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Abstract— Usage of GPU-based architectures for scientific 
computing has been steadily increasing in the last years. This new 
paradigm for both programming and execution has been applied to 
solve several classic problems much faster than using the 
conventional multiprocessor and/or multicomputer approach. 
These architectures allow an increase in performance – compared 
to conventional CPU processors – for specific types of algorithms 
that are particularly suitable for its greater number of simpler 
cores which execute one single instruction at a time, each one for 
different sets of data. Since this is still a relative new technology, 
GPU device manufacturers as well as independent researchers have 
published several experiences (success stories), best practices, and 
optimization guides to aid developers for obtaining the maximum 
program performance. However, there is still little information 
about the possible optimizations that can only be harnessed by 
analyzing the specific device’s hardware performance counters. In 
this paper, we discuss several optimizations based on hardware 
profiling and share our learned lessons about how such data can be 
used to optimize a scientific algorithm on a GPU using CUDA.  

Keywords—GPU Computing, CUDA, Hardware Counters, 
Profiling, Scientific Computing. 

I.  INTRODUCTION  
Nowadays, many scientists that rely on computational power 

to solve or simulate scientific problems are using the recent 
development of many-core technologies, such as GPGPU 
(General Purpose Computing on Graphics Processing Units) [1] 
and Intel Xeon Phi programming [2]. These architectures differ 
from the conventional complex multi-core processors in the use 
of the available transistors. While conventional CPUs dedicate 
more transistors to allow complex instructions, branch 
prediction, and instruction-level parallelism for each core, many-
core devices minimize each core’s complexity. The result is that 
GPU cores are much smaller, and many more of them can be 
allocated. The limitation is that all of its cores must execute 
exactly the same instruction. While the majority of conventional 
programs could not function properly under this architecture, 
several scientific algorithms provide an ideal scenario to harness 
the potential of this new technology. Easily divisible problems 
that require the repeated execution of a relatively simple 
procedure upon a large amount of data are particularly 

convenient to execute on a GPU. Therefore, adapting a parallel 
algorithm to be run in a GPU device can lead to important 
performance gains [3].  

Since programming algorithms on a GPU device is a 
relatively new discipline, there is still much to learn about how 
to better harness their potential. Many useful general-purpose 
guides have been available [4] [5] [6] so that the programmer 
can have a better idea of how to better tweak the algorithms for 
performance improvement. Furthermore, there are many 
publications about how to optimize specific algorithms, from 
linear algebra [7] to physics simulations [8]. Top-down 
approaches –analyzing algorithms to improve hardware’s 
performance– are extremely helpful during the first optimization 
stages of a many-core algorithm. However, very few of the 
existing material take bottom-up approach– analyzing hardware 
counters to improve the algorithm–. Using hardware profiling 
[14] tools or information that is accessible from the built-in 
hardware counters that are provided by the device could also be 
a useful way to discover new optimizations on particular 
algorithms. A hint of how much potential this may hold for 
general-purpose algorithms is given in [9]. Based on this 
potential, we set our aim on the possibility of analyzing 
optimization using hardware performance counters. 

In order to determine which optimization opportunities could 
be identified by analyzing hardware counters, we used an actual 
CUDA implementation of the N-body algorithm [10]. This 
algorithm is a CUDA adaptation of our original parallel version 
for multi-core (CPU) clusters [11]. After applying all possible 
optimizations described by classic guidelines and bibliography, 
we used a profiling tool to inspect a series of runs and try to 
obtain useful information about how are the GPU’s resources 
were being (under)utilized. Then, based on profiling results, we 
summarize which changes improved the overall performance of 
the algorithm, and analyze its possible application on other 
cases/applications. 

The rest of this article is organized as follows: Section 2 
introduces the architecture, the profiling tools, and the algorithm 
used; in Section 3, we provide an overview of the hardware 
counters we used during the experiments; the original algorithm 
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optimizations applied are explained and measured in Section 4. 
The optimizations based on hardware counter analysis explained 
in in Section 5. Results for the applied optimization are shown in 
Section 6. Finally, Section 7 includes conclusions and further 
work. 

II. ARCHITECTURE, TOOLS, AND ALGORITHM 
Since most of the paper is based on experimentation, we 

detail a) the specific architecture (from which performance event 
counters is recollected and analyzed), b) the profiling tool 
(providing access to the hardware event counters), and c) the 
specific CUDA algorithm taken as departure point. 

A. GPU Architecture  
Table I describes the GPU device used in the experiments: 

TABLE I.  NVIDIA GPU Hardware Description  

GPU Device GeForce GTX 550Ti 

CUDA Cores 192 

Capability CUDA 2.1 

DRAM 1 GB GDDR5 

Max Active Blocks 8 

Max Active Warps 48 

Max Active Threads 1536 

Max Treads/Block 1024 

Max Warps/Block 32 

Max Registers/Thread 63 

Max Registers/Block 32768 

Max SharedMemory/Block 49152 bytes 

 

The data provided in Table I about the architecture and its 
limitations are of vital importance during profiling. Knowing the 
maximum capacity for each particular aspect of the execution of 
a CUDA kernel allows knowing how much resources are being 
(under)used by the algorithm. In the next section, we will 
analyze the relation between these maximum capacities and the 
actual measures for the base algorithm. 

B. Profiling Tool 
Profiling tools provide measurements of actual resource 

usage at runtime. NVIDIA provides a CUDA Profiler [12] that 
returns specific values taken directly from the hardware 
counters. However, we chose to use NVIDIA Nsight Visual 
Studio Edition [13] because it is integrated automatically with 
the development environment and elaborates higher level 
information based on the hardware counters.  

C. CUDA Algorithm  
For our tests, we used a version of an N-body algorithm for 

CUDA [10]. This algorithm defines a set of bodies where each 
one of them is processed according to its relationship with all of 
the other bodies, therefore having O(n2) complexity. For its 
CUDA kernel execution we create as much threads as bodies in 
the simulation, and let each thread do the calculations for a 
single body. Then, several threads are grouped into blocks so 
that they are able use the available per-block shared memory as 
an explicit cache. This execution scheme is shown in Fig. 1:  

 

Fig. 1. Distribution of bodies, threads, and blocks in our N-body CUDA kernel, 
as an example for N=8 

 After the kernel is launched for execution, every thread will 
execute the following steps for its corresponding body: 

- Load a single body’s initial values from the device 
global memory. Each thread will load a different body 
based on its thread ID. 

- For each other block of bodies in the simulation: 

o Load the bodies block values from the device 
global to shared memory. 

o Calculate the force that all other bodies 
(except itself) loaded into shared memory 
impose to the loaded body. 

- Save the new values for acceleration in the body data 
back into the device global memory. 

The need of excluding the calculation of a body with itself 
demands the inclusion of an if-clause that compares both source 
and destination bodies index. If both indexes are identical, then 
the calculation is omitted.  

III. GPU HARDWARE COUNTERS OVERVIEW 

A.  Achieved Occupancy  
A set of counters is used by Nsight in order to measure how 

much the available processing capacity of the device is being 
used by a CUDA kernel. The result of the performance analysis 
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is called achieved occupancy. A high (close to 100%) achieved 
occupancy means that all GPU cores were assigned a thread 
during the execution of the kernel. Several factors could lead to 
lower achieved occupancies: 

- If the algorithm defines threads for the execution of its 
kernel with a count smaller than the maximum active 
threads (1536), then the occupancy will be limited to 
that count. 

- If a small count (e.g. 32) of threads per block is 
defined, then the maximum active blocks (8) may sum 
fewer threads than the maximum (1536). 

- Even if the maximum (1024) threads per block is used, 
the amount of maximum active blocks may be limited 
to the actual per-block memory usage limitations. This 
will be explained in the next item. 

It is important to note that a full occupancy does not imply 
the best performance. If, for example, it is necessary to reduce 
the amount of registers per thread to increase the thread per 
block count, a much more number of accesses to the device 
(slow) RAM will be needed. This means that much more time 
will be lost on memory latency, thus drastically slowing down 
the algorithm even if the occupancy reaches 100%. This is, in 
fact, the example that we will examine through the execution of 
our N-Body algorithm.   

B. Memory Usage 
Each CUDA device specifies the amount of intra-processor 

fast memory for thread-private registers. Each register is an 
instance of a variable defined within a CUDA kernel, for each 
thread. For example, if the kernel uses four private variables, 
and 1024 threads are launched simultaneously, then 4096 
registers will be used. All registers are considered as chunks of 
4-bytes memory. If the amount of total registers per thread 
exceeds the maximum, the extra registers are stored in the 
device RAM memory, which is much slower. 

Shared memory works as an L2 cache that is shared among 
all the threads within a block. Since this memory is also placed 
inside the GPU processor, it has a limited per-block capacity. 
Exceeding this capacity will result in an execution error. 

In practice, the only limitation with the memory usage to the 
achieved occupancy is the maximum amount of registers per 
block. This maximum defines how many registers can persist for 
all blocks. Therefore, if the amount of threads per block 
multiplied by the amount of registers per thread exceeds this 
number, the maximum active blocks will be reduced, therefore 
limiting occupancy.  

C. Single FLOP Count 
Nsight also provides the single FLOP count, which 

determines exactly how many single-precision floating-point 
operations are executed. This is very useful to determine the 
actual calculation demands of the algorithm, which is not 

necessarily the same as that provided by the algorithm analysis. 
Single FLOP count includes basic operations (addition, 
subtraction, multiplication, division), as well as complex 
operations (in our example, square roots). 

D. Branches and Thread Divergence 
One of the measures that can be taken directly from the 

device’s hardware counters is the amount of branches 
(conditional jumps) that each warp – the minimal group of 
threads executing the same instruction – has taken. It is 
important to reduce the amount of branches of a kernel 
executing in GPU architectures as they force all threads to 
execute as taking both paths, even if only one thread required a 
different one. Such phenomena can lead to much longer 
execution times. Therefore, it is important to measure not only 
the amount of branches reached, but also the relation of 
taken/not taken branches.   

IV. INITIAL OPTIMIZATIONS AND MEASURES 

A.  Fast Math Instructions  
The CUDA compiler allows defining optimization flags that 

reduce the complexity of their arithmetic operations. In 
particular, our algorithm uses the sqrt (square root) function to 
calculate the overall distance between to objects. This function is, 
by default, defined for double precision. Since we used single 
precision floating-point variables for each body’s position, 
velocity, and mass, such precision is not necessary. Therefore, we 
changed this instruction to the faster fsqrtf function. Besides 
operating in single-precision, this function also is an 
implementation of the CUDA fast-math library. This means that 
a little precision is sacrificed to allow for fewer operations. It can 
be seen in Fig. 2 that more than two single GFLOP were saved 
from using fsqrtf. 

 

Fig. 2. A. Single FLOP Count for sqrt(); B. Single FLOP Count for fsqrtf()  

B. If-clause Within Innermost Loops 
The N-Body algorithm requires the programmer to avoid the 

calculation of forces between a body with itself. This evaluation 
requires the existence of an if-clause to be executed on a 
quadratic per-body basis. To accomplish this, our original code 
implementation placed such clause within the innermost for-loop. 
The problem with this approach is that, since GPU devices are 
not designed to optimize divergent branch execution, this would 
mean that, for each loop execution, one thread per block would 
diverge, duplicating the total required time. To solve this 
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problem, we have defined a per-block if clause that will diverge 
only if the block index corresponds to the current one. Therefore, 
all threads within a block can always execute non-divergently. 
Fig. 3 shows the difference in branches executed and taken 
between both versions, showing a reduction of 25% in branches 
executed/taken for the per-block if compared to a per-thread 
basis.  

C. Loop Unrolling 
Another way of reducing the amount of branches per kernel 

execution is to perform compiler-assisted loop unrolling. 
Duplicating the contents of a loop before considering a 
conditional jump, halves the amount of branches executed. In our 
example, since we are using a large amount of bodies for our N-
Body simulations, both loops (internal and external) were 
unrolled as shown in Fig. 4. 

 

 

Fig. 3. A. Branches executed and taken for the per-thread if version B. 
Branches executed and taken for the per-block if version 

   

Fig. 4. Unrolled for clauses for both internal and external loops 

As a result, the total amount of branches executed was once 
again reduced, this time by a 33% as in Fig. 5. 

 

Fig. 5. A. Original branch executions B. Branch executions using loop unroll 

V. HARDWARE COUNTER-BASED OPTIMIZATIONS 
After applying all the possible classical optimizations, we 

looked for indications of additional optimization opportunities 
that could be discovered by analyzing the hardware counters. The 
actual execution of the CUDA kernel has been used in order to 
get the corresponding hardware performance counters. Following 
is a list of our most relevant findings. 

A. Occupancy vs. Memory Efficiency 

As Fig. 6 shows, the occupancy counters of our optimized 
algorithm indicate that not all the device’s parallel capability is 
being used. 

 
 

Fig. 6. Only 2 of possible 3 blocks of 512 threads were executed. 

The underlying reason for such underuse of the possible 1536 
active threads that the architecture provided was the Max 
Registers/Block limit defined by the architecture. If the actual 
value approaches this maximum, only one block can run at a 
time. Trying to allow for 3 blocks of 512 threads each, we had to 
reduce the amount of registers per thread used. Since the 
algorithm could not function with less variable declarations, we 
had to use the maxrregcount=20 (80 bytes per thread on registers 
memory) compiler flag to simulate register memory using private 
DRAM memory. Fig. 7 shows that, by reducing the amount of 
registers per thread, a bigger occupancy was reached: 

#pragma unroll 2 // Assumes an even amount of blocks
for (i = 0; i < block_count; i++) 
{ 
  ... 
       #pragma unroll 2  
        for (j = 0; j < thread_count; j++) 
     { 
              ... 
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Fig. 7. A 95% occupancy is reached by limiting the use of registers. 

Although the use of computational resources of the device 
was increased, this optimization yielded little gains in processing 
time. This is because the impact that using private DRAM instead 
of local registers memory has on the memory access latency. In 
fact, for some cases of N bodies (number of bodies), performance 
dropped due to excessive memory stalling. Therefore, we 
discarded this as an effective optimization for this algorithm. 

B. Maximizing Thread Use of Register Memory 

Another approach to optimize the use of the device resources 
is to take advantage of register memory. Since we discarded the 
maximum occupancy optimization method described above, 
there is more register memory available that we are not using for 
the only two 512-thread blocks in execution. As from Fig. 7, we 
have a 32768 registers limit; therefore, we could use 16384 
registers per block (32 per thread). This extra register space 
allowed us to process two local bodies per thread, instead of just 
one, as shown in Fig. 8. 

 

Fig. 8. Calculating two bodies per thread to maximize register memory usage 

The result of this approach, compared to the original 
optimized algorithm, for the use of register memory can be seen 
in Fig. 9.  

 

 

Fig. 9. A. Underuse of registers memory with single body per thread. B. Full 
use of registers memory by using two bodies per thread instead. 

C. Maximizing Thread Use of Shared Memory 

Since it was possible to maximize the use of registers 
memory, we sought to analyze the possibility of taking the same 
approach for shared memory. After analyzing the shared memory 
usage from the hardware counters, we obtained the values shown 
in Fig. 10. It can be seen that we are only using 16384 bytes 
(8192 bytes per block, using 2 blocks) of shared memory from 
the 49152 available.  

 

Fig. 10. A full use of registers memory can be achieved by calculating two 
bodies per thread. 

The shared memory underuse is also made evident by the 
profiler as it also shows that the maximum active blocks could be 
up to six, as for the shared memory limitations. Therefore, we 
tried to find a way to increment the usage of shared memory to 
reduce accesses to DRAM memory. To achieve this, we 
duplicated the amount of bodies to be loaded into shared memory 
as Fig. 11 shows.  

 

Fig. 11. An increase in shared memory use can be achieved by loading four 
bodies per thread. 
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Fig. 12 shows the result of this approach, doubling the shared 
memory usage (compared to that shown in Fig. 10). 

 

 

Fig. 12. The use of shared memory doubled by loading additional bodies 

VI. TESTS & RESULTS 
In order to determine how much performance gains provide 

these optimizations, we ran three different versions of our N-
Body algorithm: 

Version1 -  N-Body without optimizations 

Version2 -  N-Body with the classical optimizations 

Version3 -  N-Body with all the described optimizations 
(including those identified by the hardware performance 
counters) 

For each version, we ran tests with different values of 
N = {131072, 262144, 524288, 1048576, 2097152}. In addition, 
for each version/N combination, we ran a set of tests, taking the 
average performance value in order to rule out possible 
dispersion due to unexpected interference. The results obtained 
are shown in Fig. 13. 

 

Fig. 13. Time taken for each version for different values of N 

It can be seen from comparing the original algorithm 
(Version1) to the fully optimized algorithm (Version3) that the 
average time taken to complete a single step of simulation was 
reduced about 53%. However, this comparison does not provide 
any information as to how much the applied hardware counter-
based optimizations helped to increase performance. Therefore, 
it is necessary to determine the ratio between the initial classical 
optimizations and the hardware counter analysis-based 
optimizations within the achieved 53% increase in performance. 

To obtain this relation, we compared how time decreases from 
Version1 to Version2 and from Version2 to Version3: 

- Version1 to Version2: 171 seconds decrease (42%) 

- Version2 to Version3: 45 seconds decrease (11%) 

The results show that a potential 11% average performance 
gain could have been missing for our algorithm in case that we 
did not analyze the hardware counters in search of possible 
optimizations. Although this gain is almost four times smaller 
than the one obtained from best practices optimizations, it can be 
significant enough for large experiments, including larger values 
of N. 

VII. CONCLUSIONS 
For very large simulations and experiments for physics or 

engineering scenarios -where the execution time and numerical 
precision are generally important factors–, every possible 
optimization, although minimal, can be significant. For scientists 
developing algorithms for such experiments to be run in GPU 
processors, every possible optimization matters.  

The common and most effective practice towards optimizing 
GPU algorithms will always be analyzing the code taking into 
account the best-practices classical optimization guidelines. As 
verified in Section IV, those guidelines usually contain proven, 
thoroughly examined, effective techniques to improve the 
execution of the algorithm’s kernel in the device. However, we 
have also seen in Section V, that even more optimizations can be 
gathered from analyzing the device’s hardware counters from 
the algorithm’s execution. Analyzing those counters can provide 
an insight as to how a specific algorithm can be further 
optimized. 

In our case, the optimizations based on hardware counters 
allowed an additional time reduction of 11%. This reduction in 
time taken is small compared to the much more effective best-
practices guided optimizations (42%). Moreover, hardware 
counter-based optimizations took much more analysis effort than 
the first ones.  

Hardware counter-based optimizations could be, nonetheless, 
worth the effort. For large experiments and/or simulations that 
could take from hours to days, and make use of large hardware 
requirements, every optimization that could be done on the 
algorithm is bound to save hours and resources for the scientists 
running it. Therefore, in those cases, a thorough analysis of the 
algorithm execution looking for possible optimizations based on 
hardware counters can provide an additional value that 
overweighs the analysis’ effort.  
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