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Abstract. Despite the fact that the refinement technique is one of the 
cornerstones of a formal approach to software engineering, the concept of 
refinement in model driven engineering is loosely defined and open to 
misinterpretations. In this article we present a rigorous technique for specifying 
and verifying frequently occurring forms of refinement that take place in 
software modeling. Such strategy uses the formal language Object-Z as a 
background foundation, whereas designers only have to deal with the broadly 
accepted UML and OCL languages, thus propitiating the inclusion of 
verification in ordinary software engineering activities, increasing in this way 
the level of confidence on the correctness of the final product. Finally, an 
automatic tool is provided to support such model refinement activities; this tool 
adopts the micromodels strategy to reduce the search scope, making the 
verification process feasible. 

1   Introduction 

The idea promoted by model-driven engineering (MDE) [7] [24] [17] is to use models 
at different levels of abstraction. A series of transformations are performed starting 
from a platform independent model with the aim of making the system more platform-
specific at each refinement step. Such transformations reduce non-determinism by 
making design decisions, e.g., how to represent data, how to implement 
communications, etc. In MDE predefined transformations, written in a standard 
transformation language [21] are applied in order to evolve from model to model. It is 
assumed that such transformations have been previously validated by a MDE expert, 
and thus are safe to apply; such transformations are refinements in the sense of formal 
languages: refinement is the process of developing a more detailed design or 
implementation from an abstract specification through a sequence of mathematically-
based steps that maintain correctness with respect to the original specification.  

Despite the fact that refinement technique is one of the cornerstones of a formal 
approach to software engineering, the concept of refinement in MDE is loosely 
defined and open to misinterpretations.  This drawback takes place because of the 
semi-formality present in the modeling languages used in MDE and also because of 
the currently relative immaturity in this field.  
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There are two alternatives to increase the robustness of the MDE refinement 
machinery. One is to translate the core language used in MDE, i.e., UML [15], into a 
formal language such as Z, where properties are defined and analyzed. For example 
the works presented in [1], [3], [5], [10], [11], [13] and [25] among others, belong to 
this group. They are appropriate to discover and correct inconsistencies and 
ambiguities of the graphical language, and in most cases they allow us to verify and 
calculate refinements of (a restricted form of) UML models. However, such 
approaches are non-constructive (i.e., they provide no feedback in terms of UML), 
they require expertise in reading and analyzing formal specifications and generally, 
properties that should be proved in the formal setting are too complex and 
undecidedly. A second alternative is to promote a formal definition of refinement, 
e.g., simulation in Z, and express it in MDE terms. For example, Boiten and 
Bujorianu in [2] indirectly explore refinement through unification; Paige and colleges 
in [18] define refinement in terms of model consistency; Liu, Jifeng, Li and Chen in 
[14] define a set of refinement laws of UML models to capture the essential nature, 
principles and patterns of object-oriented design, which are consistent with the 
refinement definition. Finaly, Lano and colleges in [12] describe a catalogue of UML 
refinement patterns which is a set of rules to systematically transform UML models to 
forms closer to Java code.  

Following the second alternative, in [19] and [20] well founded refinement 
structures in the Object-Z formal language were used to discover refinement 
structures in the UML, which are (intuitively) equivalent to their corresponding 
Object-Z inspiration sources. In this article we work further on such proposal by 
enriching those refinement patterns with a refinement condition written in OCL 
(Object Constraint Language) [16] [22]. The advantage of this approach is that 
refinement conditions get completely defined in terms of OCL, making the 
application of languages which are usually hardly accepted by software engineers 
unnecessary. OCL is a more familiar language and it has a simpler syntax than 
Object-Z and other formal languages. Additionally, OCL is part of the UML 2.0 
standard and it will probably form part of most modeling tools in the near future.  

Furthermore, after defining refinement conditions, the next step is to evaluate such 
conditions. Ordinary OCL evaluators are unable to determine whether a refinement 
condition written in OCL holds in a UML model because OCL formulas are evaluated 
on a particular instance of the model, while refinement conditions need to be validated 
in all possible instantiations. Therefore, in order to make the evaluation of refinement 
conditions possible, we extract from the UML model a relatively small number of 
small instantiations, and check that they satisfy the refinement conditions to be proved. 
This strategy, called micromodels of software was proposed by Daniel Jackson in [9] 
for evaluating formulas written in Alloy.  Later on, Martin Gogolla and colleges in [8] 
developed a useful adaptation of such technique to verify UML and OCL models. Here 
we adapt such micromodels strategy to verify refinement conditions. 

The structure of this document is as follows: sections 2 serves as a brief intro-
duction to the issue of refinement specification in Object-Z and UML 2.0; section 3 
describes the method for creating OCL refinement condition for UML refinement 
patterns; section 4 explains how the micromodels strategy is applied to verify 
refinements; finally, the paper closes with a presentation of related work, conclusions 
and future projects. 



648 C. Pons and D. Garcia  

2   Refinements Specification and Verification in Object-Z and 
UML 

In Object-Z [23], a class is represented as a named box with zero or more generic 
parameters. The class schema may include local type or constant definitions, at most 
one state schema and an initial state schema together with zero or more operation 
schemas. These operations define the behavior of the class by specifying any input 
and output together with a description of how the state variables change. Operations 
are defined in terms of two copies of the state: an undecorated copy which represents 
the before-sate and a primed copy representing the after-state. 

For example, figure 1 illustrates the specification of a simple class called Flight, 
having a state (consisting of two variables) and only one operation.  

 Object-Z is equipped with a 
schema calculus (i.e., a set of 
operators provided to manipulate 
Object-Z schemas). The schema 
calculus makes it possible to 
create Object-Z specifications 
describing properties of other 
Object-Z specifications. To deal 
with refinements we need to apply 
at least the following operators: 

- Operator STATE denotes the set 
of all possible states (i.e., snapshots 
or bindings) of the system under 
consideration. For example, Flight. 
STATE = {:freeSeats=x, canceled=tÚ 
| 0≤x≤300  ¶ t∈{true, false}} 

- Operator INIT denotes the initial states of a given schema. For example, 
Flight.INIT={:freeSeats=300 , canceled=falseÚ | Ú} 

- Operator pre returns the precondition of an operation schema; that is to say the set 
of all states where the operation can be applied. For example, pre reserve = 
{:freeSeats=x, canceled=false Ú | 0<x≤300} 

- The conjunction of two schemas S and T (S¶T) results in a schema which 
includes both S and T (and nothing else). 

- Schema implication (S  fi T) denotes the usual logical implication. 
In [4], refinement is formally addressed in the context of Object-Z specifications as 

follows: an Object-Z class C is a refinement (through downward simulation) of the 
class A if there is a retrieve relation R on A.STATE¶C.STATE so that every visible 
abstract operation A.op is recasted into a visible concrete operation C.op, thus the 
following holds: 

(Initialization)   AC.STATE × C.INIT fi(EA.STATE × A.INIT ¶ R) 

(Applicability)   AA.STATE ×  AC.STATE× R fi (pre A.op fi pre C.op) 

(Correctness)     AA.STATE×AC.STATE×AC.STATE’×   

                                                R ¶ pre A.op ¶ C.op fi EA.STATE’×  R’ ¶ A.op 

            Fig. 1. Simple Object-Z schema 
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This definition allows preconditions to be weakened and non-determinism to be 
reduced. In particular, applicability requires a concrete operation to be defined 
wherever the abstract operation was defined, however it also allows the concrete 
operation to be defined in states for which the precondition of the abstract operation 
was false. That is, the precondition of the operation can be weakened. Correctness 
requires that a concrete operation be consistent with the abstract one whenever applied 
in a state where the abstract operation is defined. However, the outcome of the 
concrete operation only has to be consistent with the abstract, but not identical. Thus if 
the abstract operation allowed a number of options, the concrete operation is free to use 
any subset of these choices. In other words, non-determinism can be solved. 

On the other hand, the standard modeling language UML [15] provides an artifact 
named Abstraction (a kind of Dependency) with the stereotype <<refine>> to 
explicitly specify the refinement relationship between UML named model elements. 
In the UML metamodel an Abstraction is a directed relation from a client (or clients) 
to a supplier (or suppliers) stating that the client (the refinement) depends on the 
supplier (the abstraction). The Abstraction artifact has a meta-attribute called mapping 
designated to record the abstraction/implementation mappings (i.e., the counterpart to 
the Object-Z retrieve relation), which is an explicit documentation of how the 
properties of an abstract element are mapped to its refined versions, and on the 
opposite direction, how concrete elements can be simplified to fit an abstract 
definition. The mapping contains an expression stated in a given language that could 
be formal or not. The definition of refinement in the UML standard [15] is formulated 
using natural language and it remains open to numerous contradictory interpretations. 

3   Verification Strategy for UML Refinement Patterns 

UML refinement patterns [12] [19] [20] document recurring refinement structures in 
UML models. In this section we present a process to be applied on UML models 
containing such patterns in order to automatically create OCL refinement conditions 
to analyze them in a rigorous way. Figure 2 gives a description of the process at a 
glance. It is based on a pipeline architecture in which the analysis is carried out by a 
sequence of steps. The output of each step provides the input to the next one. In this 
section we give a brief overview of each step: 

Refinement pattern instantiation. Each refinement pattern P consists of two parts: a 
description M of the Pattern structure, given in terms of UML diagrams and a generic 
constraint F expressed in Object-Z representing refinement condition for such pattern. 
Given a UML model M1 compliant with the structure of pattern P, the first step of the 
process automatically generates an instance F1 of the generic formula F that 
establishes the conditions to be fulfilled by M1 in order to verify the refinement. 

Transformation to OCL. After being generated, the Object-Z formula F1 is auto-
matically translated into the OCL formula F1’ by applying the transformation T (the 
detailed definition of T is included in the appendix).  

Micromodels strategy application. In this step, the micromodels strategy is applied 
to F1’ in order to produce a formula F1’’ which is analyzable within a limited scope.   
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OCL Evaluation. Finally, F1’’ is submitted to an ordinary OCL evaluator. 

The process is assisted by the automated tool ePlatero [6] that is a plug-in to the 
Eclipse development environment; ePlatero implements the verification process 
described above. 

In the following sections this process is illustrated through a concrete example: the 
state refinement pattern [19]. 

 

Fig. 2. Overview of the refinement verification process 

3.1   The State Refinement Pattern 

A State Refinement takes place when the data structures which were used to represent 
the objects in the abstract specification are replaced by more concrete or suitable 
structures; operations are accordingly redefined to preserve the behavior defined in 
the abstract specification. 

An instance of the pattern’s structure 
Let M1 be the UML model in figure 3, which is compliant with the structure of the 
state refinement pattern [19]. M1 contains information about a flight booking system 
where each flight is abstractly described by the quantity of free seats in its cabin; then 
a refinement is produced by recording the total capacity of the flight together with the 
quantity of reserved seats. In both specifications, a Boolean attribute is used to 
represent the state of the flight (open or canceled). The available operations are 
reserve to make a reservation of one seat and cancel to cancel the entire flight. 
A refinement relationship connects the abstract to the concrete specification. The 
OCL language [16] has been used to specify initial values, operation’s pre and post 
conditions and the mapping attached to the refinement relationship. 
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Fig. 3.  an instance of the state refinement pattern 

An instance of the pattern’s refinement condition 
Object-Z refinement conditions - F1 - for UML classes FlightA and FlightC via some 
retrieve relation R are automatically generated from the generic refinement condition 
established by the pattern [19], based on the definition of downward simulation in 
Object-Z described in [4]. Figure 4 shows the formula F1. 

Initialization 
AFlightC.STATE  ×FlightC.INIT fi(E FlightA.STATE ×FlightA.INIT ¶ R) 

 
Applicability (for operation reserve) 

AFlightA.STATE×AFlightC.STATE × 

 R fi (pre FlightA.reserve fi pre FlightC.reserve) 
 
Correctness (for operation reserve) 
AFlightA.STATE ×AFlightC.STATE × AFlightC.STATE’× R ¶ 

 pre FlightA.reserve¶FlightC.reserve fi E FlightA.STATE’ ×R’ ¶ FlightA.reserve 

Fig. 4. An instance of the refinement condition for the state refinement pattern  

The transformation process from object-Z to OCL 
Then, Object-Z refinement condition - F1 - is automatically transformed into OCL 
expression – F1’ - by applying the transformation T  in the context of a UML model 

context FlightA ::  
freeSeats init: 300 
canceled  init: false 
reserve() pre: freeSeats>0 and not canceled 
          post: freeSeats=freeSeats@pre -1 
cancel()  pre: not canceled  post: canceled 

context FlightC ::
capacity init: 300 
reservedSeats init: 0 
canceled init: false 
reserve() pre: capacity-reservedSeats>0 
                and not canceled 
   post:reservedSeats=reservedSeats@pre+1 
cancel()  pre: not canceled 
   post: canceled 

flightA.freeSeats = flightC.capacity –  
flightC.reservedSeats and flightA.canceled 
= flightC.canceled 
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M1. Apart from producing an OclExpression, T  returns an OclFile containing 
additional definitions, which are created during the transformation process: 

 
T : Model-> ObjectZpredicate -> (OclExpression,OclFile) 

 
The main features of the transformation are as follows, 

 
Remark #1: The Object-Z retrieve relation R is replaced by its OCL counterpart. 

Graphically, the abstraction mapping (i.e., the retrieve relation) describing the relation 
between the attributes in the abstract element and the attributes in the concrete 
element is attached to the refinement relationship; however, OCL expressions can 
only be written in the context of a Classifier, but not of a Relationship. On the Z side, 
the context of the abstraction mapping is the combination of the abstract and the 
concrete states (i.e., A.STATE ¶ C.STATE); however, a combination of Classifiers is 
not an OCL legal context. Our solution consists in translating the mapping into an 
OCL formula in the context of the abstract classifier, in the following way: 
 

context flightA:FlightA def :  
mapping(flightC : FlightC):Boolean = 
flightA.freeSeats= flightC.capacity – flightC.reservedSeats 

and flightA.canceled= flightC.canceled 
 

As a convention, class names in lower case are used to denote instances. It is worth 
mentioning that the mapping definition could alternatively have been translated into a 
formula in the context of the concrete classifier. 

 
Formally: 

TM (relationName) = (e,Φ) 
Where: 

e = absInstance “.mapping(” refInstance “)” 

 Φ = “package” packageName 

“context a:” AbstractClass  “def:”  

“mapping(c:” RefinedClass “):Boolean =” exp 

   “endPackage” 

Where: 

d = M.getEnvironmentWithParents().lookup(relationName) 

AbstractClass  = d.supplier.name 

RefinedClass = d.client.name  

absInstance = toLowerCase(AbstractClass) 

refInstance = toLowerCase(RefinedClass) 

exp = d.mapping.body  

packageName = abstractClass.package.name 
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Remark #2: Object-Z expression INIT is expressed in terms of an OCL boolean 
operation isInit(). 

A query operation isInit()is automatically built from the specification of the 
attribute’s initial values included in the UML class diagram. It returns true if all of the 
instance’s attributes satisfy the initialization conditions. For example: 

 
context FlightA def: isInit(): Boolean = 
self.freeSeats = 300 and self.canceled = false 
 
context FlightC def: isInit(): Boolean =  
self.capacity=300 and self.canceled=false and 

self.reservedSeats=0 
 
In cases where the refinement involves composite classes, the initialization 

condition is built in terms of the initialization of each component; additionally, 
information provided for each composite association (e.g., multiplicity) is taken into 
consideration.  

Formally: 

TM (className.INIT) =(e,Φ) 
Where 

e= toLowerCase(className) “.isInit()” 

Φ = ”Package” packageName1 
"context” className “def: isInit(): Boolean =” 

attName1“=”exp1“and”...“and” attNamen“=”expn  “and” 
navigationName1“->size() =” size1 “and” 
navigationName1 “->forAll(p| p.isInit())”...“and” 
navigationNamen“->size() =” sizen “and” 
navigationNamen “->forAll(p| p.isInit())” 

“endPackage” 

Where 

packageName = class.package.name 

class : UMLClass = 
 M.getEnvironmentWithParents().lookup(className) 

attributes: Sequence(UMLProperty) =  

 class.allProperties()->select(p|p.initialValue-
>notEmpty()) 

∀j×1≤j≤attributes->size()× attNamej = attributes-
>at(j).name ¶ expj = attributes->at(j).initialValue.body 
navigations: Sequence(UMLProperty) =  

 class.allProperties()->select(p|p.association-
>notEmpty() and p.isComposite()) 

∀j×1≤j≤navigations->size()× navigationNamej = navigations-
>at(j).name ¶ sizej = navigations->at(j).lower 
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Remark #3: Expressions containing the Object-Z operator “pre” are translated into 
the corresponding OCL pre conditions from the UML model. 

 

For example, the Object-Z expression “pre FlightA.reserve” is translated 
into “flightA.freeSeats>0 and not flightA.canceled” 

 
While, the expression “pre FlightC.reserve” is translated into 

“flightC.capacity-flightC.reservedSeats>0 and not 
flightC.canceled” 

 
Remark #4: Object-Z expressions containing operation’s invocations are translated 
to OCL post conditions from the UML model. 

 

In Object-Z, elements belonging to the pre-state are denoted by undecorated 
identifiers, while elements in the post-state are denoted by identifiers with a 
decoration (i.e. a stroke). In OCL the naming convention goes exactly in the opposite 
direction, that is to say, undecorated names refer to elements in the post-state. Then, 
in order to be consistent with the rest of the specification, a decoration (i.e., “_post”) 
is added to each undecorated identifier in the post condition and the original 
decoration (i.e., @pre) is removed from the rest of the identifiers. For example the 
following definition: 

 
context FlightA::reserve() 
 post: self.freeSeats= self.freeSeats@pre -1 
 
is renamed to:  
 
context FlightA::reserve() 
 post: flightA_post.freeSeats= flightA.freeSeats -1 

 
Remark #5: Logic connectors and quantifiers are translated to OCL operators. 

The Z expression AS.STATE×exp is translated to S.allInstances()-

>forAll(s | T(expr)). While the Z expression ES.STATE×exp is translated 
to  S.allInstances()->exists(s| T(expr)).  

 
For example, the translation for the universal quantifiers is as follows: 
 

TM( A className.STATE × Predicate) = (e,Φ) 
Where 

TM(Predicate)= (e1, Φ) 
e=className“.allInstances()->forAll(”iteratorName“|”e1“)”  

iteratorName= toLowerCase(className) 
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Notice that the name of the class, in lower case, is used to name the iterate variable. 
Finally, the symbol  fi is translated to implies and the symbol  ¶ is translated to 
and, 
 

TM(Predicate1 ¶ Predicate2)= (e,Φ) 

Where  

TM(Predicate1)= (e1, Φ1) 

TM(Predicate2)= (e2, Φ2) 

e= e1 “and” e2 

Φ = Φ1 merge Φ2 
 
On top of the formal definition of T the transformation process was fully 

automated [6]. Table 1 shows the formula F1’ that is the result of applying the 
transformation T on both the UML model M1 (figure 3) and the Object-Z refinement 
conditions F1 (figure 4).  

Table 1. OCL refinement conditions for an instance of the state refinement pattern 

 
OCL refinement condition 

 

 
FlightC.allInstances()->forAll(flightC| flightC.isInit() 
implies (FlightA.allInstances()-> exists(flightA| 
flightA.isInit()and flightA.mapping(flightC)))) 
 

 

 

 
FlightA.allInstances()-> forAll(flightA| 
FlightC.allInstances()-> forAll(flightC| 
flightA.mapping(flightC) implies (flightA.freeSeats>0 and 
not flightA.canceled implies flightC.capacity-
flightC.reservedSeats>0 
and not flightC.canceled))) 
 

 
 

 

 
FlightA.allInstances()-> forAll(flightA| 
FlightC.allInstances() -> forAll( flightC| 
FlightC.allInstances()-> forAll( flightC_post| 
flightA.mapping(flightC)and (flightA.freeSeats>0 and 
not flightA.canceled) and  (flightC_post.reservedSeats = 
flightC.reservedSeats+1) implies FlightA.allInstances()-> 
exists( flightA_post| flightA_post.mapping(flightC_post) 
and flightA_post.freeSeats= flightA.freeSeats -1)))) 
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3.2   Further Patterns 

A vast number of refinement patterns can be specified and verified following the 
method described in the preceding section, for example: 

- Object decomposition refinement pattern is a form of refinement in which an 
abstract element is described in more detail by revealing its interacting internal 
components and conversely, the composite represents its components in sufficient 
detail in all contexts in which the fact of being composed is not relevant. 

- Atomic operation refinement pattern occurs in the case that a more concrete 
specification is obtained from an abstract specification by replacing any operation 
Aopk by its refinement Copk. The refined operation reduces non-determinism and/or 
partiality present in the abstract operation. 

- Non-atomic operation refinement pattern takes place when the abstract operation 
is refined not by one, but by a combination of concrete operations, thus allowing a 
change of granularity in the specification. Non-atomic refinements are useful because 
they allow the initial specification to be described independently of the structure of 
the eventual implementation. Also it enables considerations of efficiency to be 
gradually introduced. 

- Promotion pattern illustrates an elegant relationship between promotion and 
refinement, under certain circumstances the promotion of a refinement is a refinement 
of a promotion [4].   

Additionally, complex model transformations, such as the application of most GoF 
design patterns and the use of refactoring can be specified as a composition of the 
simpler patterns described above. 

4   Micro-worlds for Evaluating Refinement Conditions 

Even little models such as the one described in figure 3 specify an infinite number of 
instances; thus to decide whether a certain property holds or not in the model results 
generally unfeasible. In order to make the evaluation of refinement conditions viable, 
the technique of micromodels (or micro-worlds) of software is applied by defining a 
finite bound on the size of instances and then checking whether all instances of that 
size satisfy the property under consideration: 

- If we get a positive answer, we are somewhat confident that the property holds in 
all worlds. In this case, the answer is not conclusive, because there could be a larger 
world which fails the property, but nevertheless a positive answer gives us some 
confidence. 

- If we get a negative answer, then we have found a world which violates the 
property. In that case, we have a conclusive answer, which is that the property does 
not hold in the model. 

Jackson’s small scope hypothesis [9] states that negative answers already tend to 
occur in small worlds, boosting the confidence we may have in a positive answer. For 
example, in order to generate suitable micro-worlds to evaluate the refinement 
conditions of class diagram in figure 3, the OCL package shown in figure 5, 
containing invariants that reduce the size of the micro-world, is provided.  
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package flights 
    context FlightA 
        inv: Set { 0 .. 300 } -> includes (self.freeSeats) 
    context FlightC 
        inv: Set {300} -> includes (self.capacity)  
        inv: self.reservedSeats <= self.capacity  
 endpackage 

 

Fig. 5. OCL invariants reducing the search space 

Apart from satisfying all the OCL invariants reducing the search space, to be 
suitable to analyze refinement relationships, the micro-worlds should satisfy the 
“duality property”. Such property establishes that for each instance of a concrete class 
there must exist at least an instance of the abstract class being related by the 
abstraction mapping.  The automatic micro-world generation process implemented by 
the tool guarantees the fulfillment of the duality property. 

Then the tool checks whether all micro-worlds of that size satisfy the refinement 
condition.  For example, figure 6 displays one of the micro-worlds satisfying the 
invariants and the duality property. In such micro-world the expression 
FlightA.allInstances() returns a finite set of size three containing the objects  
FlightA1, FlightA2 and FlightA3, while FlightC.allInstances() returns a finite set of 
size three containing the objects  FlightC1, FlightC2  and FlightC3. 

freeSeats : int = 72
canceled : bool = true

FlightA1 : FlightA

freeSeats : int = 258
canceled : bool = false

FlightA2 : FlightA

freeSeats : int = 177
canceled : bool = false

FlightA3 : FlightA

capacity : int = 300
reservedSeats : int = 228
canceled : bool = true

FlightC1 : FlightC

capacity : int = 300
reservedSeats : int = 123
canceled : bool = false

FlightC2 : FlightC

capacity : int = 300
reservedSeats : int = 228
canceled : bool = true

FlightC3 : FlightC

 

Fig. 6. Micro-world automatically generated from the UML model in figure 3 enriched with the 
constraints in figure 5 

In this context we have, for example, the following applicability condition for 
operation reserve(): 

 
Set{<FlightA1>, <FlightA2>, <FlightA3>} -> forAll (flightA | 
Set{<FlightC1>, <FlightC2>, <FlightC3>}  -> forAll(flightC | 

flightA.mapping(flightC) implies (flightA.freeSeats>0 and not 
flightA.canceled   implies flightC.capacity -
flightC.reservedSeats>0 and not flightC.canceled))) 

 
This expression is easily evaluated by an ordinary OCL evaluator, returning a 

positive answer, which gives us some confidence that the property holds. 



658 C. Pons and D. Garcia  

Lets explore a case where the refinement conditions are not satisfied; lets consider 
for example that preconditions were strengthened in class FlightC as follows, 

 

context FlightC :: reserve()  

pre:self.capacity-self.reservedSeats>200 and notself.canceled 
 
Then, the property to be checked would be, 
 
Set{<FlightA1>, <FlightA2>, <FlightA3>} -> forAll (flightA | 
Set{<FlightC1>, <FlightC2>, <FlightC3>} -> forAll(flightC | 

flightA.mapping(flightC) implies (flightA.freeSeats>0 and not 
flightA.canceled implies flightC.capacity - 
flightC.reservedSeats >200 and not flightC.canceled))) 

 

which evaluates false  in the micro-world in figure 6, as follows: 
 
flightA3.mapping(flightC2)= true 
flightA3.freeSeats>0 and not flightA3.canceled = true 
flightC2.capacity – flightC2.reservedSeats > 200  = false 
 

giving the conclusive answer that the refinement property does not hold in this last 
model. 

5   Conclusion 

Each transformation step in the model driven software development process should be 
amenable to formal verification in order to guarantee the correctness of the final 
product. However, verification activities require the application of formal modeling 
languages with a complex syntax and semantics and need to use complex formal 
analysis tools; therefore, they are rarely used in practice.  

To facilitate the verification task we developed an automatic method for creating 
refinement conditions for UML models, written in the standard and well-accepted 
OCL language. This is a lightweight approach that avoids the use of mathematical 
languages and tools that while ideal and suitable for the problem, will likely be 
unacceptable to developers. 

The inclusion of verification in ordinary software engineering activities will be 
propitiated by encouraging the use of tools that are familiar and usable to MDE 
developers. The disadvantages of this approach relate to soundness and completeness; 
while the approach is rigorous, it is not formal and thus it is not possible to verify that 
the definition is sound and complete. 

To complement such method, we adapted a strategy for reducing the search scope 
in order to make the evaluation of refinement conditions feasible. Since the satisfiable 
formulas that occur in practice tend to have small models, a small scope usually 
suffices and the analysis is reliable.  
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