
O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 646 – 660, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An OCL-Based Technique for Specifying and Verifying
Refinement-Oriented Transformations in MDE

Claudia Pons1,2 and Diego Garcia1,3

1LIFIA – Facultad de Informática, Universidad Nacional de La Plata
2CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)

3UTN (Universidad Tecnológica Nacional)
La Plata, Buenos Aires, Argentina

{cpons, dgarcia}@sol.info.unlp.edu.ar

Abstract. Despite the fact that the refinement technique is one of the
cornerstones of a formal approach to software engineering, the concept of
refinement in model driven engineering is loosely defined and open to
misinterpretations. In this article we present a rigorous technique for specifying
and verifying frequently occurring forms of refinement that take place in
software modeling. Such strategy uses the formal language Object-Z as a
background foundation, whereas designers only have to deal with the broadly
accepted UML and OCL languages, thus propitiating the inclusion of
verification in ordinary software engineering activities, increasing in this way
the level of confidence on the correctness of the final product. Finally, an
automatic tool is provided to support such model refinement activities; this tool
adopts the micromodels strategy to reduce the search scope, making the
verification process feasible.

1 Introduction

The idea promoted by model-driven engineering (MDE) [7] [24] [17] is to use models
at different levels of abstraction. A series of transformations are performed starting
from a platform independent model with the aim of making the system more platform-
specific at each refinement step. Such transformations reduce non-determinism by
making design decisions, e.g., how to represent data, how to implement
communications, etc. In MDE predefined transformations, written in a standard
transformation language [21] are applied in order to evolve from model to model. It is
assumed that such transformations have been previously validated by a MDE expert,
and thus are safe to apply; such transformations are refinements in the sense of formal
languages: refinement is the process of developing a more detailed design or
implementation from an abstract specification through a sequence of mathematically-
based steps that maintain correctness with respect to the original specification.

Despite the fact that refinement technique is one of the cornerstones of a formal
approach to software engineering, the concept of refinement in MDE is loosely
defined and open to misinterpretations. This drawback takes place because of the
semi-formality present in the modeling languages used in MDE and also because of
the currently relative immaturity in this field.

 An OCL-Based Technique 647

There are two alternatives to increase the robustness of the MDE refinement
machinery. One is to translate the core language used in MDE, i.e., UML [15], into a
formal language such as Z, where properties are defined and analyzed. For example
the works presented in [1], [3], [5], [10], [11], [13] and [25] among others, belong to
this group. They are appropriate to discover and correct inconsistencies and
ambiguities of the graphical language, and in most cases they allow us to verify and
calculate refinements of (a restricted form of) UML models. However, such
approaches are non-constructive (i.e., they provide no feedback in terms of UML),
they require expertise in reading and analyzing formal specifications and generally,
properties that should be proved in the formal setting are too complex and
undecidedly. A second alternative is to promote a formal definition of refinement,
e.g., simulation in Z, and express it in MDE terms. For example, Boiten and
Bujorianu in [2] indirectly explore refinement through unification; Paige and colleges
in [18] define refinement in terms of model consistency; Liu, Jifeng, Li and Chen in
[14] define a set of refinement laws of UML models to capture the essential nature,
principles and patterns of object-oriented design, which are consistent with the
refinement definition. Finaly, Lano and colleges in [12] describe a catalogue of UML
refinement patterns which is a set of rules to systematically transform UML models to
forms closer to Java code.

Following the second alternative, in [19] and [20] well founded refinement
structures in the Object-Z formal language were used to discover refinement
structures in the UML, which are (intuitively) equivalent to their corresponding
Object-Z inspiration sources. In this article we work further on such proposal by
enriching those refinement patterns with a refinement condition written in OCL
(Object Constraint Language) [16] [22]. The advantage of this approach is that
refinement conditions get completely defined in terms of OCL, making the
application of languages which are usually hardly accepted by software engineers
unnecessary. OCL is a more familiar language and it has a simpler syntax than
Object-Z and other formal languages. Additionally, OCL is part of the UML 2.0
standard and it will probably form part of most modeling tools in the near future.

Furthermore, after defining refinement conditions, the next step is to evaluate such
conditions. Ordinary OCL evaluators are unable to determine whether a refinement
condition written in OCL holds in a UML model because OCL formulas are evaluated
on a particular instance of the model, while refinement conditions need to be validated
in all possible instantiations. Therefore, in order to make the evaluation of refinement
conditions possible, we extract from the UML model a relatively small number of
small instantiations, and check that they satisfy the refinement conditions to be proved.
This strategy, called micromodels of software was proposed by Daniel Jackson in [9]
for evaluating formulas written in Alloy. Later on, Martin Gogolla and colleges in [8]
developed a useful adaptation of such technique to verify UML and OCL models. Here
we adapt such micromodels strategy to verify refinement conditions.

The structure of this document is as follows: sections 2 serves as a brief intro-
duction to the issue of refinement specification in Object-Z and UML 2.0; section 3
describes the method for creating OCL refinement condition for UML refinement
patterns; section 4 explains how the micromodels strategy is applied to verify
refinements; finally, the paper closes with a presentation of related work, conclusions
and future projects.

648 C. Pons and D. Garcia

2 Refinements Specification and Verification in Object-Z and
UML

In Object-Z [23], a class is represented as a named box with zero or more generic
parameters. The class schema may include local type or constant definitions, at most
one state schema and an initial state schema together with zero or more operation
schemas. These operations define the behavior of the class by specifying any input
and output together with a description of how the state variables change. Operations
are defined in terms of two copies of the state: an undecorated copy which represents
the before-sate and a primed copy representing the after-state.

For example, figure 1 illustrates the specification of a simple class called Flight,
having a state (consisting of two variables) and only one operation.

 Object-Z is equipped with a
schema calculus (i.e., a set of
operators provided to manipulate
Object-Z schemas). The schema
calculus makes it possible to
create Object-Z specifications
describing properties of other
Object-Z specifications. To deal
with refinements we need to apply
at least the following operators:

- Operator STATE denotes the set
of all possible states (i.e., snapshots
or bindings) of the system under
consideration. For example, Flight.
STATE = {:freeSeats=x, canceled=tÚ
| 0≤x≤300 ¶ t∈{true, false}}

- Operator INIT denotes the initial states of a given schema. For example,
Flight.INIT={:freeSeats=300 , canceled=falseÚ | Ú}

- Operator pre returns the precondition of an operation schema; that is to say the set
of all states where the operation can be applied. For example, pre reserve =
{:freeSeats=x, canceled=false Ú | 0<x≤300}

- The conjunction of two schemas S and T (S¶T) results in a schema which
includes both S and T (and nothing else).

- Schema implication (S fi T) denotes the usual logical implication.
In [4], refinement is formally addressed in the context of Object-Z specifications as

follows: an Object-Z class C is a refinement (through downward simulation) of the
class A if there is a retrieve relation R on A.STATE¶C.STATE so that every visible
abstract operation A.op is recasted into a visible concrete operation C.op, thus the
following holds:

(Initialization) AC.STATE × C.INIT fi(EA.STATE × A.INIT ¶ R)

(Applicability) AA.STATE × AC.STATE× R fi (pre A.op fi pre C.op)

(Correctness) AA.STATE×AC.STATE×AC.STATE’×

 R ¶ pre A.op ¶ C.op fi EA.STATE’× R’ ¶ A.op

 Fig. 1. Simple Object-Z schema

 An OCL-Based Technique 649

This definition allows preconditions to be weakened and non-determinism to be
reduced. In particular, applicability requires a concrete operation to be defined
wherever the abstract operation was defined, however it also allows the concrete
operation to be defined in states for which the precondition of the abstract operation
was false. That is, the precondition of the operation can be weakened. Correctness
requires that a concrete operation be consistent with the abstract one whenever applied
in a state where the abstract operation is defined. However, the outcome of the
concrete operation only has to be consistent with the abstract, but not identical. Thus if
the abstract operation allowed a number of options, the concrete operation is free to use
any subset of these choices. In other words, non-determinism can be solved.

On the other hand, the standard modeling language UML [15] provides an artifact
named Abstraction (a kind of Dependency) with the stereotype <<refine>> to
explicitly specify the refinement relationship between UML named model elements.
In the UML metamodel an Abstraction is a directed relation from a client (or clients)
to a supplier (or suppliers) stating that the client (the refinement) depends on the
supplier (the abstraction). The Abstraction artifact has a meta-attribute called mapping
designated to record the abstraction/implementation mappings (i.e., the counterpart to
the Object-Z retrieve relation), which is an explicit documentation of how the
properties of an abstract element are mapped to its refined versions, and on the
opposite direction, how concrete elements can be simplified to fit an abstract
definition. The mapping contains an expression stated in a given language that could
be formal or not. The definition of refinement in the UML standard [15] is formulated
using natural language and it remains open to numerous contradictory interpretations.

3 Verification Strategy for UML Refinement Patterns

UML refinement patterns [12] [19] [20] document recurring refinement structures in
UML models. In this section we present a process to be applied on UML models
containing such patterns in order to automatically create OCL refinement conditions
to analyze them in a rigorous way. Figure 2 gives a description of the process at a
glance. It is based on a pipeline architecture in which the analysis is carried out by a
sequence of steps. The output of each step provides the input to the next one. In this
section we give a brief overview of each step:

Refinement pattern instantiation. Each refinement pattern P consists of two parts: a
description M of the Pattern structure, given in terms of UML diagrams and a generic
constraint F expressed in Object-Z representing refinement condition for such pattern.
Given a UML model M1 compliant with the structure of pattern P, the first step of the
process automatically generates an instance F1 of the generic formula F that
establishes the conditions to be fulfilled by M1 in order to verify the refinement.

Transformation to OCL. After being generated, the Object-Z formula F1 is auto-
matically translated into the OCL formula F1’ by applying the transformation T (the
detailed definition of T is included in the appendix).

Micromodels strategy application. In this step, the micromodels strategy is applied
to F1’ in order to produce a formula F1’’ which is analyzable within a limited scope.

650 C. Pons and D. Garcia

OCL Evaluation. Finally, F1’’ is submitted to an ordinary OCL evaluator.

The process is assisted by the automated tool ePlatero [6] that is a plug-in to the
Eclipse development environment; ePlatero implements the verification process
described above.

In the following sections this process is illustrated through a concrete example: the
state refinement pattern [19].

Fig. 2. Overview of the refinement verification process

3.1 The State Refinement Pattern

A State Refinement takes place when the data structures which were used to represent
the objects in the abstract specification are replaced by more concrete or suitable
structures; operations are accordingly redefined to preserve the behavior defined in
the abstract specification.

An instance of the pattern’s structure
Let M1 be the UML model in figure 3, which is compliant with the structure of the
state refinement pattern [19]. M1 contains information about a flight booking system
where each flight is abstractly described by the quantity of free seats in its cabin; then
a refinement is produced by recording the total capacity of the flight together with the
quantity of reserved seats. In both specifications, a Boolean attribute is used to
represent the state of the flight (open or canceled). The available operations are
reserve to make a reservation of one seat and cancel to cancel the entire flight.
A refinement relationship connects the abstract to the concrete specification. The
OCL language [16] has been used to specify initial values, operation’s pre and post
conditions and the mapping attached to the refinement relationship.

 An OCL-Based Technique 651

Fig. 3. an instance of the state refinement pattern

An instance of the pattern’s refinement condition
Object-Z refinement conditions - F1 - for UML classes FlightA and FlightC via some
retrieve relation R are automatically generated from the generic refinement condition
established by the pattern [19], based on the definition of downward simulation in
Object-Z described in [4]. Figure 4 shows the formula F1.

Initialization
AFlightC.STATE ×FlightC.INIT fi(E FlightA.STATE ×FlightA.INIT ¶ R)

Applicability (for operation reserve)

AFlightA.STATE×AFlightC.STATE ×

 R fi (pre FlightA.reserve fi pre FlightC.reserve)

Correctness (for operation reserve)
AFlightA.STATE ×AFlightC.STATE × AFlightC.STATE’× R ¶

 pre FlightA.reserve¶FlightC.reserve fi E FlightA.STATE’ ×R’ ¶ FlightA.reserve

Fig. 4. An instance of the refinement condition for the state refinement pattern

The transformation process from object-Z to OCL
Then, Object-Z refinement condition - F1 - is automatically transformed into OCL
expression – F1’ - by applying the transformation T in the context of a UML model

context FlightA ::
freeSeats init: 300
canceled init: false
reserve() pre: freeSeats>0 and not canceled
 post: freeSeats=freeSeats@pre -1
cancel() pre: not canceled post: canceled

context FlightC ::
capacity init: 300
reservedSeats init: 0
canceled init: false
reserve() pre: capacity-reservedSeats>0
 and not canceled
 post:reservedSeats=reservedSeats@pre+1
cancel() pre: not canceled
 post: canceled

flightA.freeSeats = flightC.capacity –
flightC.reservedSeats and flightA.canceled
= flightC.canceled

652 C. Pons and D. Garcia

M1. Apart from producing an OclExpression, T returns an OclFile containing
additional definitions, which are created during the transformation process:

T : Model-> ObjectZpredicate -> (OclExpression,OclFile)

The main features of the transformation are as follows,

Remark #1: The Object-Z retrieve relation R is replaced by its OCL counterpart.

Graphically, the abstraction mapping (i.e., the retrieve relation) describing the relation
between the attributes in the abstract element and the attributes in the concrete
element is attached to the refinement relationship; however, OCL expressions can
only be written in the context of a Classifier, but not of a Relationship. On the Z side,
the context of the abstraction mapping is the combination of the abstract and the
concrete states (i.e., A.STATE ¶ C.STATE); however, a combination of Classifiers is
not an OCL legal context. Our solution consists in translating the mapping into an
OCL formula in the context of the abstract classifier, in the following way:

context flightA:FlightA def :
mapping(flightC : FlightC):Boolean =
flightA.freeSeats= flightC.capacity – flightC.reservedSeats

and flightA.canceled= flightC.canceled

As a convention, class names in lower case are used to denote instances. It is worth
mentioning that the mapping definition could alternatively have been translated into a
formula in the context of the concrete classifier.

Formally:

TM (relationName) = (e,Φ)
Where:

e = absInstance “.mapping(” refInstance “)”

 Φ = “package” packageName

“context a:” AbstractClass “def:”

“mapping(c:” RefinedClass “):Boolean =” exp

 “endPackage”

Where:

d = M.getEnvironmentWithParents().lookup(relationName)

AbstractClass = d.supplier.name

RefinedClass = d.client.name

absInstance = toLowerCase(AbstractClass)

refInstance = toLowerCase(RefinedClass)

exp = d.mapping.body

packageName = abstractClass.package.name

 An OCL-Based Technique 653

Remark #2: Object-Z expression INIT is expressed in terms of an OCL boolean
operation isInit().

A query operation isInit()is automatically built from the specification of the
attribute’s initial values included in the UML class diagram. It returns true if all of the
instance’s attributes satisfy the initialization conditions. For example:

context FlightA def: isInit(): Boolean =
self.freeSeats = 300 and self.canceled = false

context FlightC def: isInit(): Boolean =
self.capacity=300 and self.canceled=false and

self.reservedSeats=0

In cases where the refinement involves composite classes, the initialization

condition is built in terms of the initialization of each component; additionally,
information provided for each composite association (e.g., multiplicity) is taken into
consideration.

Formally:

TM (className.INIT) =(e,Φ)
Where

e= toLowerCase(className) “.isInit()”

Φ = ”Package” packageName1
"context” className “def: isInit(): Boolean =”

attName1“=”exp1“and”...“and” attNamen“=”expn “and”
navigationName1“->size() =” size1 “and”
navigationName1 “->forAll(p| p.isInit())”...“and”
navigationNamen“->size() =” sizen “and”
navigationNamen “->forAll(p| p.isInit())”

“endPackage”

Where

packageName = class.package.name

class : UMLClass =
 M.getEnvironmentWithParents().lookup(className)

attributes: Sequence(UMLProperty) =

 class.allProperties()->select(p|p.initialValue-
>notEmpty())

∀j×1≤j≤attributes->size()× attNamej = attributes-
>at(j).name ¶ expj = attributes->at(j).initialValue.body
navigations: Sequence(UMLProperty) =

 class.allProperties()->select(p|p.association-
>notEmpty() and p.isComposite())

∀j×1≤j≤navigations->size()× navigationNamej = navigations-
>at(j).name ¶ sizej = navigations->at(j).lower

654 C. Pons and D. Garcia

Remark #3: Expressions containing the Object-Z operator “pre” are translated into
the corresponding OCL pre conditions from the UML model.

For example, the Object-Z expression “pre FlightA.reserve” is translated
into “flightA.freeSeats>0 and not flightA.canceled”

While, the expression “pre FlightC.reserve” is translated into

“flightC.capacity-flightC.reservedSeats>0 and not
flightC.canceled”

Remark #4: Object-Z expressions containing operation’s invocations are translated
to OCL post conditions from the UML model.

In Object-Z, elements belonging to the pre-state are denoted by undecorated
identifiers, while elements in the post-state are denoted by identifiers with a
decoration (i.e. a stroke). In OCL the naming convention goes exactly in the opposite
direction, that is to say, undecorated names refer to elements in the post-state. Then,
in order to be consistent with the rest of the specification, a decoration (i.e., “_post”)
is added to each undecorated identifier in the post condition and the original
decoration (i.e., @pre) is removed from the rest of the identifiers. For example the
following definition:

context FlightA::reserve()
 post: self.freeSeats= self.freeSeats@pre -1

is renamed to:

context FlightA::reserve()
 post: flightA_post.freeSeats= flightA.freeSeats -1

Remark #5: Logic connectors and quantifiers are translated to OCL operators.

The Z expression AS.STATE×exp is translated to S.allInstances()-

>forAll(s | T(expr)). While the Z expression ES.STATE×exp is translated
to S.allInstances()->exists(s| T(expr)).

For example, the translation for the universal quantifiers is as follows:

TM(A className.STATE × Predicate) = (e,Φ)
Where

TM(Predicate)= (e1, Φ)
e=className“.allInstances()->forAll(”iteratorName“|”e1“)”

iteratorName= toLowerCase(className)

 An OCL-Based Technique 655

Notice that the name of the class, in lower case, is used to name the iterate variable.
Finally, the symbol fi is translated to implies and the symbol ¶ is translated to
and,

TM(Predicate1 ¶ Predicate2)= (e,Φ)

Where

TM(Predicate1)= (e1, Φ1)

TM(Predicate2)= (e2, Φ2)

e= e1 “and” e2

Φ = Φ1 merge Φ2

On top of the formal definition of T the transformation process was fully

automated [6]. Table 1 shows the formula F1’ that is the result of applying the
transformation T on both the UML model M1 (figure 3) and the Object-Z refinement
conditions F1 (figure 4).

Table 1. OCL refinement conditions for an instance of the state refinement pattern

OCL refinement condition

FlightC.allInstances()->forAll(flightC| flightC.isInit()
implies (FlightA.allInstances()-> exists(flightA|
flightA.isInit()and flightA.mapping(flightC))))

FlightA.allInstances()-> forAll(flightA|
FlightC.allInstances()-> forAll(flightC|
flightA.mapping(flightC) implies (flightA.freeSeats>0 and
not flightA.canceled implies flightC.capacity-
flightC.reservedSeats>0
and not flightC.canceled)))

FlightA.allInstances()-> forAll(flightA|
FlightC.allInstances() -> forAll(flightC|
FlightC.allInstances()-> forAll(flightC_post|
flightA.mapping(flightC)and (flightA.freeSeats>0 and
not flightA.canceled) and (flightC_post.reservedSeats =
flightC.reservedSeats+1) implies FlightA.allInstances()->
exists(flightA_post| flightA_post.mapping(flightC_post)
and flightA_post.freeSeats= flightA.freeSeats -1))))

656 C. Pons and D. Garcia

3.2 Further Patterns

A vast number of refinement patterns can be specified and verified following the
method described in the preceding section, for example:

- Object decomposition refinement pattern is a form of refinement in which an
abstract element is described in more detail by revealing its interacting internal
components and conversely, the composite represents its components in sufficient
detail in all contexts in which the fact of being composed is not relevant.

- Atomic operation refinement pattern occurs in the case that a more concrete
specification is obtained from an abstract specification by replacing any operation
Aopk by its refinement Copk. The refined operation reduces non-determinism and/or
partiality present in the abstract operation.

- Non-atomic operation refinement pattern takes place when the abstract operation
is refined not by one, but by a combination of concrete operations, thus allowing a
change of granularity in the specification. Non-atomic refinements are useful because
they allow the initial specification to be described independently of the structure of
the eventual implementation. Also it enables considerations of efficiency to be
gradually introduced.

- Promotion pattern illustrates an elegant relationship between promotion and
refinement, under certain circumstances the promotion of a refinement is a refinement
of a promotion [4].

Additionally, complex model transformations, such as the application of most GoF
design patterns and the use of refactoring can be specified as a composition of the
simpler patterns described above.

4 Micro-worlds for Evaluating Refinement Conditions

Even little models such as the one described in figure 3 specify an infinite number of
instances; thus to decide whether a certain property holds or not in the model results
generally unfeasible. In order to make the evaluation of refinement conditions viable,
the technique of micromodels (or micro-worlds) of software is applied by defining a
finite bound on the size of instances and then checking whether all instances of that
size satisfy the property under consideration:

- If we get a positive answer, we are somewhat confident that the property holds in
all worlds. In this case, the answer is not conclusive, because there could be a larger
world which fails the property, but nevertheless a positive answer gives us some
confidence.

- If we get a negative answer, then we have found a world which violates the
property. In that case, we have a conclusive answer, which is that the property does
not hold in the model.

Jackson’s small scope hypothesis [9] states that negative answers already tend to
occur in small worlds, boosting the confidence we may have in a positive answer. For
example, in order to generate suitable micro-worlds to evaluate the refinement
conditions of class diagram in figure 3, the OCL package shown in figure 5,
containing invariants that reduce the size of the micro-world, is provided.

 An OCL-Based Technique 657

package flights
 context FlightA
 inv: Set { 0 .. 300 } -> includes (self.freeSeats)
 context FlightC
 inv: Set {300} -> includes (self.capacity)
 inv: self.reservedSeats <= self.capacity
 endpackage

Fig. 5. OCL invariants reducing the search space

Apart from satisfying all the OCL invariants reducing the search space, to be
suitable to analyze refinement relationships, the micro-worlds should satisfy the
“duality property”. Such property establishes that for each instance of a concrete class
there must exist at least an instance of the abstract class being related by the
abstraction mapping. The automatic micro-world generation process implemented by
the tool guarantees the fulfillment of the duality property.

Then the tool checks whether all micro-worlds of that size satisfy the refinement
condition. For example, figure 6 displays one of the micro-worlds satisfying the
invariants and the duality property. In such micro-world the expression
FlightA.allInstances() returns a finite set of size three containing the objects
FlightA1, FlightA2 and FlightA3, while FlightC.allInstances() returns a finite set of
size three containing the objects FlightC1, FlightC2 and FlightC3.

freeSeats : int = 72
canceled : bool = true

FlightA1 : FlightA

freeSeats : int = 258
canceled : bool = false

FlightA2 : FlightA

freeSeats : int = 177
canceled : bool = false

FlightA3 : FlightA

capacity : int = 300
reservedSeats : int = 228
canceled : bool = true

FlightC1 : FlightC

capacity : int = 300
reservedSeats : int = 123
canceled : bool = false

FlightC2 : FlightC

capacity : int = 300
reservedSeats : int = 228
canceled : bool = true

FlightC3 : FlightC

Fig. 6. Micro-world automatically generated from the UML model in figure 3 enriched with the
constraints in figure 5

In this context we have, for example, the following applicability condition for
operation reserve():

Set{<FlightA1>, <FlightA2>, <FlightA3>} -> forAll (flightA |
Set{<FlightC1>, <FlightC2>, <FlightC3>} -> forAll(flightC |

flightA.mapping(flightC) implies (flightA.freeSeats>0 and not
flightA.canceled implies flightC.capacity -
flightC.reservedSeats>0 and not flightC.canceled)))

This expression is easily evaluated by an ordinary OCL evaluator, returning a

positive answer, which gives us some confidence that the property holds.

658 C. Pons and D. Garcia

Lets explore a case where the refinement conditions are not satisfied; lets consider
for example that preconditions were strengthened in class FlightC as follows,

context FlightC :: reserve()

pre:self.capacity-self.reservedSeats>200 and notself.canceled

Then, the property to be checked would be,

Set{<FlightA1>, <FlightA2>, <FlightA3>} -> forAll (flightA |
Set{<FlightC1>, <FlightC2>, <FlightC3>} -> forAll(flightC |

flightA.mapping(flightC) implies (flightA.freeSeats>0 and not
flightA.canceled implies flightC.capacity -
flightC.reservedSeats >200 and not flightC.canceled)))

which evaluates false in the micro-world in figure 6, as follows:

flightA3.mapping(flightC2)= true
flightA3.freeSeats>0 and not flightA3.canceled = true
flightC2.capacity – flightC2.reservedSeats > 200 = false

giving the conclusive answer that the refinement property does not hold in this last
model.

5 Conclusion

Each transformation step in the model driven software development process should be
amenable to formal verification in order to guarantee the correctness of the final
product. However, verification activities require the application of formal modeling
languages with a complex syntax and semantics and need to use complex formal
analysis tools; therefore, they are rarely used in practice.

To facilitate the verification task we developed an automatic method for creating
refinement conditions for UML models, written in the standard and well-accepted
OCL language. This is a lightweight approach that avoids the use of mathematical
languages and tools that while ideal and suitable for the problem, will likely be
unacceptable to developers.

The inclusion of verification in ordinary software engineering activities will be
propitiated by encouraging the use of tools that are familiar and usable to MDE
developers. The disadvantages of this approach relate to soundness and completeness;
while the approach is rigorous, it is not formal and thus it is not possible to verify that
the definition is sound and complete.

To complement such method, we adapted a strategy for reducing the search scope
in order to make the evaluation of refinement conditions feasible. Since the satisfiable
formulas that occur in practice tend to have small models, a small scope usually
suffices and the analysis is reliable.

Acknowledgement. This work was partially funded by Universidad Abierta
Interamericana (UAI), through the project ?Software modelling: a formal approach?.

 An OCL-Based Technique 659

References

[1] Astesiano E., Reggio G. An Algebraic Proposal for Handling UML Consistency”,
Workshop on Consistency Problems in UML-based Software Development. UML
Conference , San Francisco, USA (2003).

[2] Boiten E.A. and Bujorianu M.C. Exploring UML refinement through unification.
Proceedings of the UML'03 workshop on Critical Systems Development with UML, J.
Jurjens, B. Rumpe, et al., editors -TUM-I0323, Technische Universitat Munchen. (2003).

[3] Davies J. and Crichton C. Concurrency and Refinement in the Unified Modeling
Language. Electronic Notes in Theoretical Computer Science 70,3, Elsevier, 2002.

[4] Derrick, J. and Boiten,E. Refinement in Z and Object-Z. Foundation and Advanced
Applications. FACIT, Springer. (2001)

[5] Engels G., Küster J., Heckel R. and Groenewegen L. A Methodology for Specifying and
Analyzing Consistency of Object Oriented Behavioral Models. Procs. of the IEEE Int.
Conference on Foundation of Software Engineering. (2001).

[6] ePlatero. http://sol.info.unlp.edu.ar/eclipse.
[7] Favre Jean-Marie, Estublier Jacky, Blay Mireille. Beyond MDA : Model Driven

Engineering (L'Ingénierie Dirigée par les Modèles : au-délà du MDA) Edition Hezmes-
Lavoisier, ISBN 2-7462-1213-7. Février 2006.

[8] Gogolla , Martin, Bohling, Jo¨rn and Richters, Mark. Validation of UML and OCL
Models by Automatic Snapshot Generation. In G. Booch, P.Stevens, and J. Whittle,
editors, Proc. 6th Int. Conf. Unified Modeling Language (UML'2003). Springer,
LNCS 2863, (2003).

[9] Jackson, Daniel, Shlyakhter, I. and Sridharan. A micromodularity Mechanism. In
proceedings of the ACM Sigsoft Conference on the Foundation of Software Engineering
FSE’01. (2001).

[10] Kim, S. and Carrington, D., Formalizing the UML Class Diagrams using Object-Z,
proceedings UML´99 Conference, Lecture Notes in Computer Sciencie 1723 (1999).

[11] Lano,K., Biccaregui,J., Formalizing the UML in Structured Temporal Theories, 2nd.
ECOOP Workshop on Precise Behavioral Semantics, TUM-I9813, (1998).

[12] Lano, Kevin, Androutsopolous, Kelly and Clark David. Refinement Patterns for UML.
Proceedings of REFINE’2005. Elsevier Electronic Notes in Theoretical Computer
Science 137. pages 131-149 (2005).

[13] Ledang, Hung and Souquieres, Jeanine. Integration of UML and B Specification Techni-
ques: Systematic Transformation from OCL Expressions into B. Procs. of IEEE Asia-
Pacific Software Engineering Conference 2002. December 4-6, (2002).

[14] Liu, Z., Jifeng H., Li, X. Chen Y. Consistency and Refinement of UML Models. 3er
Workshop on Consistency Problems in UML-based Software Development III, event of
the UML Conference, (2004).

[15] OMG - UML 2.0. The Unified Modeling Language Superstructure version 2.0 – OMG
Final Adopted Specification.. http://www.omg.org. August 2003

[16] OCL 2.0. OMG Final Adopted Specification. October 2003.
[17] Object Management Group, MDA Guide, v1.0.1, omg/03-06-01, June 2003.
[18] Paige, R., Kolovos D. and Polack,F. Refinement via Consistency Checking in MDD. In

REFINE’2005. Electronic Notes in Theoretical Computer Science 137. (2005).
[19] Pons Claudia. On the definition of UML refinement patterns. Workshop MoDeVa at

ACM/IEEE 8th Int. Conference on Model Driven Engineering Languages and Systems
(MoDELS) Jamaica. October 2005.

660 C. Pons and D. Garcia

[20] Pons Claudia. Heuristics on the Definition of UML Refinement Patterns. 32nd
International Conference on Current Trends in Theory and Practice of Computer Science.
SOFSEM. Lecture Notes in Computer Science LNCS number 3831. Springer (2006)

[21] QVT Partners revised submission to QVT 1.1 (ad/2003-08-08).
[22] Richters, Mark and Gogolla, Martin. OCL-Syntax, Semantics and Tools. in Advances in

Object Modelling with the OCL. Lecture Notes in Computer Science number 2263.
Springer. (2001).

[23] Smith, Graeme. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers. ISBN 0-7923-8684-1. (2000)

[24] Stahl, M Voelter. Model Driven Software Development. John Wiley, ISBN 0470025700,
April 2006.

[25] Van Der Straeten, R., Mens,T., Simmonds, J. and Jonckers,V. Using description logic to
maintain consistency between UML-models. In Proc. 6th International Conference on the
Unified Modeling Language. Lecture Notes in Computer Science number 2863. Springer.
(2003).

	Introduction
	Refinements Specification and Verification in Object-Z and UML
	Verification Strategy for UML Refinement Patterns
	The State Refinement Pattern
	Further Patterns

	Micro-worlds for Evaluating Refinement Conditions
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

