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Abstract 
In  this paper we describe and classifL the different 

solutions that have been proposed to realize the integration 
ofgraphic modeling languages, known and accepted by the 
software developers, with formal modeling languages 
having analysis and verification tools. 

Inspired from that classification we define a new 
integration proposal, based on first-order dynamic logic. 
The principal benefits ofthe proposedformalization can be 
summarized asfollows: - The different views on a system 
are integrated in a single formal model: this allows us to 
define rules of compatibility between the separate views, on 
syntactical and semantic level. -Using formal 
manipulation, it is possible to deduce further knowledge 
from the specification. -The faults of specifications 
expressed using a user-friendly notation can be revealed 
using analysis and verification techniques based on the 
formal kernel model. 

The principal diflerence between this model and other 
object-oriented formal models is that it integrates both of 
the levels in the architecture of modeling notations into a 
single conceptual framework. The integration of modeling 
entities and modeled entities into a single formalism allows 
us to express both static aspects and dynamic aspects of 
either the model or the modeled system within a first-order 
formalism. 

1: Introduction 

The increasing complexity of software systems makes 
their development complicated and error prone. A widely 
used and generally accepted technique in software 
engineering is the combination of different models (or 
views) for the description of software systems. The primary 
benefit of this approach is to model only related aspects 
(like structure or behavior). Using different models clarifies 
different important aspects of the system, but it has to be 
taken into consideration that these models are not 
independent and they are semantically overlapping. 

The models constitute the hndamental base of 
information upon which the problem domain experts, the 
analysts and the software developers interact. Thus, it is of 
a fundamental importance that it clearly and accurately 
expresses the essence of the problem. On the other hand, 
the model construction activity is a critical part in the 
development process. Since models are the result of a 
complex and creative activity, they tend to contain errors, 
omissions and inconsistencies. Model verification is very 
important, since errors in this stage have an expensive 
impact on the following stages of the software development 
process. 

Models are constructed using a modeling language 
(which may vary from natural language to diagrams and 
even to mathematical formulas). 

The success of software development methods, such as 
Object Oriented Analysis [6], Object Oriented System 
Analysis [34], Object Modeling Technique [33], BoochS 
design method [4] and the Rational Unified Process [I71 
are mainly based on their use of intuitively appealing 
modeling constructs and rich structuring mechanisms, 
which are easy to understand, apply and transmit to the 
customers. However, the lack of precise semantics for the 
modeling notations used by these methods can lead to 
inconsistencies and ambiguities. 

On the other hand, formal languages for modeling, such 
as Z [35], VDM [19], F-Logic [21], DS-Logic [39] has a 
well-defined syntax and semantics. However, its use in 
industry is not frequent. This is due to the complexity of its 
mathematical formalisms, which are difficult to understand 
and communicate. In most cases, experts on system domain 
who decide to use a formal notation, center their effort 
upon the managing of formalism instead of focusing on the 
model itself. This leads to the creation of formal models 
that do not properly reflect the real system. 

As a consequence, it has been proposed to combine the 
advantages of both approaches (see section 2), intuitive 
graphical notations on the one hand and mathematically 
precise formalisms on the other hand, in development tools. 
The basic idea for this combination is to use mathematical 
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notation in a transparent way, hiding it as much as possible 
under the hood of graphical notations. This approach has 
advantages over a purely graphical specification 
development as well as over a purely mathematical 
development because it introduces precision of 
specification into a software development practice while 
still ensuring acceptance and usability by current 
developers. 

2: Combining modeling techniques 

Basically, four different proposals to carry out the 
integration of graphical notations and mathematically 
precise formalisms have been identified: 

Supplemental: the supplemental proposal consists in 
enriching an informal model with formal concepts. Good 
examples of it are Syntropy [7], and LanoS [15] and 
WeberS [38] works, which propose the use of the formal Z 
notation [35] to enrich semi-formal notations. 

Extension: the extension proposal consists in extending 
an existing formal notation, with concepts that are closer to 
the application domain as for instance, the concepts 
adopted by the object-oriented paradigm. In this way, 
formal notation becomes easier to be understood and 
managed by software developers. The most relevant 
examples of this proposals are the language Z extensions, 
such as Z++ [23] and Object-Z [8]. The languages TROLL 
1181 OOZE [ I ]  and MAUDE [25], inspired on algebraic 
specification languages are also part of this group. 

Interfuce: given a formal modeling language, this 
proposal consists in developing an altemative graphic 
notation to facilitate the creation and visualization of 
models. Examples of this proposal are the graphic 
interfaces provided by formal languages such as OASIS 
[28] and LTL [32]. 

Semantics: this proposal consists in formally defining 
the semantics of a modeling language, known and accepted 
by the community. Its main components are rules to 
associate syntactic structures of the modeling language 
with elements within a formally defined semantic domain. 

In our opinion, “semantics” constitutes the most 
adequate proposal, since it allows that the specifications 
expressed in a notation known and accepted by the 
software developers acquire an accurate meaning through 
its “translation”into a formal domain. Our point of view is 
based on the fact that both the supplement integration 
proposal and the extension integration proposal require that 
the developers know the formal notation, since this 
constitutes a visible part of the specification. On the other 
hand, the disadvantage of the interface integration 
proposals is that the user is compelled to adopt a new 
graphic language, which is usually influenced by the 
formalism, thus making it scarcely intuitive. 

The main advantage of the semantic proposal regarding 
the others, resides in that graphic language is tumed into a 
formal language hence, thus the specifications expressed 
in a graphic language can be formally analyzed to early 
find out contradictions and ambiguities in the software 
development process. One of the keys to the success of this 
proposal resides in hiding the mathematical notation, as 
much as possible, behind the graphic notation. For 
example, it should be possible to use formal semantics to 
develop CASE tools. Only language developers should use 
formalism to build the CASE tools and justify their 
correction, while application software developers could 
handle graphic models avoiding the underlying 
mathematical formalism. 

The Unified Modeling Language UML [36] is a 
standard graphic language for modeling and specifying 
object-oriented systems. The language consists of a set of 
constructs common to most object-oriented languages. 
From the standardization of the UML active discussions 
have risen about the semantics accuracy of its 
constructions. While the Object Management Group OMG 
was responsible for the standardizing of the UML as 
notation, the semantics of the UML is still a research issue. 

There are an important number of theoretical works - 
see, for instance [27] and [I21 - that deal with different 
parts of UML, formally defining its syntax and semantics. 
However, there is still a long way to run regarding this 
matter. It is particularly hard to compare the results of the 
respective articles, and it is even harder to combine such 
results with the aim of obtaining a semantic standard for 
UML. This difficulty arises because of the different works 
that use diverse formal methods (or languages), or cover a 
notation subset, or assume a particular system subclass to 
be specified. However, an important amount of the 
proposals can be classified in two groups: formalizations 
based on the model and formalizations based on the 
metamodel. We explain this classification in the following 
section. 

2.1: Formalizing modeling languages 

A number of approaches for giving semantics to 
modeling languages (specially the UML) can be classified 
in two different groups: model-based and meta-modet- 
based approaches. This classification is inspired from the 
four levels in the architecture of modeling notations [36]. 
The main difference between these approaches is the focus 
of the formalization. Formalizations in the first group 
concentrate their attention on the model level (see figure 
la), while formalizations in the second group focus on the 
metamodel level (see figure 1 b): 

In the model-based approaches (see [26]; [l I]; [37]; [39]; 
[24]; [22](a) ), the individuals in the semantic domain are 
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the business objects, for example accounts and clients of 
a bank. (i.e. the formalization focuses on the particular 
system that is being described). 
In the meta-model-based approaches ( see [IO]; [5]; [36]; 
[9]; [22](b) ) the objective is to give a precise description 
of core concepts of the graphical modeling notation and 
provide rules for analyzing their properties. The 
individuals appearing in the semantic domain are 
modeling elements, such as classes, attributes, operations, 
associations, generalizations, etc. (i.e. the formalization is 
focused on the language itself instead of on any particular 
system described by the language). 

The principal advantages and disadvantages of each 
approach are summarized in figure 2. 

3: The M&D-theory 

It is appropriate for the specification of the 
information that is inherent to the application. 
It allows the detection of inconsistencies and 
errors in the specifications expressed in the 
modeling language. 
It allows the representation of constraints over 
the modeling elements in an adequate way (for 
example between Class and StateMachine) 
It allows for the detection of errors and 
inconsistencies in the modeling language itself. 
It gives a first order framework to represent 

We introduce the M&D-theory, a proposal for giving 
formal semantics to the UML. The basic idea behind this 
formalization is the definition of a single semantics domain 
integrating both the model level and the data level. In this 
way, both static and dynamic aspects of either the model 

It is not suited for expressing consistency 
constraints between metaentities (e.g. structural 
relationships between classes). 
It is not possible to represent model evolution 
in a first order formalism. 
It is difficult to represent constraints over the 
business objects. 

model- I based r meta- 
model- 1 based 

and the modeled system, can be described within a first 
order formal framework. The entities defined by the M&D- 
theory are classified in two disjoint sets: 

Modeling entities 
Modeled entities 

Figure 3 shows this dichotomy of entities. Modeling 
entities correspond to concrete syntax of the UML, such as 
Classes or StateMachine. In contrast, modeled entities, 
such as Object or Link represent run-time information, i.e. 
instances of classes and processes running on a concrete 
system. 

The M&D-theory provides two different kinds of 
instantiation relations (see figure 3): 

Horizontal instantiation: this relationship connects a 
modeling entity with its modeled entities, for example 
Objects are instances of a Class (or we can say that 
Objects are modeled by a Class) and Links are 
instances of an Association, S2 is an instance of 
Savings. 

Figure l a  : model-based formalization Figure 1 b: meta-model-based formalization 

Advantages I Disadvantages I 

model evolution. I I 
Figure 2: advantages and disadvantages of each group 
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Figure 3: dichotomy of entities 

. Vertical instantiation: this relationship represents the 
instantiation mechanism of the metalanguage (dynamic 
logic in our case). For example, BankAccount is an 
instance of the metaclass Class, holder is an instance 
of the metaclass Association, C, SI and S2 are instance 
of Object. 

It is interesting to highlight that horizontal instantiation 
preserves vertical instantiation. For example, S2 is an 
instance (horizontal) of Savings, and there exist MI and 
M2 such that S2 is an instance (vertical) of M2 and Savings 
is an instance (vertical) of M1, whereas M2 is an instance 
(horizontal) of M1. In the example in figure 3, M1 is the 
metaentity Class and M2 is the metaentity Object. The 
formal proof of this property is in [ 141. 

3.1: Structure of the theory 

The M&D-theory is a first-order order-sorted dynamic 
logic theory’ [I61 [39], consisting of three sub-theories: 

’ A first-order order-sorted dynamic logic therory Th = 

(E, 9) consists of a signature z that defines the language of 
the theory, and a set 9 of Caxiomas .A signature E = ( (S, 
I), F, P, A) consists of a a set of sort symbols S, a partial 
order relation between sorts I, function symbols F, 
predicate symbols P, and Action symbols A. 

M&D-theory= UML-theory + SY S-theory + JOINT-theory 

The sub theory UML-theory: 
The theory describes modeling entities (i.e. models). In 

the UML, Class Diagrams model the structural aspects of 
the system. Classes and relationships between them, such 
as Generalizations, Aggregations and Associations 
constitute Class Diagrams. On the other hand, the dynamic 
part of the system is modeled by Sequence and 
Collaboration diagrams that describe the behavior of a 
group of instances in terms of message sendings, and by 
State Machines that show the intra-object dynamics in 
terms of state transitions. 

Modeling entities are related to other modeling entities 
Consider for example the association between Class and 
StateMachine by the relation labeled behavior: This 
association indicates that StateMachines can be used for the 
definition of the behavior of the instances of a Class. Other 
example is given by the relation existing between 
StateMachine and State, that specifies that a StateMachine 
is composed by a set of States. It is important to formally 
define how the different UML diagrams are related to one 
another, to be able to maintain the consistency of the 
model. Moreover, it is important to specify the effect of 
modifications of these diagrams, showing what is the 
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impact on other diagrams, if a modification is made to one 
diagram. 

The theory consists of a signature &.,j~= ((SUML,~),  
FuML, PUML, AUML) and a formulahML over CUML: 

UML-theory = GML, ~ M L  1 
The set SUML contains sort symbols representing 

modeling elements, such as Class and StateMachine. The 
order relation between sorts allows for the hierarchical 
specification of the elements. 

The sets of symbols &;ML and P U M L  define functions 
and predicates over modeling entities. 

The set AUML consists of action symbols representing 
evolution of specifications over their life cycle. One of the 
most common forms of evolution involves structural 
changes such as the extension of an existing specification 
by addition of new classes of objects or the addition of 
attributes to the original classes of objects. At the other 
extreme, evolution at this level might reflect not only 
structural changes but also behavioral changes of the 
specified objects. Behavioral changes are reflected for 
example in the modification of sequence diagrams and state 
machines. 

The formula +JML is the conjunction of two disjoint sets 
of formulas, & and of static and dynamic formulas 
respectively. The former consists of first-order formulas 
which have to be valid in every state the system goes 
through (they are invariants or static properties or well- 
formedness rules of models). These rules are used to 
perform schema analysis and to report possible schema 
design errors. The latter consists of modal formulas 
defining the semantics of actions, that is to say the 
evolution of models. 

The sub theory SYS-theory: 
This theory describes the modeled entities (i.e. data and 

process). The elements in the data level are basically 
instances (data value and objects) and messages. At the 
data level a system is viewed as a set of related objects 
collaborating concurrently. Objects communicate each 
other through messages that are stored in semi-public 
places called mailboxes. Each object has a mailbox where 
other objects can leave messages. 

Modeled entities are related to other modeled entities. 
For example the relationship named Slot' between Object 
and AttributeLink, denotes the connection between an 
Object and the values of its attributes. 

The theory consists of a signature &= ((Ssys,S), 

SYS-theory = (&US, 'YSYS) 

FSYS, PSYS, ASYS) and a formulaws  Over &US: 

The set Ssys contains sort symbols representing the 
data in the system and its relationships, such as objects, 
links, messages, etc. 

The sets of symbols FSYS and PSYS define functions and 
predicates over data. 

The set Asvs consists of action symbols representing 
evolution of data at run time, such as object state changes. 

The formula ysYs is the conjunction of two disjoint sets 
of formulas, ys and of static and dynamic formulas 
respectively. The former consists of first-order formulas 
which have to be valid in every state the system goes 
through (they are invariants or static properties or well- 
formedness rules of data). Whereas, the latter consists of 
modal formulas defining the semantics of actions, that is to 
say the possible evolution of the data. 

The sub theory JOINT-theory: 
This part of the theory describes the connection 

between model and data levels. Modeling entities are 
related to modeled entities. There is a special relationship 
among some modeled entities with their corresponding 
modeling entity, This relationship denotes Instantiation: 
for example an Object is an instance of a Class, whereas 
Links are instances of Associations. 

Finally, $JOINT is a formula constructed over the 
extended language &&D, and thus it can express at the 
same time data properties (e.g. behavioral properties of 
objects), model properties (e.g. properties about the system 
specification) and properties relating both aspects. Details 
of the theory can be found in [29], [30] and [31]. 

3.2: Static and dynamic aspects of metaentities 

Within the M&D-theory, we are able to express all 
aspects relevant to modeling entities, as follows: 

Syntax and Semantics: In conventional textual notation, 
the syntax of a language is described by the set of 
characters (alphabet) and the valid sequences of symbols 
(words and phrases). The language is the set of all valid 
symbols. If the notation includes diagrams, the syntax seem 
to be more complex since it is not limited to a linear 
sequence of characters. 

On the other hand, the semantics of a language talks 
about the meaning of each construction of the language. 
Usually semantics is given by explaining the constructions 
of a new language in terms of well-known concepts. This 
set of well-known concepts is called the semantics domain. 

Static concepts and dynamic concepts: In the description 
of a language there are two dimensions that are orthogonal 
to both syntax and semantics, they are static concepts and 
dynamic concepts. 

The differences between static semantics and dynamic 
semantics is well-recognized. While the static semantics 
characterizes static properties (invariant in time) of the 
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elements described for the language, the dynamic 
semantics describes the evolution or behavior of such 
elements over the time. But, talking about syntax, in 
general only well-formedness rules of the language are 
defined, but the problem of evolution or dynamism is 
neglected. That is to say, syntax is analyzed just from the 
static point of view. The lost dimension (i.e syntax- 
dynamic) appears when the constructions of the language 
(i.e the models) are likely to change during their lifecycle. 
It is important to make clear that we are not talking about 
modifications on the syntax of the language itself (i.e 
evolution on the metamodel level), but about modifications 
on particular UML models (i.e evolution on the model 
level). 

In figure 4 we show the relations between both 
dimension. The most remarkable difference is observable 
for the dynamic semantics. While dynamic semantics on 
the data-level means run-time behavior, dynamic semantics 
on model-level describes model evolution in the 
development process. 

Model 
(Syntactic domain) 

Static well-formedness rules 

Modeled system 
(semantics domain) 
well-formedness rules 

Figure 4: static and dynamic aspects of syntax 
and semantics 

3.3: Advantages of the integration 

The integration of modeling entities and modeled 
entities into a single formalism allows us to express both 
static aspects and dynamic aspects of either the model or 
the modeled system within a first order framework. In 
figure 5 we summarize how the M&D-theory deal with 
each of the four dimension that we discussed previously. 
The validity problem (i.e. for given a sentence Q of the 
logic, to decide whether Q is valid) is less complex for first- 
order formalisms than for higher order formalisms. 

Model I Modeled system I 
First-order axioms 

Figure 5: the M&D-theory 

Although first order logic is undecidable (and as a 
consequence, nor do dynamic first order logic), computer 
systems satisfy certain properties (e.g. systems are 
interpreted over arithmetic structures, the state of a 
program is given by a finite set of values) that allow us to 
calculate the validity of formulas in an effective way. 

4: Using the formal model 

In this section we describe the principal applications of 
the M&D-theory. 

4.1: Formalizing the UML 

The M&D-theory introduce precision in the 
specification of object-oriented systems. Basically the 
theory formally defines the syntax and semantics of the 
standard modeling notation Unified Modeling Language 
(UML). Specifications expressed in a notation known and 
accepted by the software developers acquire an accurate 
meaning. 

Example I :  Abstract syntax 
The UML specification document [36] defines the 

abstract syntax of UML by class diagrams and well- 
formedness rules in OCL [36]. In the M&D-theory, the 
abstract syntax is expressed by means of sorts and 
functions in the model-level. The possible language 
constructs are restricted by well-formedness rules on 
models, such as: 
[ 1 1  In a Classifier, attribute names are unique: 
Vc:ClassifierVf,g~ attributes(c) name(f)=name(g)+f=g 
[2] Cyclic inheritance is not allowed: 
Vcl,c2:ClassifierIsA(cl,c2 ) idsA(c2 ,cl ) + c2 = c l  
[3] the trigger of the initial transition of the top level of a 
state machine should be a creation. In all the other cases 
initial transitions do not have trigger: 
Vt:Transition ( kind(source(t))=#initial + 
( trigger(t)=nullElement v (isTop(parent(source(t))) A 

trigger(t)=create ) ) ) 
Furthermore, the building of a formal model allowed us 

to find out and correct ambiguities and inconsistencies in 
the UML Language. For examples of this subject readers 
are referred to [40]. 

Example 2: semantics of structural diagrams 
The M&D-theory specifies the semantics of the 

structural constructs of the UML (i.e Class diagrams) by 
static axioms describing the well-formedness rules of data, 
and axioms specifying the inter-level connections, such as 
the connection between Class and Object . For example: 
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[ I  ] Values of attributes match the type defined in their 
Classifier: Va:AttributeLink* 
IsA(classifier(value(a)) , type(attribute(a)) ) 
[2] An instance cannot belong to more that one composite 
instance: Vi:Instancm 
3el , e 2 ~  oppositeLinkEnds(i) 
((aggregation( associationEnd( e I ))=#composite A 

aggregation(associationEnd(e2))=#composite) -+ e l  =e2 ) 
[3] Constraints associated to a Class are satisfy for all the 
instances of that Class: 
Vi:Instance* VCE allConstraints(classifier(i))* 
(eval(c)[self/i] = true ) 

Example 3: semantics of behavioral diagrams 
The M&D-theory describes the semantics ofbehavioral 

constructs of the UML (e.g. State Machine) by means of 
dynamic axioms explaining the behavior of objects in terms 
of transitions in the state machine associated to its class. In 
the UML specification document [36] this dynamic 
semantics is explained in an informal way using natural 
language. 

The M&D-theory formally describes the semantics of 
state machines through the axioms specifying the 
relationships between evolution actions in the data level (in 
particular CallActions) and the state machine linked to 
class of the receiver of the action. 

4.2: Specifying compatibility between sub-models 

The different views of a system (Class diagrams, 
Statecharts, constraints, etc.) are integrated in a single 
formal model. This integration allows us to define 
compatibility rules among the different views, both at the 
syntactic and the semantic levels, since it provides a single 
formal frame where the different views of the system 
coexist. We give examples of compatibility rules: 

Example I :  Prdpost conditions vs. State Machines 
Model elements may be associated with a constraint 

expressing some properties. There are problems when the 
constrained element has also a behavior that is precisely 
defined else where in the model. For example, a constraint 
on an operation (as a pre-post condition) may be 
inconsistent with the effects of the transitions triggered by 
its calls in the associated state machine. As a consequence, 
it is necessary to integrate both views of the system 
guaranteeing that they are consistent with each other. The 
following rule formalizes this requirement: 

V<op,s,r,p>:Message* (classifier(r)=owner(op) -+ 
(eval(precondition(op)[ self / r, parameters / p] )=true 
-+[r.<op,s,r,p>] eval(postcondition(op)[ self / r, parameters 
/ PI )=true ) 1 

This dynamic formula states that if the preconditions of 
an operation hold before the execution of the operation, so 
the post-conditions hold after the execution. Since the 
effect of the operation are determined by the state machine 
associated to the class of the object performing the 
operation, this rule guarantee consistency between both 
specifications. 

Example 2: Generalizations vs. other elements 
Generalization diagrams have a strong influence on 

other diagrams in the model of the system. For example, if 
two classes cl and c2 are connected by a generalization 
relation (e.g. c1 is a subclass of c2), the behavior of 
instances of cI should be a refinement of the behavior of 
instances of CI.  This requirement is defined by the 
following formula: Vcl,c2:Classifier (IsA(cl,c2 ) -+ 
refinement(behavior(q) , behavior(c2))) 

4.3: Deduction of non-explicit information 

One of the fundamental elements of any logic is its 
deductive apparatus that consists in a collection of rules 
which can be applied to certain initial information to derive 
additional information, in an purely mechanical way. 
Through the formal deduction mechanisms of the logic, it 
is possible to obtain information that is not explicitly 
presented in a specification. Examples of deductions in the 
logic can be found in [31]. 

4.4: Verifying system correctness 

Graphical specifications can be formally analyzed (by 
using verification tools available in the formal model) in 
order to detect contradictions and ambiguities early in the 
software development process. The formal language allows 
us to express well-formedness rules of both the model and 
the data of the system. Given a system, it is possible to 
decide if it satisfies the rules or not. In this section we give 
examples of verification of well-formedness rules. 

Example I :  Design mistakes 
Let spec be the UML model in figure 6. Notice that the 

model has a problem of cyclic inheritance. It is possible to 
prove that sem(spec)=O, that is to say that spec is 
inconsistent with the well-formedness rules of the theory. 

In the M&D-theory, the formula 'p below specifies the 
well-formedness rule of inheritance hierarchies: 

And, the IsA predicate is defined as follows: 

Vc,cl:Classifie~ ( IsA(c,cI) t) 
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( c=cl v cl~allSupertypes(c) )) 

Let @INST be the instantiation axiom corresponding to the 
model in figure 6, as follows: 

@INST = 3a,b,c:Classifier* 
(name(a)=A A name(b)=B A name(c)=C 
A 3gl  ,g2,g3:Generalization *supertype(gl)=a A 

subtype(gl)=b A supertype(g2)=c 
A subtype(g2)=a A supertype(g3)=b A subype(g3)=c 

Agl E speciahzations(a)A g l  E generalizations(b) A 

g 2 ~  specializations(c) A g 2 ~  generalizations(a) A 

g 3 ~  specializations(b)~ g 3 ~  generalizations(c) ) 

Theorem: the model specified by@INsr is inconsistent with 
the well-formedness rulecp , that is to say: 

Pro08 The proof is straightforward. It can be read in [31]. 
(cp A@INST) /=false 

4.5: Formalizing Evolution 

Most works on evolution of the system specification, 
such as ([3], [20], [2]), deal with the problem of structural 
evolution for example modifying inheritance hierarchy of 
adding a new class, but they do not deal with the behavior 
evolution problem, as for instance, changing the way in 
which an object reacts when receiving a certain message. 
The evolution mechanism proposed in the M&D-theory 
deals with both typos of evolution. 

In the M&D-theory, each evolution action is defined by 
means of two formulas: 

- Necessary preconditions to describe the applicability 
conditions of operations. The formula ((op)true -+con4 
states that the operation op is applicable only if the 
condition cond is true. 

Figure 6: a UML model with 
a cyclic inheritance hierarchy 

- Sufficient postconditions to describe 
(direct effect and change propagation) of the 

the effect 
operations. 

The formula ([oplcond) states that after the application of 
the operation op the condition cond is true. 

These formulas may refer to either modeling entities, or 
modeled entities or both. This feature allows us to define: 

- intra-level change propagation: how a modification 
over a modeled entity impacts on other modeled entities, 
and how a modification over a modeling entity impacts on 
other modeling entities. For example, the deletion of a 
feature of a Class impacts on other models such as 
StateMachines or Constraints refemng the deleted feature. 
On the other hand the propagation of the deletion of an 
object representing a whole to the deletion of other objects 
(i.e its parts) is an example of propagation between 
modeling entities. 

- inter-level change propagation how a modification 
over an modeled entity impacts on the modeling entities, 
and how a modification over a modeling entity impacts on 
the modeled entities. For example the deletion of an 
attribute of a Class should be propagated to all the 
instances of that Class. 

The specification of each evolution action consists of 
four sections: Action act, Precondition T, Effect 
7 Propagation 6 The schema above represents the 
following dynamic formula: 

((act)true +T) A ([act] ( y ~ $  
Preconditions are applicability conditions, that is to say 

conditions under which an evolution action is semantically 
correct. The clause effect specifies the direct impact of the 
action, whereas the clause propagation specifies the side 
effects of the action on other related entities. The following 
is an example of an evolution action: 

Action deleteFeature(c,f) 
Precondition 
[ I ]  The Feature must exist in the Classifier: € attributes(c) 
[2] The deleted Feature cannot be referenced from other 
elements in the package: 
VmE allContents(p) f e  referencedElements(m) 
Effect 
[ I ]  The Feature is deleted: 7Exists(f)Af6Z features(c) 
Propagation 
[ I ]  The corresponding slot must be deleted from all the 
existing instances of c (and subclasses): 
b”i:Instancw ((Exists(i)r\classifier(i& cuallSubclasses(c) ) 

+ --,3kslots(i) atribute(l)=f ) 

It is possible to observe how model evolution combines 
with modeled data evolution. The M&D-logic allows 
expressing consistency rules among both different UML 
diagrams and these diagrams and the modeled data. Then, 
using the deduction mechanism of the logic, it is possible 
to validate these rules through the evolution. 

4.6: Specifying Design Patterns 

A pattern is a particular design that appears in certain 
situations, and that has been recognized as  “good design”, 
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that is, it leads to obtaining more flexible and elegant 
systems that are consequently more reusable. There are 
catalogs, for instance 2131 , where numerous design 
pattems using natural language complemented by graphic 
languages such as UML are described. It would be 
desirable to have a more formal description of the pattems. 

The M&D-logic can assist in the task of expressing and 
recognizing the design pattems. A pattem can be formally 
expressed by a formula in the logic stating structural 
obligation (i.e. hierarchy of classes, association between 
classes and operation signatures), responsabilities and 
collaborations between objects. Then, this formula allows 
us to detect the pattem into a specific design, in the 
following way: 
Let: 
- M be the UML specification of an object-oriented system. 
- SpecM the instance of the M&D-theory formalizing M, i.e. 

- U amodel for SpecM, i.e. UEsemantics(SpecM). 
- Qattem the formula expressing the pattem. 

Intuitively, M conforms the pattem if and only if it 
satisfies both structure and collaboration obligations 
required by the pattem. That is to say, the formula Q pallem 

is true in the model M: U I= Q panem 

4.7: Hiding the formal model 

translation ( M)=SpecM. 

To gain acceptance of the proposed formal model by 
typical engineers, we are developing a semi-automatic 
transformation method. This transformation method defines 
a set of rules to systematically create a single integrated 
dynamic logic model from the several separate elements 
that constitute a description of an object-oriented system 
expressed in Unified Modeling Language (UML). The key 
components of the transformation method are rules for 
mapping the graphic notation onto the formal kemel model. 

5: Conclusion 

Due to the missing formal foundation of the Unified 
Modeling Language UML the syntax and the semantics of 
a number of UML constructs are not precisely defined. We 
have described an object-oriented conceptual model 
representing the information acquired during analysis and 
design. We propose this conceptual model as a formal 
foundation for the UML. 

The principal benefits of the proposed formalization can 
be summarized as follows: the different views on a system 
are integrated in a single formal model. This allows us to 
define rules of compatibility between the separate views, 
on syntactical and semantic level. Using formal 
manipulation, it is possible to deduce further knowledge 
from the specification. The faults of specifications 

expressed using a user-friendly notation can be revealed 
using analysis and verification techniques based on the 
formal kemel model. 

The principal difference between this model and other 
object-oriented formal models is that it integrates both of 
the levels in the architecture of modeling notations into a 
single conceptual framework. The integration of modeling 
entities and modeled entities into a single formalism allows 
us to express both static aspects and dynamic aspects of 
either the model or the modeled system within a first order 
formalization. The validity problem (i.e. for given a 
sentence Q of the logic, to decide whether Q is valid) is less 
complex for first-order formalisms than for higher order 
formalisms . 

Furthermore the two-level model is particularly useful 
for description of system evolution, and formal description 
of design pattems. 
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