
A Framework for Execution of Secure Mobile Code based on Static

Analysis∗

Mart́ın Nordio
Universidad Nacional de Rı́o Cuarto,

Departamento de Computación
Rı́o Cuarto, Argentina

nordio@dc.exa.unrc.edu.ar

Francisco Bavera
Universidad Nacional de Rı́o Cuarto,

Departamento de Computación
Rı́o Cuarto, Argentina

pancho@dc.exa.unrc.edu.ar

Ricardo Medel
Stevens Institute of Technology,

New Jersey, EE.UU.
rmedel@cs.stevens-tech.edu

Jorge Aguirre
Universidad Nacional de Rı́o Cuarto,

Departamento de Computación
Rı́o Cuarto, Argentina

jaguirre@dc.exa.unrc.edu.ar

Gabriel Baum
Universidad Nacional de La Plata, LIFIA

La Plata, Argentina
gbaum@sol.info.unlp.edu.ar

Abstract

Since its conception, Proof-Carrying Code (PCC)
woke up the interest of the research community and sev-
eral methods based on this technique were developed. This
technique guarantees that untrusted programs run safely
in a host machine. In a PCC framework, the code pro-
ducer equips the produced code with a formal proof es-
tablishing that the code satisfy the consumer’s security
policies. So, the code consumer only needs to verify such
proof before the execution of themobile code. On the other
hand, static analysis is a technique useful for the produc-
tion of the information required to construct the men-
tioned proof. Based on these two techniques, PCC and
static analysis, we developed a framework that guaran-
tees the safe execution of mobile code. This framework
uses a high-level intermediate language to verify the se-
curity of the code. A control flow graph or an abstract syn-
tax tree with type annotations could be used. Such inter-
mediate representations of the code enable us to use static
analysis techniques to generate and verify the type infor-
mation needed.Moreover, we implemented a prototype as
a proof of concept for our framework.

∗ This work was supported by grants from the SECyT-UNRC,
the Agencia Córdoba Ciencia, and the NSF project CAREER:
#0093362.

Keywords: Mobile Code, Proof-Carrying Code,
Certifying Compilation, Security Properties, Auto-
mated Program Verification.

1. Introduction

Sharing mobile code is a powerful method for the
interaction between software systems. By using this
method, a server can provide flexible access to its in-
ternal resources and services. However, since untrusted
mobile code can be malicious, the use of this method
puts the consumer’s system at risk.

There exist several approaches to guarantee the
safety of mobile code. In particular, Proof-Carrying
Code (PCC) [11] woke up the interest of the research
community. PCC is a technique developed by Nec-
ula and Lee [11] that guarantees the safety of un-
trusted mobile code. Since its inception in 1998, this
technique generated several active lines of research
[1, 2, 3, 4, 5, 11, ?, 12, 13, 15], but there are some
open problems. The effective use of PCC requires the
formal specification of security properties and the con-
struction of easily verifiable mathematical proofs.

In a PCC framework the code producer must pro-

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

vide a formal proof of the code safety together with
the code. The code consumer’s security policies is for-
malized by using a system with axioms and inference
rules. The proof of safety of the mobile code is based
on such formal system. Thus, the code consumer only
needs to verify that the proof refers to the code and
the validity of the proof. Finally, the mobile code can
be executed safely only if both answers are positive.

The process of creation and use of PCC is centered in
security policies. These policies are defined and made
public by the code consumer. These policies establish
under what conditions the execution of a program is
considered safe.

PCC does not require producer authentication be-
cause the program will be executed by the host only if
the proof is valid. So, this approach minimize the exter-
nal trust required. Also, dynamic verification is not re-
quired because the verification is made before the ex-
ecution of the code. PCC is a technique based on a
static approach that does not add any run-time perfor-
mance penalty, in that sense it is more efficient than
the method provided by Java, that requires the moni-
toring of the execution of each operation.

In general, the frameworks for the production of se-
cure software can be divided in two phases. The first
phase consist of the translation of the source code to
some object language (for example, Java bytecode, or
assembly language) and the inclusion of security anno-
tations in the produced code. In order to use PCC at
an industrial scale, these annotations must be gener-
ated automatically. During the second phase, the an-
notated object code is verified to ensure that it does
not violate the security policies. If this verification is
passed, the code can be run safely.

Several methods derived from PCC are based on
type systems. Unfortunately, several interesting secu-
rity policies cannot be verified by using a type system,
or even the verification process is too costly. For ex-
ample, the initialization of variables and the control
of out-of-bound array accesses cannot be verified effi-
ciently with such approach. Fortunately, the informa-
tion required to guarantee these security properties can
be generated by using static analysis of the program’s
control flow [6, 8].

Our framework, called Proof-Carrying Code based on
StaticAnalysis (PCC-SA), combines the PCC and static
analysis techniques. The main objective is to provide
an efficient and effective solution when the verification
of the security policies can not be done by using an ap-
proach based on type systems. V. Haldar, C Stork, and
M. Franz [8] argue that the efficiency problems of PCC
are due to the semantic differences between the source
code and the low-level object code. In contrast, PCC-SA

uses a high-level intermediate language, such as a con-
trol flowgraph or an abstract syntax tree with type anno-
tations. These intermediate representations enable us
to use static analysis techniques to generate and ver-
ify this type information. The main advantages of this
technique is that the size of the generate proofs is lin-
ear w.r.t. the size of the programs, and it is possible to
apply several code optimization techniques on the in-
termediate representation.

Static analysis is a very well-known technique in the
field of compiler construction. Recently, this technique
has being applied for verification and reengineering of
software. Static analysis can be used for the verification
of security properties because a concrete approxima-
tion to the dynamic behavior of a program can be ob-
tained at compile-time. There exist several static anal-
ysis techniques that provide a good balance between
the design costs and the solutions provided. For exam-
ple, array-bound checking or escape analysis [6].

A traditional compiler provides type verification and
other simple analysis. In contrast, the static analysis
techniques that we use require more effort in order to
be applied. However, these techniques are simpler than
other methods, such as functional verification of pro-
grams. It is important to consider the trade off between
precision and scalability, because static analysis tech-
niques can reject some safe programs.

Even considering that static analysis is a powerful
technique to guarantee security, it does not provide
a solution for every security problem. Sometimes, dy-
namic verification is required because the security poli-
cies are not statically computable. For example, the
general case of the problem of guarantee the safety
of the elimination of all the array-bound checkings is
equivalent to the halting problem. So, our framework
enables us to insert dynamic verifications in the in-
termediate code in order to include, in the set of safe
programs, some programs that cannot be verified com-
pletely by static analysis. In other words, the mech-
anism used to verify the code is a combination of
compile-time static analysis and run-time dynamic con-
trol.

This paper is structured as follows: in section 2 we
present the proposed framework and discuss the main
advantages and disadvantages of the framework. Rel-
evant features of the implemented prototype are ex-
plained in section 3. The last section is devoted to the
conclusions of our work and some proposals of future
work.

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

2. The PCC-SA Framework

Figure 1 shows the structure of the proposed frame-
work. Following the conventions used in [11], the un-
dulated boxes represent code, and the rectangular ones
represent modules that manipulate such code. More-
over, the shadowed boxes represent untrusted entities,
while the whites represent trusted entities belonging to
the Trusted Computing Base (TCB).

Modules Compiler, Annotations Generator, and
Proof Sketch Generator constitute the Certifying Com-
piler, used by the code producer.

The Compiler is a traditional compilar that takes
the source code, applies lexical and syntactic analysis
to verify the type of the expressions, and produces in-
termediate code. This produced code is an abstract rep-
resentation of the source code, and it could be used in-
dependently of the source language and the security
policy.

The Annotations Generator (GenAnot) applies sev-
eral static analysis in order to generate the informa-
tion required to annotate the intermediate code, based
on the security policy. If at some program point it can
be determined that the security policy is not satisfied,
then the program is rejected. At the program points
where the static analysis techniques cannot determine
the security status, a run-time check is inserted. Thus,
if a program succed in passing across the GenAnot mod-
ule, we can certify that it is safe.

The last process applied by the code producer is the
Proof Sketch Generator. This module uses the annota-
tions and the security policy to generate a proof sketch
by taking in account the critical program points and
their dependencies. This information is stored in the
intermediate code. A proof sketch is the minimal path
that the code consumer must to check in the interme-
diate code, together with the data structures to ana-
lyze.

The code consumer uses the Proof Sketch Verifier to
analyze the annotated intermediate code and the proof
sketch provided by the code producer. After that, the
module Proof Integrity Verifier checks that the proof
sketch is strong enough to prove that the code satis-
fies the security policy. Its task is to verify that every
critical program point was either checked by the Proof
Sketch Verifier or contains a run-time check. By us-
ing this process, the code consumer can detect modifi-
cations in the mobile code, or weaknesses in the gener-
ation of the proof sketch.

Both, Proof Sketch Verifier and Proof Integrity Ver-
ifier belong to the Proof Verifier, that is included in
the Trusted Computing Base (TCB) of the code con-
sumer.

2.1. Advantages and Disadvantages of
PCC-SA

Since Proof-Carrying Code based on Static Analysis
is based on Proof-Carrying Code, it has the same ad-
vantages than PCC. Because the code consumer only
has to provide a fast and simple proof verification pro-
cess, the host infrastructure is automatic and low-risk;
while the harder task is on the side of the code pro-
ducer, that must provide the proof. Moreover, trust be-
tween producer and consumer is not required. PCC-SA,
such as PCC, is a flexible framework because it could be
used with different languages and security policies, and
even it is not only appliable to security. Another advan-
tages are that the code generation can be automated,
that the code is statically verified, that any modifica-
tion (accidental or malicious) of the code can be de-
tected (and even in such case the security is guaran-
teed), and that it can be combined with other tech-
niques.

Moreover, PCC-SA has an all new set of advantages,
produced by the combination of the static analysis and
PCC techniques. The most important of these advan-
tages is the fact that the size of the generated proofs
is linear w.r.t. the size of the programs (in fact, most
of the time the proofs are smaller than the programs).
Moreover, by using PCC-SA a broader range of secu-
rity policies can be automatically verified, more plat-
form independence is obtained by using a representa-
tion of the source code, and, compared with PCC, less
run-time checks must be used.

Even when the idea of PCC-SA is simple, its effi-
cient implementation requires to solve some problems.
Some of the weakpoints of PCC-SA are inherited from
PCC. For example, these frameworks are very sensitive
to changes in the security policies. More important, to
establish and formalize (that is, translate to a static
analysis) a security policy is expensive, and both, code
producer and consumer, must be involved in the pro-
cess.

3. The Prototype Developed

In order to provide a proof of concept of our frame-
work, a prototype was developed. First, a source lan-
guage was defined. We chose a subset of the language C,
with some notation added. Second, the security policies
were established. In this case we decided to check for
variable initialization and out-of-bound array accesses.
Third, the intermediate code was chosen. The proto-
type uses abstract syntax trees as intermediate code. Fi-
nally, we implemented the modules Annotations Gen-

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

Figure 1. Structure of the framework Proof-Carrying Code based on Static Analysis.

erator, Proof Sketch Generator, Proof Sketch Verifier,
Proof Integrity Verifier, and Code Generator.

The following paragraphs show the main features of
the prototype developed.

3.1. The Mini Language

The source language of our prototype is called Mini
and it is an extended subset of the programming lan-
guage C. Since the security policy to check is based
on the access to arrays, Mini includes array manipula-
tion operations. Almost all the remaining features of
the language C were discarded in order to keep Mini
simple.

A Mini program is a function that takes at least one
argument and returns a value. The type of the argu-
ments can be integer or boolean. Unidimensional ar-
rays, with elements of basic type, can be defined. Note
that the complexity of including unidimensional arrays
is equivalent to include more complex data structures,
such as matrices.

We say that Mini is an extended subset of C be-
cause we include a notation to define allowed limits for
integer parameters. The declaration of an integer pa-
rameter requires the definition of the lower and up-
per values that such parameter can take. For exam-
ple, the function profile int func(int a(0,10)) indi-
cates that when the function func is called the value of
its argument should satisfy the condition 0 ≤ a ≤ 10.
Here, we will proceed with the explanation of the pro-
totype by using the example of Figure 2.

int ArraySum (int index(0,0)) {

int [10] data; /* Define an array */
int value=1; /* Define an initialization

variable */
int sum=0; /* Define the summatory

variable */

while (index<10) { /* Initialize the array */
data[index]=value;
value=value+1;
index=index+1;

}
while (index>0) { /* Calculate the

summatory */
sum=sum+data[index-1];
index=index-1;

}
return sum;

}

Figure 2. Example of a Mini program.

3.2. The Security Policy

A security policy is a set of rules that define the con-
ditions under which is safe to execute a program. A pro-
gram is a codification of a set of possible runs; thus, a
program satisfies a security policy if the security pred-
icate is true for every possible execution path of the
program [14].

We chose a security policy that guarantees type and
memory safety, that non-initialized variables are not
read, and that there is no out-of-bound array accesses.

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

3.3. Intermediate Code: Abstract Syntax
Tree

The intermediate code is an abstract syntax tree
(AST). It is an abstract representation of the source
code that enables us to apply several static analysis,
such as control flow and data flow analysis. Also, it
can be used to apply code optimizations.

The prototype’s abstract syntax trees are similar to
a traditional AST, but the former include code an-
notations. These annotations show the status of the
program objects, and they contain information about
variable initializations, loop invariants, and variable
ranges. Figure 3 shows the AST of the previous ex-
ample.

Each sentence of a program is represented by an
AST. The nodes in an AST contain a label, informa-
tion or references to the sub-sentences that compose
the sentence, and a reference to the next sentence.

Each expression is represented by a graph. Two dif-
ferent labels are used when an array is accessed: unsafe
and safe. These labels mean that it is not safe to ac-
cess to such element of that array and that it is safe
to access, respectively. By modifying the node label we
avoid the necessity of include run-time checks.

The circles in Figure 3 represent sentences, hexagons
represent variables and the rectangles represent expres-
sions. Arrows show the control flow, and straight lines
join sentences with their attributes. The label DECL is
used for declarations, ASSIGN for assign sentences, UN-
SAFE ASSIG ARRAY for array assign sentences, WHILE
for loops, and RETURN for function return sentences.
For example, note that the AST of the first loop in-
cludes the logic condition (index < 10) and the body
of the loop. The AST of the body includes three assign
sentences, the first of them assigns the value value to
the element index of the array data. So, it is labeled
UNSAFE ASSIG ARRAY.

3.4. The Certifying Compiler CCMini

The certifying compiler CCMini is composed by a
traditional compiler, an annotations generator, and a
proof sketch generator. The Compiler takes a pro-
gram written in the source language Mini and returns
an abstract syntax tree (AST). The Annotations Gen-
erator (GenAnot) applies several control and data flow
static analysis on the AST and it generates an anno-
tated abstract syntax tree. Moreover, GenAnot checks if
the code satisfies the security policies by using the in-
formation about variable ranges and loop invariants in-
cluded in the annotations. If the code falsifies the se-
curity policies, it is rejected. If GenAnot cannot deter-

mine the security status at some program point, code
for a run-time check is added at this point. Finally, the
Proof Sketch Generator takes the annotated AST
and it generates a proof sketch by taking the mini-
mal path that the code consumer must follow to verify
the code safety.

3.4.1. Code Annotations The code annotations in-
clude loop invariants and the range of each variable, to-
gether with the pre-condition and the post-condition
of the program. In order to obtain this information,
GenAnot applies control and data flow analysis on the
AST. These analysis can obtain information about the
initialization and range of the variables and, some-
times, pre- and post-conditions are obtained. The range
of a variable is useful to determine if the variable can
be used to access some element of an array.

In order to make it efficient and scalable, the imple-
mented GenAnot module only applies the analysis to
the body of the functions. Moreover, our GenAnot is
at a middlepoint between flow-sensitive analysis, that
considers all the possible paths of a program, and flow-
insensitive analysis, that does not consider the flow of
the program. GenAnot analyzes the control flow in some
cases, for example, in loops; but, in general it only rec-
ognizes some patterns in the code.

In order to generate the required information,
GenAnot applies the following processes:

1. Identification of initialized variables. By analyzing
all the possible run-time paths of the program,
uninitialized variables access are detected. In such
case the program is rejected.

2. Identification of ranges of variables not modified in
body loops. By taking into account the range of the
function parameters and analyzing the execution
flow (without considering loops), the range of each
variable is obtained. By analyzing each operation
and sentence, it is ensured that the values of each
variable respect their range.

3. Identification of ranges of induction variables. A
variable is an induction variable if its value is in-
creased or decreased by a constant value at each
iteration of a loop. If the loop condition depends
upon a induction variable, then it is possible to
determine the number of iterations of such loop.
Thus, it is possible to determine the ranges of all
the induction variables included in the loop and
their output values.

4. Identification of valid array accesses. The informa-
tion obtained in the previous phases can be used
to determine if most of the array accesses are valid
or out-of-bounds. In particular, it is easy to do this

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

Figure 3. ASTof the Mini program from Figure 2.

when induction variables are used to access array
elements.

The Proof Sketch Generator identifies the criti-
cal variables (those used as array indexes) and the pro-
gram points where they are used. This information is
used to create a proof sketch. A proof sketch is the min-
imal path on the AST that the code consumer must
check in order to verify the code safety. The proof
sketch for the program in the example is shown in Fig-
ure 4.

The shadowed rectangles represent annotations and
the dotted lines are the proof’s minimal path. For ex-
ample, the annotation index(0, 9) means that the value
of the variable index is between 0 and 9. The annota-
tions labeled INV : represent loop invariants. For ex-
ample, INV : index(0, 9) means that the loop invari-
ant is 0 ≤ index ≤ 9. The predicate IndCred(index, 1)
indicates that the variable index is an induction vari-
able.

Note that in Figures 3 and 4 the labels of nodes
that refer to array accesses are different. In Figure 3
the accesses are considered unsafe, but after applying
GenAnot these accesses are considered safe in Figure 4.
Since each access in the annotated AST is safe no run-
time checking is needed.

3.5. The Proof Verifier

On the side of the code consumer, the Proof Verifier
is composed by the Proof Sketch Verifier and the Proof
Integrity Verifier, and its output is sent to the Code Gen-
erator.

The Proof Sketch Verifier checks the well-formedness
of the received AST. After that, the path provided by
the proof sketch is analyzed by checking that each vari-
able is initialized and each array access in the path
is safe. Each visited node is tagged. For example, the
Proof Sketch Verifier follows the path signaled by the
pointed arrows in Figure 4.

After that, the Proof Integrity Verifier analyzes the
AST as a whole, checking if the proof sketch includes
all the critical points in the program. If some criti-
cal point not included in the proof sketch is found, the
code is rejected as unsafe.

Finally, if the code was accepted as safe, the Code
Generator uses the AST to generate object code. Our
implementation produces x86 assembly code. By hav-
ing a separate module as code generator, we can use
different modules to generate code in several assem-
bly languages or even binary code. Moreover, an inter-
preter can be used instead of the code generator mod-
ule.

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

Figure 4. Proof Sketch on the Annotated AST for the example in Figure 2.

4. Related Work

In order to apply the PCC technique in an industrial
setting, the creation of the certificate must be done au-
tomatically. The original PCC implementation [11] re-
quired human intervention in the proof-making pro-
cess. On the contrary, in our PCC-SA framework the
certificates are automatically generated by the verify-
ing compiler. Moreover, the size of the generated proofs
is linear w.r.t. the size of the program, while in PCC
the size of the proofs is exponential w.r.t. the size of
the programs.

As mentioned before, the main difference between
our framework and PCC is based on the properties that
can be included in the security policies of PCC-SA but
not in the policies of PCC. For example, the checking
of out-of-bounds array accesses.

In order to overcome the limitations induced by
the type-specialization of PCC, Appel [2] developed
the more flexible Foundational Proof-Carrying Code
(FPCC). However, the definition of the semantic mod-
els for the type systems used within this framework re-
quires a hard task and a very skill code generator.

WELL (Well-formed Encoding at the Language
Level) [8] uses a similar approach to PCC-SA. In this

case, compressed abstract syntax tress (CASTs) are
transmitted to the code consumer. The CASTs are
safe by construction: a program that does not sat-
isfy the policy cannot be expressed by a CAST. How-
ever, the policies presented in the mentioned work
include only scape analysis.

Another related work is the Java bytecode verifica-
tion [7, 10]. This consists of an abstract execution of
the code of each class in order to check if the type of
the values is respected. In particular, Leroy [9] reduces
the verifier in order to apply it on Java-Cards. Never-
thelles, some assertions that can be checked in PCC-SA,
such as out-of-bounds array accesses, cannot be done
by the bytecode verifier.

5. Conclusions and Future Work

In this paper we present a framework for safe execu-
tion of mobile code, called Proof-Carrying Code based-
on Static Analysis (PCC-SA). This framework, based
on PCC and static analysis techniques, provides safety,
platform independence, a simple verification process,
small formal proofs, and provides the information re-
quired to apply code optimization.

The prototype that has been implemented validates

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

this approach. CCMini is a reduced, small, simple cer-
tifying compiler that provides an envirounment for the
safe execution of mobile code. Moreover, CCMini can
also be used in applications that doesnot require code
mobility.

The design of the prototype ensures that there will
be only discarted such programs that are certainly
unsafe. If CCMini cannot determine the safety of a
program, run-time checks are inserted in the critical
points. By hand examination of a reasonable number
of programs allows that most of array accesses use as
indexes, expressions including only inductive variables.
This suggests that the proposed approach solves for
safety on accesses to arrays on most situations.

In order to conduct a series of small experiments, we
asked several programmers, not involved in the devel-
opment of CCMini, to provide us with Mini programs
that include array accesses. In most of the cases, the
compiler CCMini determined the safety of such pro-
grams without include any run-time check. However, to
confirm this hypothesis, it would be nesessary to per-
form the test on a large number of programs, piched
out from the existing libraries. This can only be done
if the CCMini compiler is extended to a standard lan-
guage.

So, the task ahead is to develop a certifying com-
piler for a realistic programming language or, at least,
a more comprehensive subset of a realistic program-
ming language. We are also interested in extending the
security policy of the prototype including, for instance,
the treatment of pointer arithmetic.

References

[1] A. Appel, A. Felty, “A Semantic Model of Types
and Machine Instructions for Proof-Carrying Code”,
in Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’00), pp. 243–253, ACM Press, Boston, Mas-
sachusetts (USA), January 2000.

[2] A. Appel, “Foundational Proof-Carrying Code”, in
Proceedings of the 16th Annual Symposium on Logic in
Computer Science, pp. 247–256, IEEE Computer Soci-
ety Press, 2001.

[3] A. Appel, E. Felten, “Models for Security Policies
in Proof-Carrying Code”. Princeton University Com-
puter Science Technical Report TR-636-01, March
2001.

[4] A. Bernard, P. Lee, “Temporal Logic for Proof-
Carrying Code”, in Proceedings of Automated Deduc-
tion (CADE-18), Lectures Notes in Computer Science
2392, pp. 31–46, Springer-Verlag, 2002.

[5] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko,
K. Cline, “A certifying compiler for Java”, in Pro-
ceedings of the 2000 ACM SIGPLAN Conference

on Programming Language Design and Implementa-
tion (PLDI’00), pp. 95–105, ACM Press, Vancouver
(Canada), June 2000.

[6] D. Evans and D. Larochelle, Improving Security Us-
ing Extensible Lightweight Static Analysis. IEEE Soft-
ware, pp. 42-51, January-February 2002

[7] J. Gosling, “Java intermediate bytecodes”. In Proc.
ACM SIGPLAN Workshop on Intermediate Represen-
tations, pages 111-118. ACM, 1995.

[8] V. Haldar, C. Stork, M. Franz, Tamper-Proof Annota-
tions - by Construction. Technical Report 02-10, De-
partment of Information and Computer Science, Uni-
versity of California, Irvine, March 2002.

[9] X. Leroy, “Bytecode Verification on Java smart cards”.
in Proceedings Software Practice and Experience. 2002.

[10] T. Lindholm, F. Yellin, “The Java Virtual Maquine
Specification”. The Java Series. Addison-Wesley, 1999.
Second Edition.

[11] G. Necula “Compiling with Proofs” Ph.D. Thesis
School of Computer Science, Carnegie Mellon Univer-
sity CMU-CS-98-154. 1998.

bibitemNEC02 G. Necula, R. Schneck, “Proof-
Carrying Code with Unstrusted Proof Rules”, in Pro-
ceedings of the 2nd International Software Security
Symposium, November 2002.

[12] G. Necula, R. Schneck, “A Sound Framework for Un-
trusted Verification-Condition Generators”, in Pro-
ceedings of IEEESymposiumonLogic inComputer Sci-
ence (LICS’03), July 2003.

[13] M. Plesko, F. Pfenning, “A Formalization of the Proof-
Carrying Code Architecture in aLinear Logical Frame-
work”, in Proceedings of the FLoC Workshop on Run-
Time Result Verification, Trento (Italy), 1999.

[14] Fred B. Scheneider, “Enforceable security policies”.
Computer Science Technical Report TR98-1644,
Cornell University, Computer Science Department,
September 1998.

[15] R.Schneck,G.Necula, “AGradualApproach toaMore
Trustworthy, yet Scalable, Proof-Carrying Code”, in
Proceedings of International Conference on Automated
Deduction (CADE’02), pp. 47–62, Copenhagen, July
2002.

Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC’04)
0-7695-2185-1/04 $ 20.00 IEEE

