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Abstract. Model Driven Engineering proposes the use of models at different levels of 
abstraction. Step by step validation of model refinements is necessary to guarantee the 
correctness of the final product with respect to its initial models. But, given that 
accurate validation activities require the application of formal modeling languages 
with a complex syntax and semantics and need to use complex formal analysis tools, 
they are rarely used in practice.  In this article we describe a lightweight validation 
approach that does not require the use of third-party (formal) languages. The approach 
makes use of the standard OCL as the only visible formalism, so that refinements can 
be checked by using tools that are fully understood by the MDE community. 
Additionally, for the efficient evaluation of the refinement conditions a hybrid 
strategy that combines model checking, testing and theorem proving is implemented. 
Correctness and complexity of the proposal are empirically validated by means of the 
development of case studies and a comparison with the Alloy analyzer. 
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1.  Introduction 

The idea promoted by model-driven software engineering (MDE) [1] [2] [3] is to use 
models at different levels of abstraction. A series of transformations are performed starting 
from a platform independent model with the aim of making the system more platform-
specific at each step. Currently, a considerable amount of research is being performed in the 
area of model transformations, as evidenced by the development of a number of different 
model transformation approaches, including ATL [4] and TefKat [5], based on the QVT 
standardization initiative [6]. That research mainly focuses on how to express model 
transformations (defining a model transformation language), while less attention was paid 
on how to systematically validate model transformations (defining validation criteria for 
model transformation). In general, the validation of model transformation may include 
properties such as syntactic correctness of the model transformation with regards to its 
specification language and syntactic correctness of the models produced by the model 
transformation (see for example [7] and [8]). But, few proposals deal with the semantic 
consistency of the model transformation, that is to say, the preservation of target model 
correctness with regards to the corresponding source model.   

However, the problem of semantic validation of model transformation is not a new 
challenge originated by the MDE philosophy.  The idea of software development being 
conducted in a controlled and provably correct fashion, in incremental steps, goes back to 



  

the days of Dijkstra’s stepwise refinement theory [9]. Since these seminal ideas, refinement 
theory has found widespread adoption and development in the formal method community, 
where the majority of refinement schemes revolve around the principle of ‘substitutivity’ 
[10]. In such a scheme, a refinement is deemed ‘correct’ if the observable behavior of a 
program/model is undetectable after a refinement has occurred. Refinement is usually 
checked by proving that the concrete system simulates the abstract one. The notion of 
simulation is captured by downward and upward simulation rules comprising conditions 
relating the possible initializations and transitions of the concrete and abstract systems. 

To adapt those well-founded refinement definitions towards the validation of model 
transformation becomes a tempting challenge. However, formal techniques have not been 
successfully applied to large-scale design models in a language such as UML [11]. There 
are two main reasons for this. Firstly, the general techniques do not scale well to the size 
required, even when techniques are used to reduce the state space. Secondly, it is beyond 
the expertise of most developers to write the mathematically formal statements of 
‘correctness’ for refinements.  

In this paper we describe a novel light-weight formal approach towards the semantic 
validation of model refinements. The proposed approach provides a more practical 
approach to refinement than the strict notions found in the formal methods community.  
Specifically, we consider how refinements between state-based specifications (e.g., written 
in MOF [12] or UML class diagrams) can be checked by using tools that are fully 
understood by the MDE community. In particular, we show how the Object Constraint 
Language OCL [13] can be used to encode the standard simulation conditions. OCL is part 
of the standards UML and MOF and will probably form part of most modeling tools in the 
near future, thus the main advantage of our approach is that it does not require the use of 
third-party (formal) languages.  

Additionally, in order to make the evaluation of refinement conditions more efficient, we 
implement a hybrid strategy that combines model checking, testing and theorem proving, 
based on the micro-worlds generation strategy presented in [14]. 

The structure of this document is as follows: section 2 serves as a brief introduction to 
the issue of refinement specification in formal languages (in particular we use the Z 
language as foundation) as well as in MDE languages (in particular MOF 2.0 and UML 
2.0); section 3 describes the automatic method for creating OCL refinement condition for 
UML/MOF model refinements; section 4 describes a hybrid evaluation strategy for the 
efficient evaluation of refinement conditions; section 5 presents experimental results and 
finally  the paper closes with a presentation of related work and conclusions. 

2. Refinement specification and verification 

In this section we briefly introduce the concept of refinement specification and verification 
both in terms of the formal language Z [15] and in terms of MOF and UML. 

2.1 Refinement in Z 

Data refinement is a formal notion of development, based around the idea that a concrete 
specification can be substituted for an abstract one as long as its behavior is consistent with 
that defined in the abstract specification. In a state-based setting, as typified by Z, data 
refinements are usually verified by defining a relation (referred to as a retrieve relation R) 
between the two specifications and verifying a set of simulation conditions. In general there 



        

are two forms the simulation rules take depending on the interpretation given to an 
operation (specifically, depending on the interpretation given to the operation’s guard or 
precondition). The two interpretations are often called the blocking and non-blocking 
semantics. We consider only the non-blocking semantics in this paper. Under this 
semantics, an operation has a precondition outside of which its behavior is undefined, and it 
is the standard semantics for sequential specification (and as such is the normal semantics 
for refinement in Z).  

Let a specified system comprise a set of states S, a non-empty set of initial states I ⊆ S, 
and a finite set of operations {Op1, . . . , Opn}, each of which is a relation between states in 
S (input and output parameters of operations can be embedded in the states of S as 
described by Smith and Winter in [16]). Under the non-blocking semantics, downward 
simulation is then defined as follows [10]. 

 
Definition 1 (Downward simulation: non-blocking) 
A specification C = (CS, CI, {COp1, . . . , COpn}) is a downward simulation of a 

specification A = (AS, AI, {AOp1, . . . ,AOpn}), if there exists a retrieve relation R 
between AS and CS such that the following hold for all i ∈ 1, . . . , n. 

 
(1)   A c ∈ CS  ×  c ∈ CI  fi ∃ a ∈ AS  ×  a∈ AI  ∧ aRc 
(2) A a ∈ AS; c ∈ CS  ×  aRc Û ( pre AOpi  Û  pre COpi ) 
(3)  A a ∈ AS;  c, c’∈  CS  ×  (pre AOpi ) ∧ aRc ∧ c COpi c’   

           Û (∃ a’ ∈ AS × a’Rc’ ∧  a AOpi a’) 
 

Condition 1 is known as initialization. It requires that for every concrete initial state 
there is an initial abstract state related by the retrieve relation R. 

Condition 2 is the applicability condition. It allows preconditions to weaken under a 
refinement—the concrete operation must be applicable everywhere the abstract is 
applicable, but can also be defined on additional states.  

Condition 3 is known as correctness. It requires consistency of behavior between 
abstract and concrete operations, but only on those states where the abstract operation is 
enabled.  

To verify a data refinement it is sometimes necessary to use an alternative simulation 
rule known as an upward simulation; in general, both are needed to form a complete 
methodology for verifying refinements (see [10]), however it is left as future work. Besides, 
for practical reasons we restrict our attention to systems where the inverse of R is a total 
function (usually referred to as abstraction function). In such cases the refinement 
conditions can be simplified (i.e.,  a=R-1(c) and a’=R-1(c’) ) 

To illustrate the topic of refinements, figure 1 (left side) displays the specification of a 
simple data type called FlightA, containing information about a flight booking system 
where each flight is abstractly described by the total capacity of the flight together with the 
quantity of reserved seats; a Boolean attribute is used to represent the state of the flight 
(open or canceled). The specification describes the initialization condition (named Init) and 
the two available operations: reserve to make a reservation of one seat and cancel to cancel 
the entire flight. Then, figure 1 (right side) shows a refinement for FlightA, named FlightC, 
that is obtained by specifying in more detail the fact that a flight contains a collection of 
seats in its interior. In this case, seats are described as individual entities with their own 
attributes and behavior (a seat has an identification number and a Boolean attribute 
indicating whether it is reserved or not). The refined version of the reservation process 
selects a seat (ready to be reserved) in a non-deterministic way.  



ùýFlightAýýýýýýýýýýýýýýýýýýýýýýý 
ú  capacity: N 
ú reservedSeats: N 
ú canceled: B 
üýýýýýýýýýýýýýýýýýýýýýýýýýýýýý 
ùýInitýýýýýýýýýýýýýýýýýýýýýýýýýý 
ú FlightA’ 
ûýýýýýýýýý 
ú capacity’ =300 ¶  reservedSeats’=0  
ú ¬canceled’ 
üýýýýýýýýýýýýýýýýýýýýýýýýýýýýý 
ùýAreserveýýýýýýýýýýýýýýýýýýýýýý 
ú D(FlightA) 
ûýýýýýýýýý 
ú capacity-reservedSeats>0 ¶ ¬canceled 
ú reservedSeats’=reservedSeats+1  
üýýýýýýýýýýýýýýýýýýýýýýýýýýýýý 
ùýAcancelýýýýýýýýýýýýýýýýýýýýýýý 
ú D(FlightA) 
ûýýýýýýýýý  
ú ¬canceled ¶ canceled’  
üýýýýýýýýýýýýýýýýýýýýýýýýýýýýý 
ùýRýýýýýýýýýýýýýýýýýýýýýýýýýýý 
ú FlightA.State 
ú FlightC.State 
ûýýýýýýýýý  
ú capacity = #seats 
ú  reservedSeats = #{s e  seats | s.reserved} 
ú  FlightA.canceled = FlightC.canceled 
üýýýýýýýýýýýýýýýýýýýýýýýýýýý  

 
ùýSeatýýýýýýýýýýýýýýýýýýýýýýý 
ú   number: N 
ú  reserved: B 
üýýýýýýýýýýýýýýýýýýýýýýýýýýýýý 
ùýSreserveýýýýýýýýýýýýýýýýýýýýýý 
ú D(Seat) 
ûýýýýýýýýý 
ú !reserved ¶ reserved’ 
üýýýýýýýýýýýýýýýýýýýýýýýýýýýýý 
ùýFlightCýýýýýýýýýýýýýýýýýýýýýýý 
ú  seats: F Seat 
ú canceled: B 
üýýýýýýýýýýýýýýýýýýýýýýýýýýýýý    
ùýInitýýýýýýýýýýýýýýýýýýýýýýýýýý 
ú FlightC’ 
ûýýýýýýýýý 
ú #seats’=300 ¶ ¬canceled’ 
ú #{s ∈ seats’ | s.reserved} = 0 
üýýýýýýýýýýýýýýýýýýýýýýýýýýýýý 
 
  Creserve Í ∃óSeat × Sreserve ¶ update 
 
ùýCcancelýýýýýýýýýýýýýýýýýýýýýýý 
ú D(FlightC) 
ûýýýýýýýýý  
ú ¬canceled ¶ canceled’  
üýýýýýýýýýýýýýýýýýýýýýýýýýýýýý  
   
 

Figure 1. Z refinement structure. 

By evaluating the three refinement conditions we are able to formally verify whether 
FlightC is a refinement of FlightA or not. Graeme Smith and John Derrick in [17] consider 
how refinements between specifications written in Z can be effectively checked by use of a 
model checker. 

2.2 Refinement in MOF/UML 

The modeling languages UML and MOF provide visual artifacts to specify the structure 
and behavior of object-oriented systems. UML and MOF specifications share a common 
core infrastructure [18]. The OCL 2.0 is aligned with UML 2.0 and MOF 2.0 and it 
contains a well-defined and named subset of OCL that is defined purely based on the 
common core of UML and MOF. This allows this subset of OCL to be used with both the 
MOF and the UML. This common core defines a modeling artifact named 
DirectedRelationship to connect two (or more) related elements. Afterwards, languages 
based on this common core might specialize the DirectedRelationship metaclass in order to 
provide specific notations for specific kind of relationships. In particular, UML defines an 
artifact named Abstraction (a specialization of DirectedRelationship) with the stereotype 



        

<<refine>> to explicitly specify the refinement relationship between named model 
elements. The Abstraction artifact has a meta-attribute called mapping designated to record 
the abstraction/implementation mappings (i.e., the counterpart to the Z retrieve relation), 
which is an explicit documentation of how the properties of an abstract element are mapped 
to its refined versions, and on the opposite direction, how concrete elements can be 
simplified to fit an abstract definition. The mapping contains an expression stated in a given 
language. These visual artifacts are illustrated in the figure 2, where the previously 
introduced data type named FlightA and its refinement named FlightC are specified by a 
UML class diagram; OCL was used to specify the pre and post conditions of the operations. 

 
 
 

  
 
 

 

 
 
 

 
Figure 2. Refinement specification in MOF/UML 

 
On the semantic side, the definition of refinement in the UML specification [11] is 

formulated using natural language and it remains open to numerous interpretations. 
Therefore, MOF and UML languages are expressive enough to visually specify model 
refinements, but they lack formal semantics. Without a formal semantics, to carry out any 
verification process becomes unworkable. 

To overcome this drawback we need to define a well-founded refinement theory for 
MOF and UML. In addition, it would be desirable for such theory to be expressible in a 
language compliant with MOF, in the same way as Z refinement conditions are defined in 
the Z itself, so that refinement evaluation could be carried out into the same development 
environment by using tools that are familiar to model-driven developers.  

Context FlightA :: 
capacity init: 300 
reservedSeats init: 0 
canceled init: false 

  reserve()pre: not self.canceled and 
      self.capacity - self.reservedSeats > 0  
  post: self.reservedSeats =  
        self.reservedSeats@pre+1 
  cancel() pre: not self.canceled  
           post: self.canceled 

a.capacity = c.seat ->size()and 
a.reservedSeats=c.seat->select(s|s.reserved)->size() 
and a.canceled = c.canceled 

Context FlightC :: 
  canceled init: false 
  cancel()  pre: not self.canceled post: self.canceled 
  reserve()  
  pre: self.seat->exists(q|not q.reserved)and not self.canceled 
  post: self.seat -> exists(s| s.reserved and  

    self.seat@pre -> exists(q|q.number=s.number and not q.reserved )) 

Context Seat:: 
reserved init:false 
reserve()  
pre: not self.reserved 
post: self.reserved 

300



  

3. Validation strategy for MOF/UML refinement 

In this section we discuss a general approach to checking refinement conditions for UML 
class diagrams. The process relies on properties of the common core infrastructure only. 
The process takes a class diagram as input and produces a refinement condition (written in 
OCL) for such UML model, as output. Specifically, it encodes downwards simulation 
under the non-blocking semantics (as defined for Z) in OCL. Then, the refinement 
conditions are evaluated by the use of an OCL evaluator. The process is fully automatized 
by a software tool. 

 3.1  The retrieve relation 

We begin by considering the retrieve relation. Graphically, the mapping describing the 
relation between the attributes in the abstract state and the attributes in the concrete state is 
attached to the refinement relationship. On the Z side, the context of the abstraction 
mapping is the combination of the abstract and the concrete states (i.e., AS and CS). Since a 
combination of Classifiers is not an OCL legal context, our solution consists in translating 
the mapping into an OCL definition in the context of the refined classifier. For example, the 
following function definition is automatically derived from the mapping in figure 2, 
 

context c:FlightC def: abs(): FlightA = 
FlightA.allInstances() -> select ( a | a.capacity = c.seat -> 
size() and a.reservedSeats = c.seat -> select (s | s.reserved ) -
> size() and a.canceled = c.canceled ) -> any() 
 

Given an instance of the refined classifier the function abs() returns its (unique) 
abstract representation .  

3.2 Initialization condition 

This condition requires that for each concrete initial state we are able to find an abstract 
initial state related by the abstraction function. To check whether an object is in its initial 
state we introduce a query operation isInit()which is automatically built from the 
specification of the attribute’s initial values included in the class diagram. Composite 
associations are also considered during the construction of the initialization conditions. 
That is to say, the initialization condition is built in terms of the initialization of each 
component.  The approach consists in collecting the attribute’s initial values included in the 
diagram first; and then collecting the information provided for each composite association 
(properties of the association such as multiplicity, isOrdered and isUnique are taken into 
consideration); finally, the isInit() operation is invoked on each one of the 
components. It returns true if all of the attributes and components satisfy the initialization 
conditions. For example, the following initialization queries are automatically derived from 
the class diagram in figure 2. 

 
context FlightA def: isInit(): Boolean =  
self.capacity=300 and self.reservedSeats=0 and 
self.canceled=false 
 
context Seat def: isInit(): Boolean = 



        

self.reserve=false 
 
context FlightC def: isInit(): Boolean =  
self.seat -> size()=300 and self.canceled=false and 
 self.seat-> forAll(s| s.isInit())  
 
Thus, the following initialization condition for Z specifications, 
 
A c ∈ FlightC  ×  c ∈ FlightCI  fi   a ∈ FlightAI   

 
is expressed in OCL by means of the following constraint,  where a=c.abs(), 

 
FlightC.allInstances() -> forAll(c|  
                                  c.isInit() implies a.isInit()) 
 
Notice that the universal quantification ‘A c ∈ FlightC’  is trivially represented by the 
OCL expression ‘FlightC.allInstances()->forAll(c|’  . The Z connector  ‘fi’ 
was converted to the OCL connector ‘implies’. 

3.3 Applicability condition 

We now consider the applicability condition. To check applicability, we need to be able to 
determine whether each of the abstract and concrete operations can occur.  For each 
operation Opi() involved in the refinement a Boolean operation preOpi() is created.  This 
operation will evaluate true if the precondition of the operation Opi() is fulfilled. The 
body of each operation preOpi() is automatically derived from the OCL preconditions 
attached to the operation Opi() in the class diagram. For example, given the specifications 
of operation reserve in figure 2 the following (polymorphic) operations are automatically 
generated, 

 
Context FlightA def:  preReserve(): Boolean = 
not self.canceled and self.capacity - self.reservedSeats > 0  
 
Context FlightC def:  preReserve(): Boolean = 
self.seat->exists(q|not q.reserved)and not self.canceled 

 
Then, Z expressions containing the operator ‘pre’ are represented in OCL by means of 

invocations to these Boolean operations. Thus, the following applicability condition  
 

A c ∈ CS  ×  pre Areserve  Û pre Creserve 
 

is encoded in OCL by means of the following constraint,  where a=c.abs(), 
 
FlightC.allInstances()-> forAll(c| 

a.preReserve() implies c.preReserve() ) 

3.4 Correctness condition 

We finally come to correctness. The correctness condition requires that an abstract 
operation can occur from an abstract state when the corresponding concrete operation can 



  

occur from a concrete state related to the abstract state by the retrieve relation R. The 
correctness condition requires, furthermore, that any state reached by performing the 
concrete operation is related by R to an abstract state reached by performing the abstract 
operation.  

In a class diagram the effect of each operation Opi() is specified by attaching an OCL  
postcondition to Opi(). In a postcondition, the expression can refer to values for each 
property of an object at two moments in time:  the value of a property at the start of the 
operation and the value of a property upon completion of the operation. The value of a 
property in a postcondition is the value upon completion of the operation. In OCL, to refer 
to the value of a property at the start of the operation, the property name is decorated with 
the keyword ‘@pre’. 

In order to capture correctness in OCL, for each operation Opi() involved in the 
refinement we automatically generate a Boolean operation named hasReturnedOpi(selfPre).  
This operation will evaluate true if the post condition of the operation Opi() is fulfilled. 
For example, given the specification of operation reserve()in figure 2, the following 
Boolean operations are generated, 

 
Context FlightA def:  hasReturnedReserve(selfPre: FlightA): 
Boolean = self.reservedSeats = selfPre.reservedSeats + 1 
 
Context FlightC def:  hasReturnedReserve(selfPre: FlightC): 
Boolean = self.seat -> exists (s | s.reserved and selfPre.seat -> 
exists( q | q.number = s.number and not q.reserved) ) 
 

The expression self refers to the object that executed the operation (i.e. the after state), 
while the expression selfPre refers to the object that executes the operation, at the start 
of the operation (i.e. the before state).  These operations are automatically generated by 
applying minor adjustments to the postconditions attached to operations in the class 
diagram, such as the renaming of the occurrences of ‘self.property_name@pre’ to 
‘selfPre.property_name’).  Then, the Z correctness condition 

 
  A c, c’ ∈ CS  ×  pre Areserve  ∧  c Creserve c’ Û  a Areserve a’ 
 
is emulated by the following  OCL constraint, where a=c.abs() and 

a_post=c_post.abs(), 
 
FlightC.allInstances()-> forAll( c|  
FlightC.allInstances()-> forAll( c_post|  
  (a.preReserve()and  c_post.hasReturnedReserve(c))  
    implies a_post ().hasReturnedReserve(a) )) 
 

Observe that Z expressions of the form ‘c COpi c’ are encoded in OCL by creating 
expressions of the form ‘c_post.hasReturnedCOpi(c)’. We use the postfix ‘_post’ to 
emulate the decoration ‘‘’ used in Z because OCL does not allow the use of non-
alphabetical names. Also it was convenient for implementation reasons to overturn the 
order of decorated and undecorated variables (i.e., c_post.hasReturnedOpi(c) instead 
of c.hasReturnedReserve(c_post). 



        

4. Combining model checking, testing and semantic entailment for 
evaluating refinements  

After creating the refinement conditions written in OCL we need to evaluate them using an 
OCL evaluator. In this section we describe our approach to evaluate OCL refinement 
conditions in an effective way. 

The OCL is a Predicate Logic language. Two central concepts in Predicate Logic are 
semantic entailment (given a set of formulas Γ of predicate logic, determine whether Γ | 
φ is valid) and model checking (given a formula φ of predicate logic and a matching model1 
M determine whether M |= φ holds). Looking for combining model checking and semantic 
entailment in a way which attempts to give us the advantages of both, Daniel Jackson in 
[14] presented the technique of micromodels of software. It consists in defining a finite 
bound on the size of models, and then checking whether all models Mi of that size satisfy 
the property under consideration ( i.e., Mi |= φ).  This satisfaction checking has the 
tractability of model checking, while the fact that we range over a set of models allows us 
to consider different values of parameters gaining a considerable degree of generality. 

From now on we will use the term micro-worlds instead of micromodels to avoid 
confusion between the logic and the modeling meaning of the term ‘model’. Jackson’s 
small scope hypothesis [14] states that negative answers already tend to occur in small 
worlds, boosting the confidence we may have in a positive answer.  

4.1 Improving the micro-worlds by applying testing techniques 

Even after defining a finite bound on the size of micro-worlds, we still might need to 
consider an infinite number of micro-worlds of that size. Thus, we should be able to select 
only a finite amount of representative micro-worlds.  

To select useful micro-worlds we have to determine relevant values for the properties 
(attributes and multiplicities) of objects building up each micro-world. To achieve this 
requirement we developed an adaptation of a well-known testing strategy named category-
partition method [19]. Its main idea consists in dividing the domain into sub-domains or 
ranges that do not overlap each other and then to select values from each of these ranges. 
The category-partition method has been adapted to test UML models in [20]. Partitions 
provide a practical way to select representative values: for a property p and for each range 
G in the partition associated with p, the micro-world must contain at least one object o such 
that the value o.p belongs to G. For instance, the partitions {{true}, {false}} for the 
property ‘canceled’ of class FlightC in the flights model, specifies that the micro-worlds 
should contain flights which are canceled and flights which are not canceled. The same 
kind of strategy is used for multiplicities of properties: if a property has a multiplicity of 
0..300, a partition such as {{0}, {1..299}, {300}} is defined to ensure that the micro-worlds 
contain instances of this property with zero, 300 and an intermediate number of object.  

4.2 Tool support 

The proposal presented in this paper is supported by ePlatero [21], an Eclipse plugin that 
we built on top of EMF [22] and GMF [22]. The tool allows us to create (or import) a class 

                                                           
1 Here the word ‘model’ is used with the logic meaning which is subtly different from the modeling 

meaning. 



  

diagram containing a refinement, then the tool automatically generates the three refinement 
conditions (i.e. initialization, applicability and correctness).  After that, the tool generates 
the micro-worlds and evaluates the refinement conditions on them. 

The issue of building relevant micro-worlds cannot be resolved with a simple strategy 
such as creating all combinations of ranges for all properties of the input model.  In general 
adequacy criteria are defined by specifying the properties that must be covered if the micro-
world is to be considered adequate with respect to the criterion [20]. Cost considerations 
and available resources often determine the selection of one criterion over another. 
Currently we offer two adequacy criteria: OneRangeCombination and 
AllRangesCombination. The first one is quite weak as it only ensures that each range of 
each property is covered at least once. The second is a lot stronger as it requires one object 
for each possible combination of ranges for all the properties of a class. Besides, the 
Strategy design patter was used to implement such criteria, so that the tool can easily be 
extended to support additional criteria.  

On the other hand, to be appropriate to analyze refinement relationships, the micro-
worlds should satisfy the “duality property”. Such property establishes that for each 
instance of a refined class at least one matching instance of the abstract class must exist 
(i.e., an instance related by the abstraction mapping). Therefore, we define partitions for 
each property of the refined classes only; then the values for properties of the abstract 
classes are automatically calculated by applying the abstraction function (i.e., the function 
abs() defined in the previous section). In this way we achieve two goals: first, the duality 
property holds trivially (i.e., by construction) and second, the amount of properties to be 
analyzed decreases significantly. 

5. Experimental results 

In this section we discuss the correctness and computational complexity of our approach by 
carrying out a comparison with the Alloy analyzer [23].  First, we translated the UML 
model in figure 2 to Alloy code, so that we were able to perform a formal evaluation of the 
refinement conditions by running the Alloy analyzer. We performed the translation to Alloy 
by applying the UML2Alloy tool [24]2 and the proposal presented in [25] that shows how 
data refinement in Z can be automatically verified using the Alloy Analyzer. 

Then, we made a comparison between the results reported by the Alloy analyzer and the 
results reported by ePlatero.  The analysis was divided in two disjoint scenarios: evaluation 
of correct refinements and evaluation of incorrect refinements, as it is presented in the 
following sections.  

5.1 Correctness and complexity in the case of correct refinements 

Due to the nature of both tools (i.e. counter example generation) the evaluations of 
refinement conditions are guaranteed to be correct in the case where the conditions actually 
hold (i.e. no false negatives are produced). Table 1 shows a comparison between ePlatero 
and Alloy with respect to the computation costs observed in the evaluation of the 

                                                           
2 We were forced to introduce minor adjustments on the generated Alloy code due to the 

fact that the UML2Alloy tool is not complete yet.   
 



        

refinement in figure 2.  The evaluation was repeated 100 times on an AMD Athlon 3000, 
for worlds of different sizes. The table shows the average costs (expressed in milliseconds). 

Table 1. average evaluation costs according to the size of the micro-worlds 

0

2000

4000

6000

8000

10000

Size 5 Size 10 Size 15

ePlatero OneRange
ePlatero AllRange
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5.2 Correctness and complexity in the case of incorrect refinements:  

To explore the scenario where refinement conditions do not hold, we introduce a mutation 
on the model in figure 2. Once again we carried out the evaluation 100 times. In this 
scenario we observed that both tools produced a number of incorrect responses (i.e., false 
positives). Table 2 shows the comparison between ePlatero and Alloy regarding the 
percentage of correct answers according to the size of the micro-worlds. 

 

Table 2. percentage of correct responses according to the size of the micro-world 
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We performed the same comparison between ePlatero and the Alloy analyzer with 10 

UML models. These models were diverse in domain and size and they contain different 
kinds of refinement structures (see the report in [26]). Regarding correctness, the results 
were similar to the ones presented here, that is to say, both tools do not present significant 
differences. On the other hand, with respect to the computation costs, Alloy analyzer and 
ePlatero are similar when evaluating small models. But in the case of larger models, 
ePlatero presents a flexible micro-world generation strategy that allows us to find the most 
representative micro-worlds. On the one hand, we are able to take advantage of domain 
knowledge for improving the values in the partitions; consequently the tool will focus the 
analysis only on interesting values. And on the other hand new generation criteria (apart 
form the two built-in criteria) can be easily incorporated. The benefit of this flexibility was 
observed in the analysis of larger models, where significant improvement to evaluation 
costs was reported [26]. 



  

6. Related work 

There are different alternatives to increase the robustness of the MDE refinement 
machinery by re-using a formal theory. One strategy consists in translating the core 
language used in MDE, i.e., UML/MOF, into a formal language, where properties are 
defined and analyzed. For example the works presented in [27] and [28], among others, 
belong to this group. 

A second approach consists in applying the theory of graph transformation. As visual 
models can be seen as attributed graphs, application of graph transformation to specify 
model transformations has been a natural approach, giving rise to a number of proposals in 
recent years [8] [29] [30].  

Such proposals are appropriate to discover and correct inconsistencies and ambiguities 
of the graphical language, and in most cases they allow us to verify and calculate 
refinements of (a restricted form of) models. However, such approaches are non-
constructive (i.e., they provide no feedback in terms of UML/MOF), they require expertise 
in reading and analyzing formal specifications and generally, properties that should be 
proved in the formal setting are too complex and undecidable 

Another alternative is to promote a formal definition of refinement, e.g., simulation, and 
emulate it in MDE terms. For example, Boiten and Bujorianu in [31] indirectly explore 
refinement through unification; Liu, Jifeng, Li and Chen in [32] define a set of refinement 
laws of UML models to capture the essential nature, principles and patterns of object-
oriented design, which are consistent with the refinement definition; Paige and colleagues 
in [33] define refinement in terms of model consistency; Lano and colleagues in [34] 
describe a catalogue of UML refinement patterns which is a set of rules to systematically 
transform UML models to forms closer to Java code.  Alexander Egyed in [35] presented a 
transformation-based consistency checking approach for consistent refinement, which does 
not require the use of third-party languages but instead integrates seamlessly into existing 
ones. This approach considers only the structural part of class diagrams because no 
behavior specification (e.g. pre and post conditions in OCL) is supported. Following this 
later direction, in [36] we presented preliminary results on the formalization of step wise 
transformations of UML models by means of a set of heuristics for specifying and verifying 
refinement patterns that frequently occur in UML models. The present article describes a 
more general and fully automated approach.  The main advantage of our proposal resides 
on the application of OCL as the only required formalism. In this way the definition and 
verification of transformations can be fully accomplished into a familiar development 
environment, without requiring developers with further knowledge and skills. 

Finally, regarding decidability and tractability issues, the generation of micro-world is a 
pragmatic way to combine model checking and semantic entailment. Additionally, we 
improve the coverage of micro-world by the incorporation of testing technique. The idea of 
applying testing techniques to model transformations has also received increasing attention. 
Recent work by Baudry et al. [37] summarizes model transformation testing challenges. 

7. Conclusion 

Model-driven software engineering is seen as a promising approach to improve software 
quality and reduce production costs significantly. A major basis of such an approach is a 
usually domain-oriented modeling language which enables to abstract from implementation 
specific details and thus makes models easier to develop and analyze than the final 



        

implementation. In MDE models are supposed to be semi-automatically derived using 
model transformations, then the quality of these models will depend on the quality of model 
transformations. Each transformation step in the software development process should be 
amenable to formal verification in order to guarantee the correctness of the final product. 
However, verification activities require the application of formal modeling languages with 
a complex syntax and semantics and need to use complex formal analysis tools; therefore, 
they are rarely used in practice.  

To facilitate the validation task we considered how refinements between MOF/UML 
class diagrams can be checked by using tools that are fully understood by the MDE 
community. In particular, we show how the Object Constraint Language OCL [13] can be 
used to encode the standard simulation conditions. The proposed approach improves on 
existing approaches because it provides an efficient refinement evaluation mechanism that 
makes use of OCL as the only visible formalism, thus it integrates seamlessly into ordinary 
modeling environments. This is a lightweight approach that avoids the use of mathematical 
languages and tools that while ideal and suitable for the problem, will likely be 
unacceptable to developers. 

 The proposed verification process is fully automatized. The software tool was integrated 
into ePlatero, however it is designed as an independent plugin so that it can be easily 
adapted to be attached to other modeling environments based on Eclipse. The 
computational complexity and correctness of the tool were empirically evaluated in a 
number of case studies [26] and such properties were observed to be acceptable (and even 
improved) with respect to the ones of the Alloy Analyzer which is a well accepted and 
mature formal tool.  We believe that the inclusion of verification in ordinary software 
engineering activities will be facilitated by encouraging the use of tools that are familiar 
and usable to MDE developers. This is an important step towards fully verified model 
transformations, which are necessary to guarantee the correctness of the generated 
implementations of abstract models. 
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