinkel,U., Hofmann,C., Klein,C., Paech,B.,
Rumpe,B. and Thurner,V., Towards a formalization
of the unified modeling language. ECOOP’97
procs., Lecture Notes in Computer Science
vol.1241, Springer, (1997).

Cockburn, Alistair. Writing Effective Use Cases.
Addison-Wesley. 2001

D´ Souza, Desmond and Wills, Alan. Objects,
Components and Frameworks with UML.Addison-
Wesley. 1998.

Dijkstra, E.W., A Discipline of Programming. Prentice-
Hall, 1976.

Evans,A., France,R., Lano,K. and Rumpe, B.,
Developing the UML as a formal modeling notation,
UML’98 Beyond the notation, Muller and Bezivin
editors, Lecture Notes in Computer Science 1618,
Springer-Verlag, (1998).

Evans,A., France,R., Lano,K. and Rumpe,B., Towards a
core metamodelling semantics of UML, Behavioral
specifications of businesses and systems, H. Kilov
editor, Kluwer Academic Publishers, (1999).

Giandini, R., Pons, C., Pérez,G. Use Case Refinements
in the Object Oriented Software Development
Process. Proceedings of CLEI 2002, ISBN 9974-
7704-1-6, Uruguay. November 2002.

Harel David and Kupferman Orna. On Object Systems
and Behavioral Inheritance.IEEE Transactions on
Software Engineering. Vol.28, No.9. Sept. 2002.

Kim, S. and Carrington,D., Formalizing the UML Class
Diagrams using Object-Z, proceedings UML´99
Conference, Lecture Notes in Computer Sciencie

1723, (1999).
Övergaard, G., A formal approach to collaborations in

the UML, <<UML>>´99 - The Unified Modeling
Language. UML´99 conference, USA,. Lecture
Notes in Computer Science 1723, Springer. (1999).

Pons Claudia and Baum Gabriel. Formal foundations of
object-oriented modeling notations 3rd International
Conference on Formal Engineering Methods,
ICFEM 2000, York, UK.IEEE Computer Society
Press. September 2000.

Pons, Claudia, Giandini Roxana and Baum Gabriel.
Specifying Relationships between models through
the software development process, Tenth
International Workshop on Software specification
and Design (IWSSD), San Diego, California, IEEE
Computer Society Press. November 2000.

Pons, Claudia. Generalization relation in UML model
elements, Proceedings of the Inheritance Workshop
at ECOOP 2002 ISBN 951-39-1252-3.

Pons Claudia and Baum Gabriel. Contracts Soundness
for Object Oriented Software Development Process..
OOPSLA’2002 Workshop on Behavioral
Semantics.Seattle, Washington, USA. Northeastern
University, College of Computer Science, pag. 163-
177. November 2002.

UML-OMG. The Unified Modeling Language
Specification – Version 1.4, UML Specification,
revised by the OMG, http://www.omg.org,
September 2001

Wegner, P.and.Zdonik, S, Inheritance as an Incremental
Modification Mechanism or What like is an isn’t
like. in proceedings 3rd European Conference on
Object-Oriented Programming (ECOOP’88),
Springer, 1988.

