
J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 461 – 470, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Heuristics on the Definition of UML Refinement Patterns

Claudia Pons

LIFIA – Computer Science Faculty – University of La Plata and CONICET,
La Plata, Buenos Aires, Argentina
cpons@info.unlp.edu.ar

Abstract. In this article we present a strategy to formalize frequently occurring
forms of refinement that take place in UML model construction. Such strategy
consists in recognizing a set of well founded refinement structures in a formal
language which are then immersed into a UML-based development, giving
origin to a set of UML refinement patterns. Apart from providing semi-formal
evidence on the presence of refinement structures in object-oriented designs,
this strategy made it possible to reveal hidden refinements and to discover
weaknesses of the UML language that hinder the specification of refinement.
An automatic tool is provided to support model refinement activities.

1 Introduction

Model Driven Development (MDD) [8][16], which prescribes the use of UML [14] as
the standard modeling language, aims at introducing techniques for raising the level
of abstraction to describe both the problem and its solution, and by clearly
establishing methodologies to define the problem and how to move to its solution.
The idea promoted by MDD is to use models at different levels of abstraction.
A series of transformations are performed starting from a platform independent model
with the aim of making the system more platform-specific at each refinement step.
However, model transformations are frequently only viewed as a technique for
generating models; little is said about guaranteeing the correctness of the generated
models. In fact, model transformations should do more than just generate models; in
addition, they should generate evidence that the generated models are actually correct.
In particular, some of these transformations can be cataloged as refinements in the
sense of formal languages [6], thus being amenable to formal verification.

Formal verification of model refinement can be fully exploited only if the language
used to create the models is equipped with formal refinement machinery, making it
possible to prove that a given model is a refinement of another one, or even to
calculate possible refinements from a given model. This refinement machinery is
present in most formal specification languages such as Object-Z [6], [21], B [10], and
the refinement calculus [2]. Besides, some restricted forms of programming languages
can also be formally refined [4]. But, in the standard specification language
UML [14], the refinement machinery has not reach a mature state yet. Being UML
a language widely used in software development, any effort made towards increasing
the robustness of the UML refinement machinery becomes a valuable task which will
also contribute to the improvement of MDD. To reach this goal, most researchers

462 C. Pons

have used an “informal-to-formal” approach consisting in translating the graphical
notation into a formal language equipped with refinement machinery. For example,
the works of Davies and Crichton [5] Engels et al.[7] Astesiano and Reggio [1], Lano
and Biccaregui [11], Ledang and Souquieres [12] among others. In this way, UML
refinements become formally defined in terms of refinements in the target language.
This approach is valuable, and in most cases it allows us to verify and calculate
refinements of UML models. However, this approach is insufficient because it does
not address the following problems: - lack of notation to specify refinements (although
the UML Abstraction artifact allows for the explicit documentation of the refinement
relationship in UML models, the available features of the Abstraction artifact are
frequently insufficient to formally define the relationship); - presence of hidden
refinements: an important amount of variations of abstraction/refinement remains
unspecified, usually hidden under other notations. Those hidden refinements should
be discovered and accurately documented [17], [18]; - missing refinement
methodology: the formalization of the language itself is only the starting point; we
also need a stepwise refinement methodology, based on a formal theory, consisting of
refinement patterns, rules and guidelines.

We explored an alternative approach (i.e., a “formal-to-informal” approach) as
a complement to the former. According to this approach a formally defined
refinement methodology is immersed into a UML-based development. Concretely,
well founded refinement structures in the Object-Z formal language provide
inspiration to define refinement structures in the UML, which are (intuitively)
equivalent to their respective inspiration sources.

The structure of this document is as follows: first, in sections 2 and 3 we describe
the results of applying a “formal-to-informal” approach towards the improvement of
the UML refinement machinery; we present an extract of a catalog of well-founded
Object-Z refinement patterns, each of them giving origin to a list of several UML
refinement patterns (each single Object-Z refinement pattern can be analyzed from
a number of perspectives, which give rise to a number of UML refinement structures,
one for each perspective). Finally, sections 4 discusses related work and conclusions.

2 Object Decomposition Pattern

DDeessccrriippttiioonn:: Composition is a form of abstraction: things are composed of smaller
things, and this recursively; the composite represents its components in sufficient
detail in all contexts in which the fact of being composed is not relevant and
conversely decomposition is a form of refinement: an abstract element is described in
more detail by revealing its interacting internal components.

EExxaammppllee:: in a flight booking system (figure 1), each flight is abstractly described by
its overall capacity and the quantity of reserved seats in its cabin (i.e., class FlightC),
then a refinement is produced (i.e.,class FlightD) by specifying in more detail the fact
that a flight contains a collection of seats in its interior. In this case seats are described
as individual entities whit their own attributes and behavior (a seat has an
identification number and a Boolean attribute indicating whether it is reserved or not).
In both specifications a Boolean attribute is used to represent the state of the

 Heuristics on the Definition of UML Refinement Patterns 463

Fig. 1. Refinement induced by Decomposition in Object-Z Classes

flight (open or canceled). The available operations are reserve to make a
reservation of one seat and cancel to cancel the entire flight. The retrieve relation R
establishes the connection between both specifications. The refined version of the
operation reserve selects a seat, ready to be reserved, in a non-deterministic way.

UUMMLL RReeaalliizzaattiioonnss ooff tthhee PPaatttteerrnn:: In this section we describe one UML instantiations
of the Object Decomposition Pattern: Object Decomposition in Class Diagrams; other
instantiations of the pattern are observed for example in Collaboration and Interaction
Diagrams. The OCL language [15], [20] has been used to specify the operation’s pre
and post conditions. The mapping attached to the abstraction relationship is expressed
in an OCL-like language (a discussion on the mapping’s language issue is included
bellow). Figure 2 shows a refinement of the class FlightC, which was obtained by
specifying in detail the fact that a flight contains a collection of seats. The refinement
mapping (expressed in pseudo-OCL) states the connection between abstract and
refined attributes.

464 C. Pons

Flight_D
canceled : Boolean

reserve()
cancel()

Seat
number : Integer
reserved : Boolean

reserve()
**

Flight_C
capacity : Integer
reservedSeats : Integer
canceled : Boolean

reserve()
cancel()

<<refine>>

Fig. 2. Refinement induced by Decomposition in UML Class Diagram

FFoorrmmaalliizzaattiioonn:: By applying the definition of downward simulation in Object-Z [6], it
is possible to verify the refinement, in the following way:

Initialization:
AFlightD.State • FlightD.init fi(E FlightC.State • FlightC.init ¶ R)

Applicability:
AFlightC.State;FlightD.State • R fi (pre reserveC fi pre reserveD)
AFlightC.State;FlightD.State • R fi (pre cancelC fi pre cancelD)

Correctness
AFlightC.State;FlightD.State;FlightD.State’•
 R ¶ pre reserveC ¶ reserveD fi E.FlightC.State’• R’ ¶ reserveC
AFlightC.State;FlightD.State;FlightD.State’•
 R ¶ pre cancelC ¶ cancelD fi E.FlightC.State’• R’¶ cancelC

DDiissccuussssiioonn::
Issues on hidden refinement: In UML, decomposition is not considered as a form of
model refinement. This pattern reveals a particular case of hidden refinement: UML
models with composite association implicitly specify refinement relationship. See
[18] for a detailed discussion on this issue.

Issues on the specification of delegation: The behavior of the class FlightC was
specified in figure 2 as follows:

Context FlightC :: reserve()
pre: capacity-reservedSeats>0 and not canceled
post: reservedSeats=reservedSeats@pre + 1

a.capacity = c.seats ->size()and

a.canceled = c.canceled and

a.reservedSeats=c.seats->

 select(s|s.reserved)->size()

Context FlightA ::

reserve() pre: freeSeats>0 and canceled.not

 post: freeSeats=freeSeats@pre -1

cancel() post: canceled=true

 Heuristics on the Definition of UML Refinement Patterns 465

In general, the structural decomposition of an object is accompanied by
a behavioral decomposition realized through delegations. In the abstract specification
it seems that the object carries out its tasks by itself, but in the refined version we can
observe that the object delegates sub-tasks to its constituent objects. Let us present the
OCL specification of the constituent class Seat:

Context Seat :: reserve()
pre: not reserved
post: reserved

To specify the behavior of the refined class FlightD we need to write an OCL
expression that is (intuitively) equivalent to the simple following Z expression, which
makes a non-deterministic choice of a seat to be reserved:

reserve Í � s e seats • s.reserve
The most approximated OCL expression we obtain is:
Context FlightD :: reserve()
pre: seats -> select (s| not s.reserved) -> notEmpty()
post: let s=seats->any(s| not s.reserved) in s^reserve()

In this pattern we face the OCL restriction that non query operations, such as the
reserve() operation, are not allowed to be referred to within OCL expressions.
Without this facility the specification of delegation in OCL is only possible through
the use of OCL Message expressions, allowing us to express messages sent between
objects through the hasSent operator ^ [17, pg.29-31]. These expressions are little
appropriate for building specifications because they talk about explicit
communication between objects instead of describing the effects of the
communication in a declarative form. The expression s^reserve() in the
specification of operation FlightD::reserve() evaluates true if
a reserve() message was sent to s during the execution of the operation.
Moreover, the fact that a method has been called during the execution of an operation,
does not assure that its effects were accomplished. The only thing we can assure is
that sometime during the execution of FlightD::reserve(), the operation
reserve()has been called over the Seat instance s. Furthermore, to specify that
the operation has already returned we should use the OCL operation
hasReturned(), however this introduces annoying complication on the
specification.

Issues on the syntax to specify the retrieve relation: Graphically, the abstraction
mapping describing the relation between the attributes in the abstract element and the
attributes in the concrete element is attached to the refinement relationship; however,
OCL expressions can only be written in the context of a Classifier, but not of
a Relationship. Then, if we want to use the OCL to express the abstraction mapping
we need to determine which the context of the expression is. On the Z side, the
context of the abstraction mapping is the combination of the abstract and the concrete
states; however, a combination of Classifiers is not an OCL legal context;
consequently we might write the mapping in the context of the abstract (or the
concrete) classifier only, in the following way:

466 C. Pons

Context a:FlightC
def: mapping(c : FlightD) : Boolean =
 a.capacity = c.seats ->size() and a.canceled = c.canceled
and a.reservedSeats=c.seats ->select(s|s.reserved)->size()

The transformation from the pseudo-OCL expressions in figures 2 to their
corresponding legal OCL expressions above can be generically defined in the
following way: let d be a refine relationship with meta-attributes d.supplier (the
abstract classifier), d.client (the concrete classifier) and d.mapping.body (the pseudo
OCL expression specifying the mapping). We derive a Boolean operation definition
in the context of the abstract classifier:

Context a: anAbstractElement
def:mapping(c:aConcreteElement):Boolean=aBoolOclExpression

Where anAbstractElement, aConcreteElement and aBoolOclExpression are replaced
by d.supplier.name, d.client.name and d.mapping.body respectively.

Issues on the verification process: Verification heuristics can be defined for this
refinement pattern. On the one hand, to verify the refinement conditions we can
translate the UML diagram back to Object-Z using already developed strategies such
as the one proposed by Kim and Carrington in [9]. Then, verification is carried out on
the formal specification. Alternatively, we might remain on the UML+OCL side by
defining refinement conditions in OCL in a similar style to the Object-Z refinement
conditions [6].

3 Non-atomic Operation Refinement Pattern

DDeessccrriippttiioonn:: In the refinements we have analyzed so far the abstract and concrete
classes have been conformal, i.e., here has been a 1-1 correspondence between the
abstract and concrete operations. Conformity can be relaxed allowing the abstract and
concrete specifications to have different sets of observable operations. This case takes
place when the abstract operation is refined not by one, but by a combination of
concrete operations, thus allowing a change of granularity in the specification.

EExxaammppllee:: the flight booking system specified in the schema BookingSystemD in
figure 3 records a sequence of flights which can be reserved through the system; then
the schema BookingSystemE defines a refinement of operation reservation into
checkPassenger ;checkFlight recordReservation.

UUMMLL RReeaalliizzaattiioonnss ooff tthhee PPaatttteerrnn:: This section contains the description of one of the
instantiation of the Non-Atomic operation Refinement Pattern - non-atomic operation
refinement in class diagrams. This pattern can also be instantiated in Use Case,
Interaction and Activity diagrams, among others. Figure 4 contains an example of non-
atomic operation refinement in a class diagram; the refinement relationship specifies
that the abstract class BookingSystemD has been refined by the more concrete class
BookingSystemE; in particular, the abstraction mapping states that operation
reservation() has been refined by the combination of three concrete operations.

 Heuristics on the Definition of UML Refinement Patterns 467

Fig. 3. Non-atomic Operation Refinement in Object_Z Classes

DDiissccuussssiioonn::
Issues on the syntax to specify the retrieve relation: It was already discussed in the
definition of previous patterns, that although in the diagram the mapping specifying
the relation between the abstract operation reservation () and its refinement is
attached to the refinement relationship, the mapping should be actually defined in the
context of some of the involved classes, as follows:

Context a: BookingSystemD
def: mapping(c : BookingSystemE) : Boolean =
 c^checkPassenger()and c^checkFlight()and
 c^recordReservation() implies a^reservation()

Issues on the syntax to specify composition of behaviors: It is possible to express
that reservation() is realized as the combination of the three operations, however
message expressions do not provide the way to specify execution order. The fact that
the reservation should be checked before being recorded cannot be expressed.

468 C. Pons

BookingSystem_D
flights : Flight[*]
passengers : Passenger[*]
reservations : Tuple[*]

reservation()

BookingSystem_E
flights : Flight[*]
passengers : Passenger[*]
reservations : Tuple[*]

checkFlight()
checkPassenger()
recordReservation()

<<refine>>

Fig. 4. Non-atomic Operation Refinement in UML Class Diagrams

Although we agree that other UML artifacts (such as Interactions) can be used to
specify this concern, we believe that OCL suffers from the lack of an operation
calculus (like the one of Z) allowing us to specify sequential and parallel composition
of operations. Besides, the operational semantics of the OCL hasSent operation (^)
given in [15] does not fit the intended semantics of a refinement mapping which
declares the equivalence of both behaviors without talking about the actual execution
of them.

4 Conclusion

The aim of this work is not to formalize UML refinements in Object-Z, but to
substantiate a number of intuitions about the nature of possible refinement relations in
UML, and even to discover particular refinement structures that designers do not
perceive as refinements in UML. Focusing on the refinement structures of Object-Z
we obtained a compact catalog of refinement patterns that can be applied during the
UML modeling process; each graphical refinement pattern being based on a formal
refinement pattern.

Similar proposal were presented in [3], where Boiten and Bujorianu explore
refinement indirectly through unification; the formalization is used to discover and
describe intuitive properties on the UML refinements. On the other hand, Liu, Jifeng,
Li and Chen in [13] use a formal specification language to formalize and combine
UML models. Then, they define a set of refinement laws of UML models to capture
the essential nature, principles and patterns of object-oriented design, which are
consistent with the refinement definition.

The strategy we propose in this article apart from providing formal evidence on the
presence of refinement structures in object-oriented designs made it possible to reveal
hidden refinements and to discover weaknesses of the UML language that prevent

reservation(p:Passenger, f:Flight)
 pre: flights->includes(f) and
 passengers->includes(p)
 post:reservations=reservations@pre->
 including(Tuple{first=f,second=p})

a^reservation() implies
c^checkPassenger()and c^checkFlight()and
c^recordReservation()

 Heuristics on the Definition of UML Refinement Patterns 469

designers from specifying frequently occurring forms of refinement. Besides, the
understanding of refinement patterns is more precise, since each pattern is described
from both an intuitive and a mathematical point of view.

Finally, the overall contribution of this research is to clarify the
abstraction/refinement relationship in UML models, providing basis for tools
supporting the refinement driven modeling process. In this direction we are building
ePLATERO [19] that is a plug-in to the Eclipse development environment, based on
the heuristics that have been proposed in this article. ePlatero will assist a variety of
activities related to refinement, such as explicit documentation, semi-automatic
discovering of hidden refinements, refinement-step checking, constraint refinement
and refinement patterns application.

References

1. Astesiano, E., and, Reggio, G.: An Algebraic Proposal for Handling UML Consistency.
Workshop on Consistency Problems in UML-based Software Development,. Blekinge
Institute of Technology Research Report (2003)

2. Back, R. and, von Wright, J.: Refinement Calculus: a Systematic Introduction, Graduate
Texts in Computer Science, Springer Verlag. (1998)

3. Boiten, E.A., and Bujorianu, M.C.: Exploring UML Refinement through Unification.
Proceedings of the UML'03 Workshop on Critical Systems Development with UML,
J. Jurjens, B. Rumpe, et al., (eds) -TUM-I0323, Technische Universitat Munchen,
September 2003

4. Cavalcanti, A., and Naumann, D.: Simulation and Class Refinement for Java. In
Proceedings of ECOOP 2000 Workshop on Formal Techniques for Java Programs (2000)

5. Davies, J., and Crichton, C.: Concurrency and Refinement in the Unified Modeling
Language. Electronic Notes in Theoretical Computer Science, Elsevier 70 3 (2002)

6. Derrick, J., and Boiten, E.: Refinement in Z and Object-Z. Foundation and Advanced
Applications. FACIT, Springer (2001)

7. Engels, G., Küster, J., Heckel, R., and Groenewegen L.: A Methodology for Specifying
and Analyzing Consistency of Object Oriented Behavioral Models. Procs. of the IEEE
International Conference on Foundation of Software Engineering. Vienna (2001)

8. Kent, S.: Model Driven Engineering. Integrated Formal Methods: Third International
Conference, Turku, Finland, May 15-17, 2002. LNCS 2335, Springer-Verlag (2003)

9. Kim, S., and Carrington, D.: Formalizing the UML Class Diagrams using Object-Z,
Proceedings UML´99 Conference, Lecture Notes in Computer Sciencie 1723 (1999)

10. Lano, K.: The B Language and Method. FACIT. Springer (1996)
11. Lano, K., Biccaregui, J.: Formalizing the UML in Structured Temporal Theories, 2nd.

ECOOP Wrk. on Precise Behavioral Semantics, TUM-I9813, Technische U. Munchen
(1998)

12. Ledang, H., and Souquieres, J.: Integration of UML and B Specification Techniques:
Systematic Transformation from OCL Expressions into B. Proceedings of Asia-Pacific SE
Conference 2002. IEEE Computer Society. Australia. December 4-6, 2002

13. Liu, Z., Jifeng H., Li, X. Chen Y.: Consistency and Refinement of UML Models. Third
International Workshop, Consistency Problems in UML-based Software Development III.
Satellite event of <<UML>> 2004. Lisbon, Portugal, October 11, 2004

14. UML 2.0. The Unified Modeling Language Superstructure version 2.0 – OMG Final
Adopted Specification. August 2003. http://www.omg.org.

470 C. Pons

15. OCL 2.0. OMG Final Adopted Specification. October 2003
16. Object Management Group, MDA Guide, v1.0.1, omg/03-06-01, June 2003
17. Pons, C., Pérez, G., Giandini, R., Kutsche, and Ralf-D.: Understanding Refinement and

Specialization in the UML. 2nd International Workshop on MAnaging
SPEcialization/Generalization Hierarchies (MASPEGHI). In IEEE ASE 2003, Canada
(2003)

18. Pons, C. and Kutsche, R-D.: Traceability Across Refinement Steps in UML Modeling.
Workshop in Software Model Engineering, 7th International Conference on the UML,
Lisbon, Portugal. October 11, 2004.

19. Pons C., Giandini R., Pérez G., Pesce P., Becker V., Longinotti J., and Cengia J.: Precise
Assistant for the Modeling Process in an Environment with Refinement Orientation. In
UML Modeling Languages and Applications: UML 2004 Satellite Activities, Revised
Selected Papers. Lecture Notes in Computer Science 3297, Springer, Oct., 2004. The tool
can be downloaded from http://sol.info.unlp.edu.ar/eclipse

20. Richters, M., and Gogolla M.: OCL-Syntax, Semantics and Tools. in Advances in Object
Modelling with the OCL. Lecture Notes in Computer Science 2263, Springer (2001)

21. Smith, G.: The Object-Z Specification Language. Advances in Formal Methods. Kluwer
Academic Publishers. ISBN 0-7923-8684-1. (2000)

	Introduction
	Object Decomposition Pattern
	Non-atomic Operation Refinement Pattern
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

