
Softw Syst Model
DOI 10.1007/s10270-014-0442-0

REGULAR PAPER

Expressing aspectual interactions in design: evaluating three
AOM approaches in the slot machine domain

Johan Fabry · Arturo Zambrano · Silvia Gordillo

Received: 27 January 2014 / Revised: 18 November 2014 / Accepted: 26 November 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In the context of an industrial project, we eval-
uated the implementation of the software of a casino slot
machine. This software has a significant amount of cross-
cutting concerns that depend on and interact with each other
as well as with the modular concerns. We therefore wished
to express our design using an appropriate aspect-oriented
modeling approach. We therefore evaluated three candidate
methodologies: Theme/UML, WEAVR, and RAM to estab-
lish their suitability. Remarkably, only the last of the three
has shown to allow an adequate expression of the interac-
tions, albeit not fully explicit. The first two fall short because
half of the interaction types cannot be expressed at all while
the other half need to be expressed using a work-around that
hides the intention of the design. Neither does RAM allow a
fully explicit expression of interactions, but it would be the
most adequate approach for the slot machine case.

Communicated by Dr. Ana Moreira.

This article extends the article “Expressing Aspectual Interactions in
Design: Experiences in the Slot Machine Domain” [14] that appeared
in the Proceedings of the ACM/IEEE 14th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2011)
Johan Fabry is partially funded by FONDECYT project 1130253.

J. Fabry (B)
PLEIAD Laboratory, Computer Science Department (DCC),
University of Chile, Santiago, Chile
e-mail: jfabry@dcc.uchile.cl

A. Zambrano · S. Gordillo
LIFIA, Facultad de Informática, Universidad Nacional de La Plata,
La Plata, Argentina

A. Zambrano
Departamento de Ciencia y Tecnología, Universidad Nacional
de Quilmes, Bernal, Argentina

Keywords Aspect-oriented modeling · Aspect
interactions · Case study

1 Introduction

A slot machine (SM) is a casino gambling device that has
five reels which spin when a play button is pressed. An SM
includes some means for entering money, which is mapped to
credits. The player bets an amount of credits on each play, the
SM randomly selects the displayed symbol for each reel, and
pays the corresponding prize, if any. Credits can be extracted
(called a cash-out) by different mechanisms such as coins,
tickets, or electronic transfers.

In the context of an industrial project, we were required
to re-implement the software for a particular SM. Previous
experience had taught us that, beyond the main functionality
sketched above, there are a significant amount of crosscutting
concerns present in such applications. For example, counters
need to be maintained to be able to audit the SM and the SM
needs to be accessible over the network. Moreover, these
concerns depend on and interact with each other as well as
with the modularized concerns. We therefore opted to use
Aspect-Oriented Software Development in this implemen-
tation, taking special care of dependencies and interactions
between the different aspects and modules. In a previous step,
we analyzed the different concerns that define the behavior
of SMs, with a specific focus on concern interactions at the
requirements level. We described a number of problems with
the evaluated methodologies and proposed extensions to the
methodologies that we subsequently validated [36,37].

The second step in our development process is model-
ing the software using an adequate approach for aspect-
oriented modeling (AOM). However, to the best of our
knowledge there has been no work published that evaluates

123

J. Fabry et al.

AOM approaches in an industrial setting, with a focus on
interactions between the different concerns. We therefore
undertook an evaluation of three mature AOM approaches
to establish their applicability in our context, and we report
our evaluation in this article.

As in our previous work, the focus of the evaluation
remains on the ability of each approach to deal with
aspect interactions, allowing them to be explicitly included
in the design. We require such explicit inclusion in the
design to be able to better perform development, mainte-
nance, and evolution, especially given that there are about
600 feature requirements in the system, which change
frequently.

Somewhat surprisingly, regarding our focus on the abil-
ity of AOM approaches to explicitly deal with aspect inter-
actions none of the approaches fully meet our criteria. We
can consider only one of the three to be reasonably satisfac-
tory. Note that, as the focus of our study does not include
other desirable properties for design models, we consider
discussions of other properties outside of the scope of this
text.

As basis for our selection, we used surveys on AOM [8,
35], complemented by a study of more recent literature.
The chosen approaches are Theme/UML [10], WEAVR [11,
13], and RAM [22]. Of the mature approaches that are
accepted in the community, these are the approaches that
claim to have some support for interactions, the key fea-
ture that we wanted to evaluate. Furthermore, all methodolo-
gies have specific advantages. Theme/UML integrates with
Theme/Doc: an aspect-oriented requirements methodology
for requirements specification [37]. WEAVR is arguably the
best-known industrial application of AOM, and the only
methodology that we are aware of that is used in indus-
try to develop complex applications. RAM is a multi-view
approach providing a radically different approach to AOM,
promising scalability and specific forms of resolution of
interactions.

We now give an overview of the requirements we have for
the design document, before giving a high-level overview
of the design and the different interactions that need to be
specified. Section 4 then proceeds with an evaluation of
Theme/UML, and Sect. 5 follows up with an evaluation of
WEAVR. In Sect. 6, we discuss the design of the slot machine
in RAM. A discussion comparing the merits of the different
approaches and broadening the scope to other design method-
ologies is given in Sect. 7. We present related work in Sect. 8
and conclusions and future work in Sect. 9.

2 Requirements for the design

In the design phase, our goal is to refine the requirement spec-
ification documents into a model of the software artifacts

that will form the final system. This model, written down
in a design document, will be passed to the developers for
implementation. Hence, it should be sufficiently complete to
allow for the implementation to be produced relatively inde-
pendently. As we are performing Aspect-Oriented Software
Development, the choice of an AOM approach for creating
this document is given. The expectation is to be able to pro-
duce the complete design documents, i.e., not having to resort
to a significant additional documents with an ad hoc notation
to complement for omissions in the methodology. In the lat-
ter case, the advantages of using a standard AOM are small
and we would consider rolling our own AOM. Note that, as
previously mentioned, we found that none of the methodolo-
gies has shown itself to be completely sufficient, and hence in
Sect. 7, we discuss possible ways to complement the design
documents.

In addition to the goal of using an existing methodology,
we have three, related, expectations of the design document:
maintenance support, explicit interactions, and scalability.

In subsequent maintenance or evolution phases, the
changes made in the requirements will trigger subsequent
changes in the design, and the developers will modify the
implementation accordingly. Such later modifications must
not break the system because they violate constraints of the
original design or go against the original design decisions.
If the change is significant enough to warrant modifying
the design constraints or assumptions, the original intentions
should be maintained as much as possible. Hence, the design
document must be clear on which are the critical design deci-
sions that were made and what assumptions were taken. Fur-
thermore, it is known that the presence of aspects in a soft-
ware system that is being evolved can be problematic [21].
Such issues should be mitigated by the information that is
explicitly available in the design document. When evolving
the software, the implementers must be able to use the docu-
ment as a guide, seeing what assumptions taken by the aspects
no longer hold, or what new code now also falls within the
realm of an aspect.

As we have stated above, our experience is that there
is a significant amount of non-trivial interactions between
the different aspects of the system. This is also confirmed
by the results of the requirements analysis we have per-
formed previously [36,37]. Even though aspects are intended
to provide advanced modularity and decoupling, they do not
exist in isolation. As any module in software, their presence
impacts other modules and their functionality may depend
on other modules. Documented design decisions should
therefore include not only which modules will be aspects
and where they crosscut, but also how they interact with
each other. This information must be made explicit so that
critical information is correctly passed to the implementa-
tion phase and is present when maintaining or evolving the
software.

123

Expressing aspectual interactions in design

2.1 Scalability is key

The SM application requirements documents establish approx-
imately 600 requirements [37]. This results in a crucial need
for scalability of the design phase. We consider it unrealistic
to produce a design document that goes into great detail for
all of these requirements, as such a heavyweight approach
will not scale.

A second motivation for the need for scalability is that
the different requirements specifications [15,16,29] regu-
larly change and moreover are under control of different
legal institutions. As a result, frequent changes to deal with
new (legal) issues are not synchronized between the differ-
ent documents. A heavyweight design document that needs
to be updated on each change of a regulation document as
well as consequent changes in other documents will cause an
unacceptable overhead in maintenance and evolution.

As a partial solution to handle these scalability issues,
we expect the AOM approach to provide for some means
of abstraction over similar patterns in the design. For exam-
ple, there are different (informal) types of errors that can
occur in the SM, and each type requires a different action to
be undertaken. The two extreme cases of errors are the fol-
lowing: Minor errors, such as the ticket printer running out
of paper requires a message to be sent to the casino server
without interrupting play. Major errors, such as a player tilt-
ing the machine (to attempt to influence the outcome of a
play) require the machine to lock up immediately and to call
an attendant by lighting the lamp at the top of the machine
while sounding an alarm. There should be a way such that
for a class of error only one model is created, instead of a
model for each specific error condition.

3 Design overview

This work is one phase of a complete development effort
that considers the re-implementation of the SM software.
Due to our experience with the existing software, we know
that there are significant issues with crosscutting concerns
and their interactions. Based on our knowledge of aspect-
oriented software development, it seemed that this approach
to modularize the different concerns would be the most effec-
tive. We therefore chose to use AOSD and not other forms of
advanced modularity for this development effort. The use of
other forms of advanced modularity may also be adequate;
however, a comparison of other forms and subsequent analy-
sis is outside of the scope of this text.

In the first step of the development effort, we performed
a requirement analysis that has been reported in previous
work [36]. This analysis was based on the formal and legal
requirements for the SM as well as our experience of the
previous implementation. It established the separation of the

software in different concerns and how they crosscut and
interact, at a requirements level. For more details on the
requirements analysis, we refer to our report [36].

Considering the results of the requirements analysis phase
we performed, we now give an outline of how we envision
the design of the SM software. Based on our knowledge of
the SM domain and the results of requirements analysis, we
consider this design outline to be the most adequate for the
software that is envisioned. Other designs are of course fea-
sible but a discussion of trade-offs taken is outside of the
scope of this text, given that here we focus on the expres-
sion of aspectual interactions. The purpose of the proposed
design in this section is to provide us with a concrete basis
for evaluation of the AOM methodology in this regard. More
specifically, the methodology must allow us to expand and
refine the overview into a complete design document that
treats interactions in an acceptable manner.

3.1 Aspects in the design

A class diagram that shows the outline of the design is given in
Fig. 1. It uses an ad hoc extension of UML to indicate cross-
cutting, showing that we model the following crosscutting
concerns as aspects (using the “Aspect” stereotype): Meter-
ing, Demo, Program Resumption, Error Conditions, S Com-
munications Protocol, G2S Protocol. We give an overview of
these aspects next.

Metering The Metering aspect crosscuts Game and other
base entities in order to keep meters data up to date. Meters
are essentially a set of counters that keep information about
past plays, e.g., the total amount bet. This information is used,
among other things, to create reports.

Demo For legal certification the SM must have a ‘Demo’
mode, where all possible outcomes for a play can be simu-
lated. The Demo concern therefore needs to control the out-
come produced by the Game class. It furthermore crosscuts
Metering to avoid polluting accounting meters when it is
active.

Program Resumption is a persistence and recovery require-
ment. The system should recover the last state after a power
outage. Information to be saved includes the status of the
current play and the values of the meters.

Error Conditions detected by the game, such as tilt, out of
paper, among others, are detected by the Error Condition
detection aspect. Once an error condition is detected, some
actions need to be performed, e.g., in case of a tilt illuminating
the tower lamp and sounding an alarm to call the casino
attendant.

123

J. Fabry et al.

F
ig

.
1

O
ve

rv
ie

w
of

th
e

cl
as

s
st

ru
ct

ur
e

of
th

e
de

si
gn

123

Expressing aspectual interactions in design

Communication Protocols The S Communications Proto-
col1 (SCP) and G2S Protocol are communication protocols
frequently used in the gaming industry. Their correspond-
ing aspects crosscut the Game modules to add behavior such
as multiple SMs competing for the same jackpot. Moreover,
both protocols need to report metering information and hence
crosscut the Meters aspect.

Figure 1 shows that a simple extension of UML already
suffices to provide the outlines of the aspectual design. Not
surprisingly most, if not all, of the AOM approaches we stud-
ied allow us to produce a model similar to this diagram. What
is, however, lacking in the above diagram is the information
of how the various aspects interact with each other, as well as
with the base application. For example, when in Demo mode
network communication must be disabled, as queries from
the server may only receive values corresponding to normal
play conditions. This information should also be present in
the design document, but we find no immediately obvious
way in which this can be diagrammed, and hence the lack of
this information in Fig. 1.

3.2 Interactions between concerns

Our resulting design document not only needs to contain the
information of the aspects present in the system, but also
how they crosscut. It is also necessary that the interactions
which were identified in the requirements analysis phase be
present in the design document. To better understand what
our needs are for this part of the design document, we now
give an overview of the different interactions in the SM, and
how we want this to be reflected in the document.

We structure this discussion and the evaluations of the
AOM approaches later in the text using the AOSD-Europe
technical report on interactions [33]. It classifies interactions
in four different types: dependency, conflict, mutex, and rein-
forcement, and the SM software contains an instance of each
of these types.

Dependency: Communication Protocols on the Meters Both
communication protocols access the meters in order to report
their values to the server. Consequently, if for some reason
metering is not present, the communication protocols cannot
operate. We need to document this dependency to ensure the
consistent behavior of the system.

Conflict: Demo versus Multiple Concerns The aspects of
Meters, Communication Protocols, and Program Resump-
tion are present to comply with legal accounting requirements
regarding plays performed on a SM. The Demo aspect, also
a legal requirement, conflicts with all of the above aspects.

1 A pseudonym, licensing restrictions prohibit us from using the real
name.

This is as the legislation states that a play in Demo mode must
not alter the meters nor that its activity is visible over the net-
work. Hence, after a Demo session the Game must recover its
original status and any event or state change while in Demo
must not be reported by the communication protocols.

In order to cope with this conflicting behavior, the design
and implementation must take care of the following when in
demo mode:

– The communication protocols should not divulge any val-
ues of the machine when queried by the server and should
not report errors over the network. Protocols must report
the SM as being in an out of service state. This might be
done by intercepting the response behavior of the proto-
cols and responding with an “out of service” message.
Stopping communications completely is not an option
due to protocol constraints.

– Meters and GameRecall information must not be polluted
with Demo information. A fake set of meters and log
should be used. This ensures that actions in demo mode
do not alter the meter values of normal operations and,
at the same time, allows to audit the correct behavior of
the SM. When finishing the demo session, the “original
objects” must be restored.

– Program Resumption must not persist the information
generated during “demo” plays. The functionality of this
aspect must be deactivated. That is, if the machine is
restarted in normal mode, changes due to demo mode
must be lost.

Mutex: Between both Communication Protocols Both com-
munication protocols provide similar functionality, allowing
the server to query information and set some configuration
values and state on the SM. For read-only behavior, such
as reporting the value of a meter, there is no problem with
having them active at the same time as no interference will
result. On the other hand, for operations that alter the state of
the machine, mutual exclusion may need to be ensured dur-
ing a single program execution. If not, inconsistencies in the
SM may arise. For example, consider setting the time of the
SM, an operation performed by the casino server. With both
communication protocols enabled, two different servers with
different clock values may set the time on the SM to either
of both clock values. As a result, the timing of events on the
SM is ambiguous. To document, this mutex what we need is
the ability to express that certain object interactions may not
occur during the programs’ execution.

More concretely, we consider the following design deci-
sions that must be documented:

– Configuration commands will be instances of different
classes, which will belong to the same hierarchy as
needed. For example, SetTime, setting the time, versus

123

J. Fabry et al.

SetProgressive, setting the increment value for a progres-
sive jackpot.

– As protocols use almost the same set of commands, these
will be shared between the protocols; that is, there will be
no separate hierarchies for G2S and SCP commands. This
means that a command such as SetTime can be issued
either by the G2S or SCP protocol.

– For a given run of the system, it is necessary to assign
which command can be received from which protocol.
This can be done by configuration, or using an first-come
first-served policy. An example of the latter would be
that once a command,e.g., SetTime, is received through
the G2S protocol the next occurrences of SetTime will
only be processed if they come from the G2S monitoring
system.

– Complementary, if a configuration command arrives
through an improper protocol (SetTime coming from
SCP in our previous example), it will be ignored, and
this occurrence will be logged for future fixing.

Reinforcement: From Error Conditions to Communication
Protocols There is a reinforcement from Error Conditions
to Communication Protocols. Not all the Error Conditions
specified in the legislation are mandatory; however, when an
optional error condition is present in the game, e.g., because
a driver allows for these errors to be detected, the commu-
nication protocols must report this to the server. This means
that during the development of new versions of the Game,
when new error conditions are present, the associated behav-
ior in the Communication Protocols should be revisited to
ensure that the new information is properly reported. Hence,
we need to document that a change in different parts of the
application enables optional or extended behavior of a given
concern.

In order to cope with reinforcement, we need to express
the following design decisions:

– Joinpoints where the error conditions are issued must be
captured.

– When detected, it is necessary to perform some kind of
check that ensure the error condition is notified or it is
intentionally left aside for each communication protocol.

3.3 Methodology of evaluation

We investigated the literature to select the approaches
for evaluation. The first requirement that we had for the
approaches is that they should be mature, as witnessed by
an apparently comprehensive feature set or reports of their
use for realistic cases. The second requirement was that they
be accepted by the community, as reflected in the presence of
multiple publications and a significant number of references
to these publications. The third and last requirement was for

the approaches to claim to have some form of interaction
support. Given that interaction support is the specific focus
of our evaluation, we did not consider other features of the
different approaches for selection.

We found three approaches that satisfied these three cri-
teria: Theme/UML, WEAVR, and RAM. We evaluated them
in this order and in this text report on the evaluations in the
same order.

The evaluation proceeded as follows: For each approach,
we read published work as well as any web sites on the
approach. If the tools of the approach were claimed to be
freely available, we tried to obtain, learn, and use these tools.
We then endeavored to provide a design document for at
least one instance of each interaction kind that is listed in
Sect. 3.2. Notably, we did not construct a full design for the
entire slot machine, as this would be prohibitively expensive
considering the time it would take.

When in doubt of how to use an approach to construct
a model, we contacted the primary authors of the respec-
tive publications via e-mail, asking for more information. We
continued via e-mail or by other means deemed more effec-
tive. Conversations continued until we were satisfied with
the provided information, while also taking into account the
latency and clarity of responses. In general, interaction with
the respective authors was not so fluid. There was, however,
one case: RAM, where the authors were highly responsive,
even permitting direct interaction to clear up questions and
doubts by means of a research visit to their laboratory.

4 Evaluation of Theme/UML

Theme/UML is the second half of the Theme approach
for aspect-oriented requirements analysis and design. The
first half is called Theme/Doc and is a methodology for
AO requirements analysis. Theme provides a process for
transforming requirements in Theme/Doc into a design in
Theme/UML and, moreover, claims to have support for
conflict resolution. We therefore chose to evaluate Theme
for our development effort. In the requirements engineering
phase [37], we have evaluated Theme/Doc and now continue
with an evaluation of Theme/UML.

The Theme/UML approach [10] is an extension of UML
that provides both a notation and a methodology for modeling
AO systems. In Theme/UML, a theme refers to a concern. A
theme can consist of class diagrams, sequence diagrams, and
state diagrams, each of which is extended with the required
notation to be able to express aspect-oriented concepts. Each
theme is designed separately and, subsequently, the themes
are composed each other. This is performed using composi-
tion relationships that detail how this is performed.

Theme/UML claims to have tool support in the form of an
Eclipse plugin that works on the output of the MagicDraw

123

Expressing aspectual interactions in design

tool. Unfortunately, MagicDraw is proprietary software, and
the Theme/UML Eclipse plugin was outdated at the time we
performed our comparison (which was confirmed by the plu-
gin authors). This prevented us from using any tool support.
However, the existent scientific publications together with
the user manuals of the plugin and the theme approach web
page gave us a comprehensive basis on which to perform
our evaluation. Note that the support offered by the plugin
is to provide help during the composition of themes, which
is downstream from our evaluation in the modeling process.
This is our objective to clearly document aspect interactions
during the design.

Themes are divided into two classes: base and crosscut-
ting themes. Base themes describe a concern of the system
that has no crosscutting behavior. Base themes are composed,
both structurally and behaviorally, to form the base model. If
a given concept appears in multiple themes, the composition
can merge the various occurrences into one entity. Crosscut-
ting themes describe behavior that should be triggered as the
result of the execution of some behavior in the base model.
They are designed similar to base themes and are parameter-
izable. Parameters provide a point for the attachment of the
crosscutting behavior to the base model. By binding them to
values of the base themes, the crosscutting themes are com-
posed with the base model. Crosscutting themes are com-
posed one by one with the base themes until the complete
design is produced.

In accordance with Fig. 1, we modeled Game as a base
theme and Demo, G2S, Meters, and SCP as crosscutting
themes. We found it is straightforward to express where to
attach the crosscutting behavior, both on the base themes and
on other crosscutting themes. However, when considering
interactions we find that Theme/UML does not perform as
well. We now discuss the obstacles we encountered classified
in the four different kinds of interactions [33]: Dependency,
Conflict, Mutex, and Reinforcement.

4.1 Dependency

The metering theme maintains track of given events in the
game by changing the values of meter objects, as shown in
Fig. 2a. Complementary to this, Fig. 2b shows how one of
the communication protocols responds to queries sent by the
remote server, using the information previously stored in the
meters. It is clear that the latter behavior implies the former,
i.e., the communication theme depends on the meters theme.

The Theme/UML methodology, however, states that each
theme defines all structure and behavior needed to provide
the desired functionality, i.e., in a stand-alone fashion. Fur-
thermore, the designer may choose a subset of all themes to
compose a system [10]. In our case, this will lead to errors,
as selecting the theme of a communication protocol without

adding the theme of meters leads to an inconsistent design
of the system.

What we need is a way to express that the meters themes
are necessary whenever the communication protocol themes
are composed into the system, but we have found no way to
specify this in Theme/UML. Hence, we are unable to include
the dependency in the design.

4.2 Conflict

Theme/UML provides support for conflict resolution when
composing different themes. These composition conflicts
arise when the same diagram element in different themes
has an attribute with different values. An example of this is
an instance variable with different visibility specifications.
Conflict resolution then consists of choosing which of the
conflicting attributes to use in the composition.

The conflicts we are facing are, however, of a different
nature. For example, consider the Demo aspect. As men-
tioned in Sect. 3.2, when it is active all conflicting aspects
must be somehow deactivated. We therefore need to model
the predominant nature of this aspect in some way.

Depending on the aspect language used in the implemen-
tation, such a conflict management strategy can be realized
in different ways:

1. The Demo aspect could intercept and skip the behavior
of the conflicting aspects (using around advice without
a proceed).

2. When the Demo aspect is deployed, conflicting aspects
must be undeployed; that is, if runtime deployment and
undeployment of aspects are possible.

3. If load time weaving is available, different configurations
of active aspects could be loaded when the SM boots. One
of these would have Demo installed, and the conflicting
aspects not, a second configuration would be the inverse.

We were obliged to model the conflict management strat-
egy using the first option. This is because, to the best of our
knowledge, there is no way to fully express the other options
using Theme/UML.

We therefore model conflict management as follows: the
Demo theme crosscuts the Game theme, capturing the exe-
cution of play() for the Game class. When active, Demo
skips the execution of the original play() and instead gener-
ates a predetermined outcome (which is the main respon-
sibility of the Demo mode). In order to keep the meters
unharmed, parts of the Metering theme behavior are captured
and skipped. Considering the communication protocols, their
original behavior is altered: Instead of responding to queries,
failure responses are returned.

Our model is shown in Fig. 3. We use Theme/UML
sequence diagrams, a straightforward extension of UML

123

J. Fabry et al.

Fig. 2 Information captured by meters is used by the S communication protocol. a Metering theme acquiring information regarding events on
Game, b SCP theme using information acquired by metering behavior

Fig. 3 Demo theme affecting the behavior defined in Game, Metering, and Protocols. a Demo on Game, b Demo on Meters, c Demo on Protocols

sequence diagrams. The figure shows three Themes, each
of which has a template parameter in the top right corner,
corresponding to the message send that starts the sequence.
At composition time, this parameter is bound to a specific
message send in the base theme, i.e., the join point in the
base code is identified. Also, within a sequence diagram,
the behavior of the join point which is matched can be
invoked, put differently, Theme has an equivalent of the
AspectJ proceed construct. The syntax to express this call is
_do_templateOperation. Note that the absence of such a call
implies that the original behavior never occurs. For instance,
in Fig. 3 there are no _do_play, _do_count, or _do_query
calls, which means the join point behavior is skipped.

The above proposed solution has two downsides. Firstly
and most importantly, the design does not explicitly reveal
the intention: the conflict between Demo and Meters, and

Demo and the communication protocols. Instead it must be
deduced from the implementation proposed in the diagrams.
Secondly, we cannot model the conflict resolution strategy
differently. Of the three design choices we proposed above,
only the first could be modeled in Theme.

4.3 Mutex

Part of the behavior of the communication protocols is con-
figuration command processing, as these game parameters
can be set by the servers. Both protocols implement this fea-
ture, but it is not permitted that multiple protocols set the
same value during a run of the program. The interaction we
thus want to model is mutual exclusion between configura-
tion actions: Two protocols cannot configure the same item
during a given program execution.

123

Expressing aspectual interactions in design

Fig. 4 Two themes configuring the same item in the Game and Mutex interaction arbiter

Concretely, each protocol is modeled as a theme, where
each theme defines the behavior through a set of sequence
diagrams. Considering the sequence diagrams in the left-
hand side of Fig. 4 for the two different protocols, what we
need to document is that the behavior in diagrams (a) and (b)
cannot happen in the same program execution. As in the case
of the conflict interaction, it is possible to specify a mecha-
nism that implements the required mutual exclusion policy
between the themes. This is shown at the right-hand side of
Fig. 4 where the mutex arbiter theme is defined. Our arbiter
theme intercept the setTime() behavior for both protocols
and performs a check allowing to execute just one of them.
Although it is possible to manually define the mutex, there
is no explicit built-in support for the interaction.

4.4 Reinforcement

The error condition aspect reinforces the behavior of the
communication protocols, reporting all error conditions to
the remote servers. Considering this interaction, we have a
situation similar to mutex: We model the communication pro-
tocol concern as a theme, and the error conditions concern as
a theme, but we are unaware of a way in which to explicitly
state the reinforcement semantics. In this particular case, we
are able to integrate the reinforcement into the design, but at
the cost of making the reinforcement implicit. We show this
next.

The left-hand side of Fig. 5 shows a sequence diagram
for the most severe type of error condition. It specifies how
the error event occurring causes the tower lamp to be lit and
the attendant to be called. Reporting the error to the server
is specified in the right-hand side of Fig. 5 using a theme for
the communication protocol. By binding both themes using
the arrow construct, we define a crosscutting behavior of the
communication protocol, specifying that it intercepts all calls
of ErrorConditionBehavior.processSevere(Error).

However, as this states that the relationship between
them is a typical crosscutting relationship, the reinforcement
semantics is lost. Even though the generic behavior of the
communication protocols captures all error conditions of this
type, it is not clear that we know there may be new types of
error conditions in the future, and each of them needs to trig-
ger protocol behavior. This information is crucial to check
the consistency of the system during maintenance and evolu-
tion. As the reinforcement semantics remains implicit here,
this verification step might be omitted.

4.5 Scalability

As discussed in Sect. 2.1, an important feature of the model-
ing methodology we require is support for scalability. We
need to be able to abstract over common patterns in the
design, in this case in the different themes. We, however, only
found one mechanism that allows for such abstraction: tem-

123

J. Fabry et al.

Fig. 5 SCP theme reinforced by error conditions theme

plate parameters for crosscutting templates. We now illustrate
how it only addresses some of our scalability issues, using
two of the examples we have seen above.

When producing the complete design, the error conditions
theme shown in Fig. 5 needs to be bound to the occurrence of
errors in a base theme. This binding expression can be a list
of methods and may use wildcards as well. As such, this one
theme is an abstraction over all events in the base code that
trigger a severe error. Note, however, that if this theme would
be a base theme, there would be no template instantiation.
Therefore, we would need to manually produce a diagram for
all events that produce a severe error, which does not scale.

The second example of a need for abstraction is found in
the specification of the communication protocols in Fig. 4.
The diagrams for both themes are the same, save for the ini-
tiating method call and the name of the protocol class. We
need to produce such duplicate diagrams for a large amount of
configuration setting functionality, as both protocols provide
largely the same features. Since these themes are not cross-
cutting, there is, however, no template functionality avail-
able; hence, we must duplicate the work, which does not
scale.

To summarize, the composition of crosscutting themes
with the base themes gives us a means of abstraction, but it
does not address all our needs, and therefore, Theme falls
short in this respect.

4.6 Conclusion: Theme/UML

We found that Theme/UML does not allow us to express
any of the four types of interactions in an explicit way. At
the most, we are able to integrate support for mutex, con-
flict resolution, and reinforcement into the design. However,
this comes at the cost of obscuring the explicit relationship
between different aspects, which is likely to lead to errors
during maintenance or evolution.

Concerning scalability, basic support is provided through
the binding of crosscutting themes to multiple method calls
in base themes. This, however, does not work for base themes
and is therefore inadequate.

To conclude, as a result of the lack of interaction sup-
port, and only support for basic scalability, we consider
Theme/UML inappropriate to specify the design of the slot
machine.

5 Evaluation of WEAVR

WEAVR is an add-in extension to the Telelogic TAU (now
Rational Tau [18]) MDE tool suite used by Motorola, adding
support for AOM to their process of building telecom soft-
ware [11,13]. The extension consists in providing support
for aspect-oriented concepts: aspects, pointcut, and advice.

123

Expressing aspectual interactions in design

WEAVR is arguably the best-known industrial application of
AOM, with claimed support for interactions.

Next to a UML notation, the Motorola tool suite also uses
SDL [40] transition oriented state machines as the graphi-
cal formalism to define behavior. These state machines are
unambiguous and allow for introducing pieces of code. This
enables code generation of the complete application in C and
C++.

The WEAVR pointcut notation is based on state machines,
permitting the capture of action and transition joinpoints.
Wildcards are allowed to refer to multiple states or actions.
Advice is also expressed as state machines and is related
to the pointcuts using the bind relationship. WEAVR is an
aspect weaver: It combines an aspectual state machine with a
base state machine when there is a join point match. The tool
allows to visualize the new composed state machine so that
engineers can verify the composition for correctness before
actual code generation.

Note that although WEAVR can be used to generate the
code of the application, we do not require this, and we only
want to specify the design. Also, due to licensing issues we
were not able to use the tool for our evaluation, instead rely-
ing on published work [11–13,38]. Lastly, even though SDL
is a standard, the notation of its usage by WEAVR is not con-
sistent among all the publications. The diagrams in this text
are our best effort to produce a consistent notation, but we
are not able to guarantee their notational correctness.

5.1 Dependency

Similar to the design in Theme, shown in Sect. 4.1, we have an
interplay between the metering concern and the communica-
tion concern. The metering concern captures events regard-
ing game activity and updates the meters, while the com-
munication protocols consult data contained in these meters
when processing server requests. In Fig. 6, we show the
latter, for the G2S protocol. The action code response :=
Meters::GetCurrent() refers to data previously stored in the
Meters object by the Metering aspect (which is not included
in the figure due to the lack of space). The communication
protocols thus depend on the meters to provide correct func-
tionality. Put differently, if the Meters object is available but

Fig. 6 Part of the G2S protocol state machine depending on meters

for some reason the behavior of the metering aspect is not
executed, the data returned will be inconsistent.

To declare dependency relationships, WEAVR provides
the depends_on relationship that is used in the deploy-
ment diagrams, where aspects are applied to classes. This
relationship states that one aspect depends on another to be
able to provide the required functionality. This relationship,
however, only applies at the join point level: If AspectA
depends_on AspectB, for each shared join point the advice
of AspectB will be executed before the advice of AspectA.
Additionally, if AspectB does not match a join point matched
by AspectA, the match of this joinpoint by AspectA is silently
discarded [38]. In this way, AspectB can considered as adding
a restriction on the matching of pointcuts of AspectA.

In our case, however, the contact point between two
aspects is the existence of the Meters object, not a shared
join point. As a consequence, the depends_on relationship
does not allow us to express the required dependency. This
is as the semantics of the depends_on relationship is too
fine grained. In our case, we need to be able to express this
relation at the level of aspect deployment, e.g., state that the
deployment of AspectA implies the deployment of AspectB.
WEAVR does not provide any other dependency construct,
and we are not aware of an alternative option to relate the
state diagrams above. We are therefore unable to include the
dependency specification in the design.

5.2 Conflict

Support for conflict resolution in WEAVR is realized by
the hidden_by stereotype that is also used in the deploy-
ment diagrams. The hidden_by stereotype relates two dif-
ferent aspects that intercept the same join point. The rela-
tionship states that the aspect that is hidden does not apply in
those cases. For example, specifying AspectA hidden_by
AspectB denotes that at a join point captured by both aspects,
only the behavior of AspectB will be executed. In other
words, we can state that the presence of one aspect implies
the absence of another aspect, but again only at the level of
join points.

In our case, such conflict resolution is, however, not suf-
ficient as we are faced with aspects that conflict when active
on different join points. For example, consider Demo: When
it is active, the different protocols must return a failure mes-
sage upon a query of the server, which is a different join
point than starting a play. We require instead of a hidden_by
semantics that works at join point level, a similar semantics
at the system or aspect level; that is, the activity of Demo
should imply the inactivity of the G2S and S Protocol, or the
report of the machine as being out of service (communication
protocols have specific messages for this purpose).

Similar to the work-around for Theme we proposed in
Sect. 4.2, we can provide a design that incorporates the

123

J. Fabry et al.

Fig. 7 Mutually exclusive state machines for the setTime command. a State machine for G2S, b state machine for SCP

Fig. 8 Reinforcement for tilt error condition on G2S communication protocol. a Tilt error condition, b notification to the monitoring system

required conflict resolution behavior. Advice in WEAVR is
always around advice, and use a proceed call. As in Fig. 3,
we can specify an around advice that intercepts Meters and
the communication protocols, without performing the origi-
nal behavior of the intercepted call. This work-around conse-
quently suffers from the same drawbacks as in Sect. 4.2, most
importantly the loss of the explicit conflict specification.

5.3 Mutex

Recall that our mutual exclusion consists of the prohibition
that the same configuration item of the SM can be set by
multiple protocols. As an example, Fig. 7 shows the design
of the setTime functionality for both protocols in WEAVR. If
we would have, e.g., the first-come first-serve rule, the mutual
exclusion in this case boils down to preventing that the state
machine of Fig. 7a executes if the state machine of Fig. 7b
was previously run and vice versa. However, WEAVR does
not provide for any way in which this can be specified.

It is feasible to produce a design document that imple-
ments the mutex, but at the cost of making the explicit infor-
mation of the mutex implicit. We can manually combine the
different state machines for the different protocols such that
the mutex relation is implemented. Briefly put, for each con-
figuration action we combine the two state machines of the
different protocols into one state machine. This combined
machine contains the functionality of both protocols together

with the logic that ensures that once the item has been con-
figured by one protocol it cannot be configured by the other.

The downside of this solution is that it adds a consider-
able amount of tedious work, combining the state machines
for all configuration settings, and obscures the intent of the
design. Moreover, it produces a design where both protocols
are tightly coupled. Consequently, we consider this option
unfeasible and discard it.

5.4 Reinforcement

The design of the reinforcement from error conditions
to communication protocols is similar to the design in
Theme/UML discussed in Sect. 4.4. We have an error con-
ditions aspect that handles the different types of errors that
occur. Figure 8a shows how this aspect calls the attendant
and switches the tower lamp on, after that the system passes
to a halted state. Figure 8b shows an aspect that intercepts
the transition to the halted state and reports the error. Even
though we were able to express the desired notification of
error conditions, we have, however, not found a means to
explicitly denote the reinforcement relationship as such.

As in Sect. 4.4, the downside of this is that the explicit
reinforcement relationship has become implicit, which may
lead to inconsistencies during maintenance and evolution,
e.g., when new types of errors are added to the system. An
upside of using WEAVR is that its model simulation capabili-

123

Expressing aspectual interactions in design

ties allow for consistency checking of the composed models.
This could corroborate the whole execution path from the
occurrence of a new error condition to the final notification
to the server. However, the need for such a verification for all
types of error conditions still has to be specified in the design
document, and we are unaware of a means to express this in
WEAVR.

5.5 Scalability

State machines can grow to be complex artifacts. In our expe-
rience, this holds especially in WEAVR where they are aimed
at generating a complete model, from which it is possible to
derive the code of the final system.

Such complexity can only be mastered using tools that
help the engineer to edit, simulate, and debug the behav-
ior of the complete system. In this regard, WEAVR has a
strong point as it has been built as an add-in to Telelogic
TAU. According to Cottenier et al. [11,38], WEAVR can
use Telelogic’s infrastructure of the simulation of models.
As Telelogic TAU [18] does not natively support aspects,
WEAVR requires the weaving of the models before its exe-
cution can be simulated. This, however, further complicates
the generated models, negating the advantages of separation
of concerns when expressing the aspects separately.

On the notational side, we have observed that in our
domain the behavior of several state machines (aspectual or
not) is similar. Consider, for example, the execution of pro-
tocol commands. Essentially these state machines are iden-
tical. However, as far as we know, WEAVR does not pro-
vide any mechanism for the abstraction of similar behavior.
This makes it necessary to develop individual state machines
instead of a single one that is parameterized and instanti-
ated as needed. Note that this problem not only affects the
base system and the aspects, but also the implementation of
interaction resolution aspects, as explained in Sect. 3.2.

To summarize, tool support for WEAVR could help some-
what but has the downside that only woven code is simu-
lated, and the lack of abstraction mechanisms is an important
impediment to scalability.

5.6 Conclusion: WEAVR

We have seen that WEAVR does not allow us to explicitly
express any of the four interaction types. If we allow making
the explicit relations implicit, we can include support for
conflict resolution and mutual exclusion in the design, the
latter of which would be a large amount of tedious work.
Such implicit relations, however, come at a cost of probable
errors during maintenance or evolution.

Considering scalability, WEAVR state machines can
become large and complex, making them hard to understand.
Also, the language does not provide for any abstraction oper-

ators, which forces us to duplicate a significant amount of
almost identical state machines.

As a result of these issues, we consider WEAVR unsuited
to specify the design of a slot machine.

6 Evaluation of RAM

Reusable aspect models (RAM) [22] is an aspect-oriented
multi-view modeling approach. In multi-view modeling, the
developer describes the system being modeled from multi-
ple points of view, using the modeling notation that is most
appropriate for the part of the system being modeled. To
obtain the final model of the complete system, all the dif-
ferent views are composed into one whole. Scalability is
a significant issue in multi-view modeling, as models tend
to grow rapidly and keeping them consistent, or analyzing
the many interrelated models is difficult [22]. RAM aims to
address this scalability issue by incorporating the advanced
modularity features of aspects into a multi-view modeling
approach.

RAM models consist of a joining of a class diagram,
sequence diagrams, and state diagrams into one model, where
these diagrams may use AOM features, e.g., pointcuts and
advice in the sequence diagram. As a result of the lat-
ter, RAM is an aspect-oriented modeling technique. This
is so even though RAM is not conceived for the model-
ing of aspects, like the two modeling techniques we dis-
cussed above. Instead, the fundamental goal of RAM is the
reuse of models and the features of the language are geared
toward this. Furthermore, RAM has as a guideline that each
RAM model should be designed to be maximally reusable.
To achieve this, it should be as compact and self-contained
as possible. Ultimately, a RAM model will (ideally) be com-
posed many times to form many different applications, and
thus, the model cuts across these different applications. To
emphasize this, RAM models are called aspect models.

We wish to highlight at this point that in our experience,
RAM aspect models are initially confusing. The confusion
arises because RAM aspect models do not necessarily cross-
cut the application structure, which is what is traditionally
expected of aspects. Pointcuts and advice are not present in
all RAM aspect models, and moreover, when present, does
not necessarily crosscut the application structure. For exam-
ple, in the large majority of the pointcuts of the SM models,
pointcuts pick out just one specific method call. Thus, for
clarity of this text, we emphasize: RAM aspect models are
aspects because these models cut across different applica-
tions.

Since the reuse of models is key in RAM, multiple features
of RAM are built to facilitate such reuse. We detail them here,
and they are also highlighted in Fig. 9, which we will discuss
subsequently.

123

J. Fabry et al.

message view setDemo

alt [on]

aspect Demo extends Betting, depends on Singleton

structural view

|Singleton Machine
Instantiations:
Singleton:

target: Machine
setDemo(on)

+ setDemo(boolean on)
+ boolean isDemoOn()
+ int[] getNextOutcome()
+ setNextOutcome(int[] Symbol)

- boolean demoMode
- int [] nextOutcome
- int savedCredits

Machine

+ int[] spinReels()

RandomReels

message view determineNextOutcome
Pointcut

caller: Caller target: RandomReels
result :=

spinReels()
*

caller: Caller

Advice

alt [outcome != null]result

result :=
spinReels()

<<singleton>>
: Machine

outcome := getNextOutcome()

[else]

setNextOutcome(null)

loop [int i = 0, i < 5, i++]

target:
RandomReels

rc:
ReelConfiguration

rc := getMyRC()

result[i] :=
getPositionForSymbol(i, outcome[i])

*

+ int getPositionForSymbol(int reel, Symbol sym)

ReelConfiguration

result

savedCredits := currentCredits()

setNextOutcome(null)

credits := savedCredits

Label Model name Reuse specification

Instantiation directive

Binding of incomplete class
from the Singleton aspect

Pointcut and Advice
of the message view

message view spinReels affected by determineNextOutcome

Fig. 9 A part of the Demo aspect in RAM, where different RAM features are identified by annotations

Reuse of Other Diagrams The label of each aspect model
gives the model a name and also specifies whether this
aspect model reuses other aspect models. By reusing
another model, this aspect model either provides an
extension of the reused model, or uses that model to real-
ize part of its implementation. We give more detail in
Sect. 6.1 on the different types of reuse.

Instantiation Directives When reusing another aspect model,
classes and methods of the reused aspect model can be
bound to classes and methods of the current model. This
allows to unify different classes (or methods) from the
different diagrams into one class (or method), or to per-
form a renaming of the reused elements to avoid name
clashes.

Incomplete Classes Classes in a structural view do not need
to be complete with regard to how they ultimately will
take form in the composed application. To be more
reusable, they only need to specify what is needed for
the concern being modeled in the current aspect model,
leaving all other functionality blank. Such partially spec-
ified classes are called incomplete classes, and their name
should start with a | character to highlight that these are
meant to be unified with other classes when the model is
composed. Furthermore, incomplete classes of a model
also need to be drawn as UML template parameters on the
top right-hand side of a model. Similarly, methods can
be given a placeholder name and signature. In that case,
their name should also start with | and their class is auto-

123

Expressing aspectual interactions in design

matically an incomplete class. When the aspect model
with such classes or methods is reused, these must be
bound in instantiation directives or else they will remain
incomplete in the reusing aspect model. In a complete
composition of aspect models, i.e., the final application,
there may be no incomplete classes.

Pointcuts and Advice Sequence Diagrams in RAM may be
divided in pointcut and advice. Both of these concepts are
the classical AOP concepts of pointcut and advice, placed
in a modeling setting. The fundamental goal of the point-
cut here is to simply decouple the behavior expressed in
this aspect model from the model of where the pointcut
matches, this again to increase reuse. Note that as a con-
sequence of the presence of pointcuts and advice, aspects
in the classical AOP sense can also be expressed as RAM
models. Hence, RAM can also be used to model aspects
in the more conventional term, i.e., to model aspects as
we performed in the previous two sections.

Since RAM is arguably more dissimilar from mainstream
modeling approaches than the previous two AOM approaches
we discussed, we include an example aspect model to
describe the various features of RAM that we have used when
modeling the SM. The example is shown in Fig. 9, illustrat-
ing part of the functionality of Demo. On the top left of the
figure is the label, identifying the name of the aspect as well
as giving the reuse specifications (discussed in more detail
in the next section). This is followed by a structural view:
A standard UML class diagram describes the classes used
in this aspect. Below this, an instantiation directive specifies
that the incomplete class |Singleton, reused from the Single-
ton aspect, is unified with the Machine class. In other words,
the Machine class now contains all functionality that is spec-
ified for the |Singleton class in the Singleton aspect. Next
is a plain UML message view, named setDemo. It specifies
that when Demo is switched on, the credits of the machine
are saved, and when switched off this amount is restored. In
addition, any predetermined outcomes of spinning the reels
are erased. The other message view, determineNextOutcome,
contains a pointcut and an advice. Because of this, it is pre-
ceded by an explicit announcement of which message view
the pointcut is expected to match: the spinReels message
view (of the Betting aspect). Note that this announcement
is to be treated as additional information only, and it does
not prohibit the pointcut to match other message views. The
determineNextOutcome message view replaces the behavior
of the spinReels message view with new behavior. The result
is that if a next outcome has been set (which can only be done
in Demo mode), the reels will show this outcome when they
are spun.

After initial tests and a prolonged conversation with the
main authors of RAM, we set up a (self-funded) short
research visit to their laboratory. In this visit, we modeled

a large part of the slot machine in RAM, in collaboration
with the main authors of RAM. The diagrams were, how-
ever, not completed during this visit, and further work was
carried out subsequently. For our evaluation, we chose not to
use state diagrams, as the combination of class and sequence
diagrams already showed to be sufficiently expressive.

6.1 Dependency

At its core, RAM includes the concept of one aspect reusing
another (set of) aspect(s). This relationship can either be an
augmentation, declared by an extends annotation in the label,
or a customization, declared by a depends on annotation in
the label [5].

When an aspect E extends another aspect O, additional
structure or behavior (or both) is added to O. These additions
can be “additional, alternative, or complementary properties
to what already exists” in O [5]. The public interface of the
aspect E is the public interface of O augmented with the
public operations declared in E.

When an aspect D depends on another aspect O, the struc-
ture and behavior of O is used to realize part of the functional-
ity of D. In the customization, “a modeler alters or augments
existing base model properties to render them useful for a
new purpose” [5]. It is considered that typically D imple-
ments a higher-level functionality that uses functionality of
O. For example, a communication protocol aspect uses the
aspect defining serialization and deserialization of network
command objects. The aspect D effectively uses O and is
restricted to access only the public model elements of O.
Moreover, this use is private; the public model elements of
O are not present in the public interface of D.

The RAM definition of depends on matches exactly with
our requirement of a dependency relation. Hence in our
example, communication protocols depends on meters, in
the RAM sense. This is because the abilities of meters are
adapted such that their values can be transmitted over the net-
work. As such, RAM is the first of the three AOM method-
ologies where we can explicitly declare the dependency and,
moreover, the depends on notation is in line with the nam-
ing of this interaction as a dependency in our classification.
Figure 10 shows the design of the network aspect, declaring
explicitly depends on Metering in the label.

Figure 10 does not give the complete design for the net-
work aspect. For the sake of the example, it is restricted to the
commands that read meters. In the structural view, it shows
which classes from Metering are used, and both message
views detail how these are used. The first message view spec-
ifies that when a command is received from the network, the
corresponding SMCommand (a Command object) is created
and executed. Lastly, if the execution produces a result, this
result is sent back over the network in a separate communica-
tion. The second message view states how command that read

123

J. Fabry et al.

message view
receviedCommand

message view execute

res := execute()

value := getValueOfMeter(name)

target: |ReadMeterCommand

aspect SMNetwork extends Betting, depends on Metering, ReturningCommand

structural view

+ receivedCommand(|SMCommand com)
+ sendMessage(|Result res)

NetworkCommandExecutor

~ |Result execute()

|SMCommand

Instantiations:
ReturningCommand:
Named:

|Command<execute> |SMCommand<execute>
|Named<getName> |ReadMeterCommand<getMeterName>

receivedCommand(com)

result := execute()

opt [result != null]

com: |SMCommand

target:
NetworkCommandExecutor

sendMessage(result)

|Result

MeterRepository

~ |Result execute()

|ReadMeterCommand

+ MeterResult create(int value)

|MeterResult

name := getMeterName()

<<singleton>>
: MeterRepository

result: |MeterResult
result := create(value)

result

|SMCommand, |Result,
|ReadMeterCommand,

|MeterResult

Fig. 10 Part of the slot machine network, which depends on the meters

meters should be implemented. Note that the top right-hand
side of the diagram highlights the incomplete classes: the
|SMCommand class, the |Result class, and their subclasses,
by drawing them as UML template parameters. These classes
are partial because their actual implementation is delegated
to the network protocol that will be used (SCP or G2S).

This aspect model is, however, not without its issues. This
is because, in contrast to the typical use of depends on,
the network aspect is not a higher-level design concern than
metering. Instead both of these are at the same level, as we
have established at requirements elicitation time [36]. Con-
versely, the dependency on ReturningCommand, however, is
a typical use: It is the reliance on the implementation of net-
work commands we used as an example in the presentation
of the depends on relation. This illustrates the downside of
the dependency declaration in RAM: From the declaration,
it is unclear whether the dependency arises from functional
requirements or whether it is an implementation issue.

The inability to distinguish between functional and imple-
mentation dependencies is, in our opinion, a serious issue. In
our case study, the RAM model of the slot machine consists
of 16 aspects and depends on an additional six aspects. In

total, 20 depends on relations are declared of which only
two are functional dependencies, i.e., caused by functional
requirements. These two are effectively lost in a forest of
dependencies, and as a result, we cannot consider the use
of the depends on as a true explicitation of the dependency
relationship we require.

6.2 Conflict

RAM also includes support for managing conflicts between
different aspects, in the form of conflict resolution aspects:
aspects whose label is conflict resolution aspect (instead
of simply aspect). The sole purpose of conflict resolution
aspects is describing how the conflict needs to be resolved.
Hence, the presence of a conflict resolution aspect is an
explicit indication that there is a conflict, satisfying our
requirement for such explicit indications.

Conflict resolution aspects define what are termed “mod-
ification views” instead of the standard views [23]. These
views modify the aspects affected by the conflict, but only if
the conflict criteria condition of the conflict resolution aspect
holds. Put differently, the role of this condition is to specify

123

Expressing aspectual interactions in design

in what case the conflict is present, and the conflict resolution
aspect is automatically woven when the condition holds.

The purpose of conflict resolution aspects appears to be
resolving conflicts when there are different possible config-
urations of functionalities of the application being built. In
some configurations, the aspects which are in conflict will
not be both present, and in some configurations, they will be
present. Hence, there is a need for conflict criteria condition
to trigger automatic weaving of the conflict resolution aspect
when required. In our case, however, all configurations of
the slot machine will include the conflict between Demo and
Network, as both features are always present. This requires
us to specify a conflict criteria condition which will always
hold, which is arguably superfluous. Hence, for the defin-
ition of this conflict resolution aspect, in Fig. 11, we have
chosen not to include this criterion, assuming this means that
it always holds.

Figure 11 first shows how the slot machine should reply to
network queries when it is in demo mode. The outOfService
message view specifies that when commands are received
and demo mode is on, the command should return an out of
service result. Second, the figure shows that error messages
should not be sent over the network when the machine is
in demo mode. This as the muteErrors message view states
that in demo mode the behavior of message sending by the
NetworkCommandExecutor should be skipped.

In summary, we are able to specify conflicts using RAM
in an explicit fashion through the specification of an aspect
that provides the resolution of the conflict. For conflicts that
are always present, needing to specify a conflict criteria con-
dition is, however, arguably superfluous, so these should be
allowed to be omitted.

6.3 Mutex

The mutex interaction in our case study manifests itself when
both network protocols are present in the application. When
both protocols are present, both can execute commands that
alter the machine state, and hence, mutual exclusion between
these commands must be ensured. When the machine only
includes one protocol, there is no mutual exclusion. This
exactly matches the intent of conflict resolution aspects.
Therefore, by specifying a conflict criteria condition that
matches when both communication protocols are present, the
mutex will automatically be instantiated. Figure 12 shows the
relevant conflict criterium: when the slot machine command
can be a command of the SCP protocol as well as a command
from the G2S protocol.

The conflict resolution strategy presented in Fig. 12 is
detailed in the arbitExec message view. It consists funda-
mentally in performing a check of whether the command
may be executed, executing it if so, and returning an error
if not. The implementation of the check is implemented by

an arbitration class called Arbiter, and this class may imple-
ment the check following any of the strategies presented in
Sect. 3.2. Note that for the sake of brevity of this article, the
figure does not detail the behavior of logging the error.

We are hence able to specify the implementation of the
mutual exclusion semantics and also benefit from the auto-
matic application of the conflict resolution aspect, such that it
is only present when needed. What is, however, not present
here is the explicit semantical information of this being a
mutex. Instead, this interaction is considered as being a con-
flict. Consequently, we lose the mutex classification of this
interaction; i.e., we lose semantic information.

6.4 Reinforcement

Lastly, reinforcement can also be expressed as a conflict res-
olution aspect, hence also benefiting from the explicit nota-
tion of the interaction in the design. The reinforcement from
error conditions to communication protocols, however, is not
a true conflict resolution aspect. It is more in line with the
conflict resolution aspect of the conflict case because there
will always be at least one network protocol. Hence, the con-
flict criteria condition must always match and we omit it in
the model, presented in Fig. 13.

The conflict resolution aspect realizes the reinforcement
in the sendCritical message view. This message view extends
the normal behavior of |ReportingInterface, which is the class
that is responsible for reporting errors to the outside world,
e.g., by lighting the tower lamp of the SM. The addition to
the behavior consists in creating a result message that encap-
sulates the error and sending it over the network. Note that
the requirements for this aspect include a check that the error
condition is either sent over the network or intentionally not
treated. For brevity’s sake, this feature is not included in this
aspect model. It can be specified, e.g., by having two kinds
of error results and extending the sendCritical message view
to only send one of both kinds over the network.

So, identical to the mutex case, we are able to state that
there is a reinforcement and provide the implementation of
the reinforcement, but lose the explicit semantic information
that this interaction is of the reinforcement kind.

6.5 Scalability

Considering scalability in RAM, our first observation is actu-
ally a matter of managing the different RAM diagrams. Due
to the fine-grained and detailed nature of RAM, we quickly
reach a large number of diagrams. As mentioned before, our
modeling of a limited part of the machine already results in 16
aspects. In total, these aspects have 30 dependencies (either
through depends on or extends relationships). At least some
kind of overview diagram is required to be able to under-
stand this web of aspects and dependencies. Such depen-

123

J. Fabry et al.

message view outOfService Pointcut
caller: Caller target: Network

CommandExecutor
receivedCommand(com)

*

Advice

conflict resolution aspect Demo / SMNetwork depends on Singleton

structural view

+ |OutOfServiceResult create()

|OutOfServiceResult

caller: Caller

receivedCommand(com)

alt [demo]

<<singleton>>
: Machine

demo := isDemoOn()

[else]

result

result

result:
|OutOfServiceResult

target: Network
CommandExecutor

 result := create()

*

message view receiveCommand affected by outOfService

message view muteErrors Pointcut
caller: Caller target: Network

CommandExecutor
sendMessage(res)

*

Advice
caller: Caller

sendMessage(res)

opt [! demo]

<<singleton>>
: Machine

demo := isDemoOn()

result

result

target: Network
CommandExecutor

*

message view sendCritical, sendNormal affected by muteErrors

Instantiations:
Singleton: |Singleton<|getInstance> Machine<getMachine>

|SMCommand,|Result,
|OutOfServiceResult

+ boolean(isDemoOn)

Machine

+ receivedCommand(|SMCommand com)
+ sendMessage(|Result res)

NetworkCommandExecutor

|Result

Fig. 11 Slot machine demo network conflict resolution aspect

dency graphs are present in the publications on RAM [22,23],
but it is, however, not clear if such diagrams are considered
to be a standard notation of RAM.

The most explicit support for scalability in RAM is sup-
port for wildcards in instantiation directives. This can unify
one generic class with a family of classes providing specific
functionality. For example this can be used to bind the gen-
eral SCP network command class (SCPCommand) to all of
the concrete SCP commands. As the example shows, this fea-
ture is indeed useful in our case and does help significantly
to deal with issues of scalability. We have used it to abstract
general patterns of the design in one class that is later bound
to a collection of more specific classes.

6.6 Conclusions

Although it does not fully meet our needs, RAM has shown to
be the most adequate AOM approach for describing aspectual
interactions in the design of the SM. We were able to express

the four kinds of interactions in the design, but these are not
completely explicit.

Dependencies between different aspects could be explic-
itly declared using the depends on relationship. However,
this relation is less strict than the dependency relation-
ship we mean to communicate. As a result of this, in our
models only a select few of these declarations actually
coincide with the desired meaning. Considering conflicts,
mutex, and reinforcement, all three of these are declared
in an conflict resolution aspect. This immediately implies
defining their resolution strategy, but comes at the cost
of not differentiating between the three different kinds of
interactions.

Considering scalability, firstly RAM requires the use of
an overview diagram to be able to understand the rela-
tionships between the different aspects. Secondly, the use
of wildcards in instantiation directives does successfully
allow us to tackle scalability at the level of functionalities to
model.

123

Expressing aspectual interactions in design

conflict resolution aspect G2S / SCP depends on Map, Named, Singleton

structural view

~ Result execute()

|SMCommand
|Result

Instantiations:
Map:
Named:
Singleton:

|Key String; |Value boolean; |Data Arbiter
|Named Command
|Singleton<|getInstance> Machine<getArbiter>

~ boolean isAllowed(String s)
+ Arbiter getArbiter()

Arbiter

message view arbitExec

caller:
Caller

target:
|SMCommand

execute()

*

caller:
Caller

*

message view SMCommand.execute affectedBy arbitExec

execute()

alt [allowed]

allowed := isAllowed(name)

target:
|SMCommand

<<singleton>>
Arbiter

*

ret

ret := create ()
[else]

NotAllowed

ret: NotAllowed

name := getName()

Pointcut Advice

Conflict Criteria:
|SMCommand = SCPCommand
|SMCommand = G2SCommand

|Result

Fig. 12 Slot machine network conflict resolution aspect

conflict resolution aspect CriticalError / NormalError / SMNetwork,
depends on Singleton
structural view

|Singleton<|getInstance> NetworkCommandExecutor<getInstance>
Instantiations:
Singleton:

+ reportCritical(CriticalError err)

|ReportingInterface

message view sendCritical

caller:
Caller

target:
|ReportingInterface

reportCritical
(CriticalError err)

Pointcut

*

Advice

caller:
Caller

target:
|ReportingInterface

reportCritical
(CriticalError err)

*

CriticalError

+ sendMessage(|Result res)
+ NetworkCommandExecutor getInstance()

NetworkCommandExecutor |Result

NormalError

res: |ErrorResult

res := create(err) <<singleton>>
NetworkCommand

Executor
sendMessage(res)

message view blockMachine affectedBy sendCritical

 |Result, |ErrorResult

+ |ErrorResult create(CriticalError err)
+ |ErrorResult create(NormalError err)

|ErrorResult

Fig. 13 Slot machine network errors conflict resolution aspect

123

J. Fabry et al.

7 Discussion

We have reviewed three AOM approaches with a focus on
their ability to express the different kinds of interactions that
are present in our domain. In this section, we summarize the
strong points of the different approaches and highlight how
the different kinds of interactions are materialized in each
one. This is followed with a comparison of this work with
research on interactions in arguably closely related research:
Feature-Oriented Software Development and Software Prod-
uct Lines.

7.1 Strong points and cross-pollination

Each of the three approaches we have evaluated has its
own strong points, and there are, moreover, opportunities
for cross-pollination between the different approaches. We
now first revisit the different strong points in order to high-
light the best features of each approach in the context of the
best features of the others. This may help to choose a specific
approach depending on the circumstances of its use.

The strong points of Theme/UML are:

– The integration with an AORE approach (Theme/Doc)
makes Theme/UML relevant when aspect orientation can
already be considered at the requirements engineering
phase.

– The mapping from requirements to models is quite well
documented, facilitating this task.

– In [36], we proposed extensions to Theme/Doc in order
to support interactions. It is then possible to document
them during the requirement engineering phase so that
they can be straightforwardly used in the design phase.

The strong points of WEAVR are as follows:

– The existence of built-in interaction resolution mecha-
nisms in WEAVR indicates that joinpoint interactions
were found in its use in the telecommunication domain,
where WEAVR has its origins. It is no surprise that such
interactions were found in this domain, as similar cases
have been reported since 1988 in [17], and in a more
recent bibliography [6,28].

– The SDL aspectual machines weaver helps to check the
consistency of the generated model before code gener-
ation occurs. A composed model makes it possible to
confirm positive interactions to be there, while detecting
undesirable interactions.

– The support of WEAVR for C++ code generation is
a plus. According to the authors, Telelogic TAU (of
which WEAVR is an extension) was successfully used
for embedded telecom software.

The strong points of RAM are as follows:

– Models can be explicitly tagged to be for conflict reso-
lution; i.e., it is explicit that this model exists to resolve
issues that arise due to interactions between other models.

– The models are highly reusable, and there is a library of
models available for the modeler to incorporate.

Cross-pollination of Approaches The different approaches
we reviewed each have characteristics that could be added to
other approaches to improve them. We highlight here three
such possible cases of cross-pollination that, in our view,
would improve the different approaches:

Explicit interaction resolution tagging: Identifying mod-
els as existing for the resolution of an interaction, as in
RAM, is a significant step toward making explicit that
one of the different kinds of interactions is present.

Automatic weaving: (as in WEAVR and RAM) Automatic
weaving is useful, especially if the generated model can
be checked for interaction satisfaction (as in WEAVR).

Interaction support starting at the requirements engine-
ering phase: Integrated approaches that document inter-
actions beginning with early stages in the development
life cycle should allow for better traceability. Although
Theme/UML does not support interactions, Theme/UML
could be extended in order to take advantage of existing
extensions in Theme/Doc for interactions.

7.2 Summary: Interactions in the AOM approaches

Considering the results we obtained during the modeling
phase using the three AOM approaches, we now summarize
their support for interactions as well as the form that these
interactions and their resolutions take.

Table 1 shows how the interactions in the slot machine
domain can be expressed in each approach. For all the
approaches, it was possible to express the interaction and/or
the associated resolution mechanism in some manner. The
main problem we encountered with the different AOM
approaches is the lack of explicit support for documenting
the interactions. Considering WEAVR, it is worth mention-
ing that it does provide interaction resolution mechanisms,
yet these are aimed at join point interactions. This renders
them ineffective in our case study, which is why they are
marked as “implicit*” in the table.

Table 2 presents the form that interactions and their reso-
lution take when modeled using each approach, where:

Lang means that some built-in support in the AOM
approach is used to model interactions and their
resolution mechanism.

123

Expressing aspectual interactions in design

Table 1 Implicit and explicit
support for interactions in each
approach

Dependency Conflict Mutex Reinforcement

Theme/UML Implicit Implicit Implicit Implicit

WEAVR Implicit* Implicit* Implicit* Implicit

RAM Explicit Explicit Implicit Implicit

Table 2 Form of the interactions for each approach

Dependency Conflict Mutex Reinforcement

Theme/UML Use Artifact Artifact CC

WEAVR Use Artifact Artifact CC

RAM Lang, Use Lang, Artifact Artifact CC

Use means that one element in one concern model
uses another element as a resolution mechanism;
i.e., there is a reference to another element.

CC means that the resolution mechanism is imple-
mented as a standard crosscutting relationship of
the approach.

Artifact means that the interaction resolution is specified as
an additional artifact, e.g., a model diagram.

Note that certain interaction resolutions in Table 2 can ulti-
mately materialize themselves in a more subtle manner than
others. At implementation level, a Dependency is just a refer-
ence to another module, while Reinforcement may be imple-
mented as a crosscutting concern. This can result in them
being implicit, making more evident the need for proper doc-
umentation. Complimentarily, Mutex and Conflict require a
dedicated artifact in order to implement the resolution of the
interaction; that is, their resolution needs to be mapped to an
aspect, theme, or state machine that implements the behav-
ior needed to satisfy the interaction. In this way, although the
interaction is still implicit it is somewhat more evident.

7.3 Interactions in Feature-Oriented Software Development
and software product lines

In this section, we contrast how interactions need to be treated
in our domain with their treatment in the related research
areas of Feature- Oriented Software Development and Soft-
ware Product Lines.

7.3.1 Feature-Oriented Software Development

Feature-Oriented Software Development (FOSD) is a field of
research that encompasses feature-oriented domain analysis
(FODA), feature- oriented modeling (FOM), and feature-
oriented programming (FOP). There are, however, multi-
ple definitions of what a feature is in software engineering.
For the following discussion, we consider the definition of

Kang et al.: “a distinctively identifiable functional abstrac-
tion that must be implemented, tested, delivered, and main-
tained” [19].

Clearly, all the concerns from our case study match the def-
inition of a feature. Therefore, it is also possible to consider
the interactions we found as feature interactions [6,7,26]. In
FOSD, feature interaction refers to how features influence
each other and the feature interaction problem lies in detect-
ing, managing, and resolving interactions among features [4].

Most of the research we found considers feature interac-
tions to be roughly equivalent to what we call dependen-
cies [27,34,39]. Only some of the work on feature interac-
tions matches the aspect interaction definitions of Saenen
et al. [33] that we use to classify interactions. Notably, Met-
zger et al. [27] refine the definition of dependency interac-
tion into: requires dependency, exclusive dependency, hints
dependency, and hinders dependency. These map to depen-
dency, mutex, reinforcement, and conflict, respectively.

Some authors focus their research on the detection of such
interactions, using algebras, graphs, and other representa-
tions, but not on how to model them explicitly [7,27,30].
Complementarily, other authors approach the problem from
the code perspective. From this perspective, interactions must
be managed in order to clearly state their impact in the source
code [2,24,32].

Calder et al. [7] have reviewed interactions in the telecom-
munication domain and classified several approaches for han-
dling feature interactions in this domain. The kind of mech-
anisms for mutex and conflict that we designed falls into the
category of Feature Manager using A Priori Information.
However, these proposed solutions are intended to be used
to organize a telecom system at runtime, instead of being
oriented to work at a modeling phase.

Similar to our requirement of explicit documentation,
Silva et al. acknowledged the need for a proper documen-
tation of the interactions and dependencies between fea-
tures [34]. They propose to use a separate diagram to docu-
ment such interactions. In this spirit, it is reasonable to use
feature diagrams as a complement to an AOM approach,
allowing for the explicitation of the interaction relationships.
For example, Fig. 14 shows such a feature diagram for our
case study. However, such a diagram on its own is not suf-
ficient as not all the interactions can be expressed. Consider
the conflict between Demo and the other features: All of them
are required, and the conflict must be managed at runtime.
This cannot be denoted in the diagram.

123

J. Fabry et al.

Fig. 14 Features diagram for the slot machine domain

Finally, note that in Sect. 7.2 we concluded that interac-
tions can take different forms at design level, and therefore,
it is necessary to establish the relation between feature mod-
els and interactions and the possible realizations for them at
modeling level in the solution space.

7.3.2 Software product lines

Related to FOSD is the research on Software Product Lines
(SPL). A SPL group a set of systems that share a common
core of features. A product of a product line is specified by a
valid feature selection (a subset of the features of the product
line) [1]; that is, the production of a new system in a product
line is done by selecting a consistent set of features [31].

The goal of SPL engineering is to capitalize on common-
ality and manage variability in order to reduce the effort of
creating and maintaining a similar software systems (prod-
ucts). SPL considers the interaction problem as a building
or configuration problem, where it is necessary to consider
the interactions to pick the valid set of features for building
a given product [1].

This above approach is, however, not suitable in our case.
Even though many slot machine games can be considered as
part of a product line, this is not correct. All slot machine
games must have the same set of legally defined features.
This contradicts the idea of product in the sense that each
product in an SPL involves a different set of features.

Put differently, in our scenario there is no choice regard-
ing which features are or are not included in a build of the
system. On the contrary, all of them must always be included
as most of them derive from legal requirements. In our case,
features such as demo must be activated at runtime, and con-
flicting features must be deactivated solely when demo is
working.

8 Related work

To the best of our knowledge, there are no previous publi-
cations on the application of AOM with a focus on aspect
interactions in the context of industrial software. The most
related work is WEAVR [11,13], which we have included in
our evaluation (Sect. 5).

Wimmer et al. authored a survey of AOM approaches [35]
where concern interactions are part of the evaluation frame-
work. It shows that most of the surveyed approaches do not
provide for interaction support. Of those that do, most focus
on detection of syntactic and semantic interactions. For such
detection, typically the UML models are transformed into
graphs which are then analyzed to look for interactions. This
approach is also advocated by Ciraci et al. [9] and Mehner
et al. [25].

Analogous to the work in the aspect-oriented software
engineering community, detection of interactions in the
design phase has also been considered in the feature-oriented
programming community. For example, the work of Apel
et al. on FeatureAlloy [3] detects structural (syntactic) and
semantic dependencies as well.

The basic assumption in all the above research is that inter-
actions are unintended and arise at composition time. This,
however, does not hold in our case. The interactions may be
planned and, moreover, have already been detected during
the requirements phase [36,37]. Instead of detection of inter-
actions, we need for the design to effectively document the
decisions made to manage these interactions.

Other authors purely focus on avoiding interactions. For
example, Katz and Katz [20] describe how to build an
interference-free aspect library. In our case, however, some
interactions are required to obtain the desired behavior and
other interactions cannot be removed but should be controlled
instead. An example of the former is that communication

123

Expressing aspectual interactions in design

protocols depend on meters, and of the latter that mutual
exclusion between different protocols should be controlled.

It is interesting to note that, in our experience, the vast
majority of AOM work on interactions refers to dependencies
and conflicts, but neglects or minimizes reinforcement or
mutex. This may indicate that these types of interactions are
considered less frequent. However, they nonetheless occur in
our context, so they should be treated by the AOM approaches
as well. This is as we see no reason why the SM case would
be exceptional in the kinds of interactions that it presents.

Lastly, in the fields of Feature-Oriented Software Devel-
opment and of Software Product Lines various authors have
published work that is related to our efforts, and we have
analyzed this in Sect. 7.3.

9 Conclusions and future work

The AOSD-Europe technical report on interactions [33] clas-
sifies interactions in four types: dependency, conflict, mutex,
and reinforcement. In the slot machine software, all four
types are present, as we have established in earlier work
that analyses the requirements for these machines [36]. In
this text, we focus on the design phase of the development
process. We evaluated the abilities of three mature AOM
approaches: Theme/UML, WEAVR, and RAM to explicitly
communicate these interactions in the design. For our work,
it is key that these relations are explicit instead of implicit. If
this is not the case, it is very likely for errors to arise in later
maintenance and evolution phases. This is even more so due
to the high number of feature requirements (approximately
600), which regularly change. We therefore also require the
approach to provide some means of scalability, to abstract
over similar patterns in the design.

The somewhat surprising result of our study is that neither
Theme/UML nor WEAVR allow us to satisfactorily express
any of the four types of dependency. In addition, their sup-
port for scalability is lacking, forcing us to repeat a large
number of almost identical diagrams. These downsides are
present even though both approaches are considered mature
and accepted by the community, furthermore claiming to
have support for specific kinds of interactions. In our expe-
rience, interaction support is, however, at the wrong level of
granularity and scope to be useful to us. In both method-
ologies, the support is too fine-grained and the scope is too
restricted. Considering scalability, in both approaches this
has not received the in-depth attention required to provide
useful scalability operators to the modeler.

The good news is that RAM fares much better than the
other two approaches. Firstly, it allows us to express all four
kinds of interactions at the right level of granularity and,
moreover, specifying an interaction resolution strategy when
needed. Secondly, its support of wildcards in the instantia-
tion directives, combined with the flexibility of renaming,

does result in an adequate level of scalability support. How-
ever, where RAM falls short is that the different interactions
are not expressed in a clearly distinct fashion. Dependencies
expressed in the models can be at the level of implementation
as well as at the level of requirements. Moreover, all three
conflict, mutex, and reinforcement interactions are denoted
in the same way, losing the distinction between the three.
Hence, we consider RAM an acceptable approach at best.

The key question for future work is how we would be able
to satisfactorily express the interactions in our design. The
most straightforward solution would be to extend one of the
above methodologies such that it includes the support we
are lacking and the most likely candidate is RAM. A second
avenue for future work is further down the line in the develop-
ment process: an evaluation of implementation languages for
the slot machine. This to see how the design can be rendered
into an implementation in the most straightforward fashion.
In the same vein, an interesting research question is how
advanced features of aspect languages, e.g., dynamic deploy-
ment, can be mapped back to features in AOM approaches.
This as AOM approaches seem to ignore these language fea-
tures, which arguably can serve to simplify both design and
implementation.

Acknowledgments Many thanks go to Jörg Kienzle and his team at
McGill for fluid conversations (via e-mail and other means) to help us
with understanding RAM, receiving us at their lab, and co-modeling
some diagrams of the slot machine.

References

1. Apel, S., Batory, D., Kstner, C., Saake, G.: Feature-Oriented Soft-
ware Product Lines: Concepts and Implementation. Springer Pub-
lishing Company, Incorporated (2013)

2. Apel, S., Kästner, C.: An overview of feature-oriented software
development. J. Object Technol. 8(5), 49–84 (2009)

3. Apel, S., Scholz, W., Lengauer, C., Kästner, C.: Detecting depen-
dences and interactions in feature-oriented design. In ISSRE, pp.
161–170. IEEE Computer Society (2010)

4. Apel, S., von Rhein, A., Thüm, T., Kästner, C.: Feature-interaction
detection based on feature-based specifications. Comput. Netw.
57(12), 2399–2409 (2013)

5. Ayed, A., Kienzle, J.: Integrating protocol modelling into reusable
aspect models. In: Proceedings of the 5th ACM SIGCHI Annual
International Workshop on Behaviour Modelling—Foundations
and Applications, BMFA’13, pp. 2:1–2:12. ACM, New York, NY,
USA (2013)

6. Calder, M., Kolberg, M., Magill, E. H., Marples, D., Reiff-
Marganiec, S.: Hybrid solutions to the feature interaction problem.
In: Amyot, D., Logrippo, L. (eds.) FIW, pp. 295–312. IOS Press
(2003)

7. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Fea-
ture interaction: a critical review and considered forecast. Comput.
Netw. 41(1), 115–141 (2003)

8. Chitchyan, R., Rashid, A., Sawyer, P., Garcia, A., Alarcon, M.,
Bakker, J., Tekinerdogan, B., Clarke, S., Jackson, A.: Survey of
analysis and design approaches. Technical Report AOSD-Europe
Deliverable D11, AOSD-Europe-ULANC-9, University of Lan-
caster (2005)

123

J. Fabry et al.

9. Ciraci, S., Havinga, W., Aksit, M., Bockisch, C., van den Broek,
P.: A graph-based aspect interference detection approach for uml-
based aspect-oriented models. Trans. Asp. Oriented Softw. Dev. 7,
321–374 (2010)

10. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design.
The Theme Approach. Object Technology Series. Addison-Wesley,
Boston (2005)

11. Cottenier, T., Berg, A.V., Elrad, T.: The Motorola WEAVR: model
weaving in a large industrial context. In: Proceedings of the Inter-
national Conference on Aspect Oriented Software Development,
Industry Track (2006)

12. Cottenier, T., van den Berg, A., Elrad, T.: Stateful aspect: The case
for aspect-oriented modeling. In: Proceedings of the 10th Interna-
tional Workshop on Aspect-Oriented Modeling. ACM (2006)

13. Cottenier, T., van den Berg, A., Elrad, T.: Motorola weavr: aspect
and model-driven engineering. J. Object Technol. 6(7), 51–88
(2007)

14. Fabry, J., Zambrano, A., Gordillo, S.: Expressing aspectual interac-
tions in design: experiences in the slot machine domain. In: Whittle,
J., Clark, T., Kühne, T. (eds.) Model Driven Engineering Languages
and Systems. Lecture Notes in Computer Science, vol. 6981, pp.
93–107. Springer, Berlin/Heidelberg (2011)

15. Gaming Laboratories International. Gaming Devices in Casinos
(2007). http://www.gaminglabs.com/

16. Gaming Standard Association. Game to Server (G2S) Protocol
Specification (2008). http://www.gamingstandards.com/

17. Homayoon, S., Singh, H.: Methods of addressing the interactions of
intelligent network services with embedded switch services. IEEE
Commun. Mag. 26(12), 42–46, 70 (1988)

18. IBM: Rational TAU (2014)
19. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form:

a feature-oriented reuse method with domain-specific reference
architectures. Ann. Softw. Eng. 5, 143–168 (1998)

20. Katz, E., Katz, S.: Incremental analysis of interference among
aspects. In Clifton, C. (ed.) FOAL, pp. 29–38. ACM (2008)

21. Kellens, A., Mens, K., Brichau, J., Gybels, K.: Managing the
evolution of aspect-oriented software with model-based point-
cuts. In: European Conference on Object-Oriented Programming
(ECOOP), number 4067 in LNCS, pp. 501–525 (2006)

22. Kienzle, J., Abed, W.A., Klein, J.: Aspect-oriented multi-view
modeling. In: Proceedings of the 8th ACM International Confer-
ence on Aspect-oriented Software Development. AOSD ’09, pp.
87–98. ACM, NY, USA (2009)

23. Kienzle, J., Abed, W.A., Fleurey, F., Jazcquel, J.-M., Klein, J.:
Aspect-oriented design with reusable aspect models. In: Katz, S.,
Mezini, M., Kienzle, J. (eds.) Transactions on Aspect-Oriented
Software Development VII. Lecture Notes in Computer Science,
vol. 6210, pp. 272–320. Springer, Berlin, Heidelberg (2010)

24. Liu, J: Feature interactions and software derivatives. J. Object Tech-
nol. 4(3), 13–19 (2005). GPCE Young Researchers Workshop 2004

25. Mehner, K., Monga, M., Taentzer, G.: Interaction analysis in
aspect-oriented models. In: Requirements Engineering, 14th IEEE
International Conference, pp. 66–75. IEEE Computer Society
(2006)

26. Metzger, A., Bühne, S., Lauenroth, K., Pohl, K.: Considering fea-
ture interactions in product lines: towards the automatic derivation
of dependencies between product variants. In: Reiff-Marganiec, S.,
Ryan, M. (eds.) FIW, pp 198–216. IOS Press (2005)

27. Metzger, A., Bühne, S., Lauenroth, K., Pohl, K.: Considering fea-
ture interactions in product lines: towards the automatic derivation
of dependencies between product variants. In: Reiff-Marganiec,
S., Ryan, M. (eds) Proceedings of the 8th International Confer-
ence on Feature Interactions in Telecommunications and Software
Systems, ICFI’05 (Leicester, UK, June 28–30, 2005), Amsterdam
. IOS Press (June 2005)

28. Nakamura, M., Reiff-Marganiec, S, (eds.): Feature Interactions in
Software and Communication Systems X, International Confer-
ence on Feature Interactions in Software and Communication Sys-
tems, ICFI 2009, 11–12 June, 2009, Lisbon, Portugal. IOS Press
(2009)

29. Nevada Gaming Commission: Technical Standards For Gaming
Devices And On-Line Slot Systems (2008). http://gaming.nv.gov/
stats_regs.htm

30. Nhlabatsi, A., Laney, R., Nuseibeh, B.: Feature interaction: the
security threat from within software systems. Prog. Inform. 5, 75–
89 (2008)

31. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line
Engineering: Foundations. Principles and Techniques. Springer,
Secaucus (2005)

32. Prehofer, C.: Feature-oriented programming: a fresh look at
objects. In: ECOOP, pp. 419–443 (1997)

33. Sanen, F., Truyen, E., Win, B.D., Joosen, W., Loughran, N., Coul-
son, G., Rashid, A., Nedos, A., Jackson, A., Clarke, S.: Study
on interaction issues. Technical Report AOSD-Europe Deliver-
able D44, AOSD-Europe-KUL-7, Katholieke Universiteit Leuven
(2006)

34. Silva Filho, R.S., Redmiles, D.F.: Managing feature interaction by
documenting and enforcing dependencies in software product lines.
In: 9th International Conference on Feature Interactions in Soft-
ware and Communication Systems (ICFI’07), pp. 33–48, Greno-
ble, France, Sept 3–5 (2007)

35. Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W.,
Schwinger, W., Kapsammer, E.: A survey on UML-based aspect-
oriented design modeling. ACM Comput. Surv. 43(4), 28:1–28:33
(2011)

36. Zambrano, A., Fabry, J., Gordillo, S.: Expressing aspectual inter-
actions in requirements engineering: experiences, problems and
solutions. Sci. Comput. Program. 78(1), 65–92 (2012)

37. Zambrano, A., Fabry, J., Jacobson, G., Gordillo, S.: Expressing
aspectual interactions in requirements engineering: experiences in
the slot machine domain. In: Proceedings of the 2010 ACM Sym-
posium on Applied Computing (SAC 2010), pp. 2161–2168. ACM
Press (2010)

38. Zhang, J., Cottenier, T., van den Berg, A., Gray, J.: Aspect inter-
ference and composition in the motorola aspect-oriented model-
ing weaver. In: Workshop on Aspect-Oriented Modeling at the 9th
International Conference on Model Driven Engineering Languages
and Systems (2006)

39. Zhang, W., Mei, H., Zhao, H.: A feature-oriented approach to mod-
eling requirements dependencies. In: 2013 21st IEEE International
Requirements Engineering Conference (RE), vol. 0, pp. 273–284
(2005)

40. Z. 100: ITU. Specification and description language (SDL). In
International Telecommunication Union (2000).

Johan Fabry obtained his Ph.D.
in Computer Science from Vrije
Universiteit Brussel. He is pro-
fessor at the Computer Science
Department (DCC) of the Uni-
versity of Chile. His research
interests include Aspect-Oriented
Programming, dependencies and
interactions with aspects, Domain-
Specific Aspect Languages, and
the use of Domain-Specific Lan-
guages and advanced language
features to enhance programmer
productivity.

123

http://www.gaminglabs.com/
http://www.gamingstandards.com/
http://gaming.nv.gov/stats_regs.htm
http://gaming.nv.gov/stats_regs.htm

Expressing aspectual interactions in design

Arturo Zambrano holds a Mas-
ter in Software Engineering and
a Ph.D. in Computer Science
from Universidad Nacional de La
Plata. He is professor at Uni-
versidad Nacional de Quilmes,
Argentina. His experience in the
industry includes 7 years devel-
oping software for US gambling
market and 5 years leading the
development of software for dig-
ital tv, streaming and related
technologies. His research inter-
est lies on advanced modulariza-
tion techniques.

Silvia Gordillo received a Ph.D.
diploma from INSA-Lyon, France.
She has a M.Sc. in Software
Engineering diploma from La
Plata University, Argentina. She
is the head of the Mobile Appli-
cation Systems project at the
Laboratory for Research and
Training in Advanced Informa-
tion Systems (LIFIA) of La Plata
University. She is professor at
the School of Computer Science
of the University of La Plata,
both in undergraduate and grad-
uate courses related with Mobile
Applications.

123

	Expressing aspectual interactions in design: evaluating three AOM approaches in the slot machine domain
	Abstract
	1 Introduction
	2 Requirements for the design
	2.1 Scalability is key

	3 Design overview
	3.1 Aspects in the design
	3.2 Interactions between concerns
	3.3 Methodology of evaluation

	4 Evaluation of Theme/UML
	4.1 Dependency
	4.2 Conflict
	4.3 Mutex
	4.4 Reinforcement
	4.5 Scalability
	4.6 Conclusion: Theme/UML

	5 Evaluation of WEAVR
	5.1 Dependency
	5.2 Conflict
	5.3 Mutex
	5.4 Reinforcement
	5.5 Scalability
	5.6 Conclusion: WEAVR

	6 Evaluation of RAM
	6.1 Dependency
	6.2 Conflict
	6.3 Mutex
	6.4 Reinforcement
	6.5 Scalability
	6.6 Conclusions

	7 Discussion
	7.1 Strong points and cross-pollination
	7.2 Summary: Interactions in the AOM approaches
	7.3 Interactions in Feature-Oriented Software Development and software product lines
	7.3.1 Feature-Oriented Software Development
	7.3.2 Software product lines

	8 Related work
	9 Conclusions and future work
	Acknowledgments
	References

