

J. Cordeiro, S. Hammoudi, and M. van Sinderen (Eds.): ICSOFT 2012, CCIS 411, pp. 140–154, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Metamodel Independence in Domain Specific Modeling
Languages

Jerónimo Irazábal1,2 and Claudia Pons1,3

1 LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Argentina
2 CONICET, Consejo Nacional de Investigaciones Científicas y Técnica, Argentina

3 UAI, Universidad Abierta Interamericana, Buenos Aires, Argentina
{jirazabal, cpons}@lifia.info.unlp.edu.ar

Abstract. Domain-specific modeling languages can simplify the development
of complex software systems by providing domain-specific abstractions for
modeling the system and its evolution in a precise but simple and concise way.
In this work we elaborate on the notion of domain specific model manipulation
language, that is to say a model manipulation language tailored to a specific
domain. In contrast to well-known model manipulation languages, such as EOL
or ATL, the language syntax and semantics are directly related to a specific
domain and/or kind of manipulation, making manipulation easier to write and
understand. Furthermore, we show how additional languages can be defined for
the same domain and we discuss about implementation alternatives achieving
complete platform-independence. We illustrate the proposal through a practical
example in the domain of workout plans.

Keywords: Model Driven Engineering, Model Transformation Language,
Domain Specific Language.

1 Introduction

Model Driven Engineering (MDE) [31]; [28]; [18] proposes a software development
process in which the key notions are models that allow engineers to precisely capture
relevant aspects of a system from a given perspective and at an appropriate level of
abstraction. Then, the automated development of a system from its corresponding
models is realized by manipulating them. Model manipulation consists of a number of
operations on the models, such as verifications, views, queries, transformations from
model to model, transformations from model to code, etc.

Models can be expressed using different languages. Unlike general-purpose
modeling languages (GPMLs), such us the UML, Domain-specific modeling
languages (DSMLs), such as the Business Process Modeling Notation (BPMN) [34],
can simplify the development of complex software systems by providing domain-
specific abstractions for modeling the system in a precise but simple and concise
way. DSMLs have a simpler syntax (few constructs focused to the particular domain)
but its semantics is much more complex (all the semantics of the particular domain is
embedded into the language).

 Metamodel Independence in Domain Specific Modeling Languages 141

In a model-driven process, software is built by constructing one or more models,
and successively manipulating them and transforming them into other models, until
reaching an executable program code. A model manipulation program is a set of
rules that together describe how a model can be checked (e.g. for consistency) and
how a model written in the source language is mapped to a model written in the target
language. Model manipulations are specified using a model manipulation language.
There are already several proposals for model manipulation specification,
implementation, and execution, which are being used by MDE practitioners [7]. The
term "model manipulation language" comprises all sorts of artificial languages used in
model manipulation development including general-purpose programming languages,
domain-specific languages (DSLs) [22], modeling and meta-modeling languages and
ontologies. Examples include languages such as the standard QVT [30]; ATL [1];
[10] and EOL [20].

These languages are specific for defining model manipulations but they are
independent of any modeling domain; so they contain complex constructs referring to
pattern matching mechanisms, control structures, etc. This can eventually
compromise the primary aims for which the DSML was built: domain focus and
conciseness. Consequently, an extra level of specialization should be achieved on
them; we can define a manipulation language specifically addressed to a given
domain, that is to say, a Domain Specific Model Manipulation Language (DSMML).
For example, we can create a language dedicated to the definition of transformations
between data-base models or a language addressed to the definition of transformations
between business process models.

In this context, when we would like to take advantage of a very specific
manipulation language we face the problem of implementing such a new language.
There exist powerful frameworks for the definition of domain specific languages,
such as Eclipse [12]; [14] and Microsoft DSL Tools [6]; [13].

In the present work we describe a proposal for defining domain specific model
manipulation languages and also we analyze a novel way to define their semantics.
Our proposal consists in using MDE tools themselves for the implementation of such
languages, which improves modularity and reuse. The article is organized as follows.
Section 2 presents the main features of our proposal to define domain specific
manipulation languages using MDE tools. Section 3 illustrates the use of the approach
to the definition of a new DSMML. Section 4 extends the example presenting an
additionalDSL for the same domain. Section 5 compares our approach with related
research and finally Section 6 presents the conclusions.

2 DSMML Semantics: Implementation Schema

Any language consists of two main elements: a syntactic notation (syntax) which is a
set of elements that can be used in the communication, together with their meaning
(semantics). The term “syntax” refers to the notation of the language. Syntactic issues
focus purely on the notational aspects of the language, completely disregarding any
meaning. On the other hand, the “semantics” assigns an unambiguous meaning to
each syntactically allowed phrase in the language. To be useful in the computer
engineering discipline, any language must come complete with rigid rules prescribing

142 J. Irazábal and C. Pons

the allowed form of a syntactically well formed program, and also with formal rules
pre scribing its semantics.

In programming language theory, semantics is the field concerned with the
rigorous mathematical study of the meaning of languages. The formal semantics of a
language is given by a mathematical structure that describes the possible
computations expressed by the language. There are many approaches to formal
semantics, among them the denotational semantics approach is one of the most
applied. According to this approach each phrase in the language is translated into a
denotation, i.e. a phrase in some other language. Denotational semantics loosely
corresponds to compilation, although the "target language" is usually a mathematical
formalism rather than another computer language. Formal semantics allows a clear
understanding of the meaning of languages but also enables the verification of
properties such as program correctness, termination, performance, equivalence
between programs, etc.

Technically, a semantic definition for a language consists of two parts a semantic
domain and a semantic mapping, denoted μ, from the syntax to the semantic domain.
In particular, our proposal consists in using a well known manipulation language as
the semantic domain for the definition of the new DSMML´s semantics. Then, the
semantic function μ is defined by a transformation written in a model-to-text
transformation language (such as MOFScript [25]). This M2T transformation takes a
program written in the DSMML as input, and generates a program written in a general
purpose manipulation language (such as EOL) as output. This schema is described in
Figure 1.

Fig. 1. Transformation scenario

The advantage of this technique is that the well-known manipulation language has
already a well-defined semantics and provides an execution environment. So, the
semantics of the new language becomes formally described and it is executable.
Additionally, the semantic definition is understandable and adaptable because it is
expressed in terms of a well-known high-level language.

3 Use Case

In this section we present a new DSMML using the proposed approach. This section
is organized as follows; first we introduce the domain, then we propose different

 Metamodel Independence in Domain Specific Modeling Languages 143

meta-models for a simplified version of the domain. Next, we present the new
DSMML trough some examples. And finally we describe the most relevant issues of
its implementation.

3.1 Workout Plan Domain

In websites related to running we frequently see tables such as the one showed in
Figure 2. Such tables describe workout plans to help people to reach their fitness
goals. The workout plan usually has a duration expressed in weeks and each day of
the week contains a list of exercises that must be done with specific requirements,
such as intensity and duration. Given that we are considering this domain just to
exemplify our approach, we will restrict its functionality by giving to the user the
possibility to specify only the time for each exercise, but without considering intensity
or complex exercises.

Fig. 2. A workout plan

As we said before, the DSMML is independent of the underlying meta-model.
That is to say, the language syntax will remain unchanged even if we use a different
but equivalent meta-model for the domain. In order to provide concrete evidence
about this feature, we will present two meta-models for this domain, which are
displayed in Figure 3 and Figure 4 respectively.

It is worth to mention that if we add or remove information from the meta-model,
the manipulation language may get affected by these changes. For example, if we add
the possibility to specify the intensity at which the exercises should be done, we might
change the language to support this new feature. This fact does not mean that the
language depends on the underlying meta-model; on the contrary the language just
depends on the available information while how that information was represented in
the meta-model is completely irrelevant.

Fig. 3. Workout Plan Meta-model, version 1

144 J. Irazábal and C. Pons

Fig. 4. Workout Plan Meta-model, version 2

3.2 WPML: A DSMML Fitting the Workout Plan Domain

In this section we introduce WPML (Workout Plan Manipulation Language). Given
the high level of abstraction of WPML we consider that the code is self-explanatory.
You can find detailed information about the language in [8]. The following WPML
code creates the model showed in Figure 2:

create plan "myplan.plan"

set title "My plan"
set weeks 4

add exercise Run
add exercise Gym

on weeks 1 and 2 {
 on days Monday and Wednesday and Friday {
 do Run as much as 50 minutes
 }
 on days Tuesday and Thursday {
 do Gym as much as 45 minutes
 }
 on days Sunday {
 do Run as much as 150% of Run on day
 Monday of week same week
 }
}
from week 3 to 4 {
 on all days {
 do Run as much as 120% of Run on day same day of week 1
 do Gym as much as 100% of Gym on day same day of week 1
 }
}

The code exhibited above generates a new model. Additionally, WPML allows us to
make changes to an existent model. Obviously, in a real situation if you have the
WPML code that generates the plan you would prefer to change the code, but this
may not always be the case, e.g. the model could be generated by a tool or another
language. So, for example, given the model presented above, suppose we would like
to increment the Running time by a 10% on the entire plan and also we would like to
establish Sunday as the recovering day (day without exercises) instead of Saturday.
The new plan is illustrated in Figure 5.

 Metamodel Independence in Domain Specific Modeling Languages 145

Fig. 5. Modified workout plan

The WPML code to make those changes on the original model could be:

use plan "myplan.plan"

on all weeks {
on all days {
 increase Run by 10%
 }
 swap Saturday and Sunday
}

3.3 WPML: Implementation

This section covers the key aspects in the implementation of WPML. The
organization of this section is as follows. First, the overall implementation schema is
showed; then the functions and operations that are defined in the specific domain are
implemented emphasizing their meta-model independence; finally, the WPML
compiler is partially presented and the compilation results for the WPML are
illustrated.

Fig. 6. DSMML implementation schema using a translational approach

Figure 6 shows an overview of the implementation schema where our domain
specific manipulation language is translated to a general purpose manipulation
language, in this case EOL. The EOL code generated from the WPML code imports a
file named “core.eol”. This file contains the implementation of all the functionality
provided by the specific manipulation language, such as setting the number of weeks
of the plan, adding exercises, setting the duration of each exercise per week, swapping
the schedule between two days, etc.

The following code is a fragment of the file “core.eol”; it uses the meta-model
showed in Figure 3:

146 J. Irazábal and C. Pons

operation Plan doExerciseOnDayOfWeek
(ex:String,amount:Integer,day:Integer,week:Integer) {
 if (amount = 0) {
 self.removeExerciseInDayOfWeek(ex,day,week);
 } else {
 self.getOrCreateRegister(ex,day,week).amount := amount;
 }
}

operation Plan increaseExerciseByPercentOnDayOfWeek
 (ex:String,percent:Integer, day:Integer,week:Integer) {
 var r : Register = self.getRegister(ex,day,week);
 if (r<>null) {
 r.amount = r.amount + r.amount * percent / 100;
 }
}

operation Plan swapDaysOnWeek
(day1:Integer,day2:Integer,week:Integer) {
 for (r:Register in self.registers){
 if (r.week = week) {
 if (r.day.value = day1) {
 r.setDay(day2);
 } else {
 if (r.day.value = day2) {
 r.setDay(day1);
 }
 }
 }
 }
 }

With the aim of showing more evidence about meta-model independence we have
also implemented the language using a different meta-model. Next we present a
fragment of the code contained in the file named “core.eol” adapted to the meta-
model showed in Figure 4.

operation Plan doExerciseOnDayOfWeek
 (ex:String,amount:Integer,day:Integer,week:Integer) {
 if (amount = 0) {
 self.removeExerciseInDayOfWeek(ex,day,week);
 } else {
 self.getOrCreateToDo(ex,day,week).amount := amount;
 }
 }

 operation Plan increaseExerciseByPercentOnDayOfWeek
 (ex:String,percent:Integer day:Integer,week:Integer) {
 var toDo : ToDo = self.getToDo(ex,day,week);

 if (toDo<>null) {
 toDo.amount = toDo.amount+toDo.amount*percent/100;

 Metamodel Independence in Domain Specific Modeling Languages 147

 }
 }

 operation Plan swapDaysOnWeek
 (d1:Integer,d2:Integer,w:Integer) {
 for (d:Day in self.getWeek(w).days) {
 if (d.day.value = d1) {
 d.setDay(d2);
 } else {
 if (d.day.value = d2) {
 d.setDay(d1);
 }
 }
 }
 }

Afterward, the compiler written with XTend [36] creates an EOL file from a WPML
file. This file imports the core.eol file and invokes its functions according to the
WPML code. The following code is a fragment of the compiler:

def compile(Manipulation m)
'''
import "../src/core.eol";
var p : Plan = getPlan();
«FOR c:m.metaChanges»
 «c.compileMetaChange»
«ENDFOR»
«FOR c:m.changes»
 «c.compileWeekChange»
«ENDFOR»
'''
…
def compileMetaChangeSetTitle(MetaChangeSetTitle c)
'''
 p.setTitle("«c.title»");
'''
…
def compileWeekChangeForAllWeeks(WeekChangeForAllWeeks c)
'''
for (w in Sequence{1..p.getWeeks()})
{
 «FOR dc:c.changes»
 «dc.compileDayChange»
 «ENDFOR»
}
'''
…
def compileDayChangeSwapDays(DayChangeSwapDays c)
'''
 p.swapDaysOnWeek(«c.day1.value»,«c.day2.value»,w);
'''

148 J. Irazábal and C. Pons

The EOL code that we show next was generated by the compiler with the WPML
code given before for the creation and manipulation of a plan respectively.

import "../src/core.eol";
var p : Plan = getPlan();

p.setTitle("My plan");
p.setWeeks(4);
p.addExercise("Run");
p.addExercise("Gym");

for (w in Sequence{ 1, 2 }) {
 for (d in Sequence{0,2,4}) {
 p.doExerciseOnDayOfWeek("Run",50,d,w);
 }
 for (d in Sequence{1,3}) {
 p.doExerciseOnDayOfWeek("Gym",45,d,w);
 }
 for (d in Sequence{6}) {
 p.doExerciseOnDayOfWeek("Run",
((p.getAmountOfExerciseOnDayOfWeek("Run",0,w))*150/100),d
,w);
 }
}
for (w in Sequence{3..4}) {
 for (d in Sequence{0..6}) {
 p.doExerciseOnDayOfWeek("Run",((p.getAmountOfExerciseOn
DayOfWeek("Run",d,1))*120/100),d,w);
 p.doExerciseOnDayOfWeek("Gym",((p.getAmountOfExerciseOn
DayOfWeek("Gym",d,1))*100/100),d,w);
 }
}

The EOL code showed next is generated by the compiler with the WPML code
showed before for the modification of a previously created plan.

import "../src/core.eol";
var p : Plan = getPlan();

for (w in Sequence{1..p.getWeeks()})
{
 for (d in Sequence{0..6}) {
 p.increaseExerciseByPercentOnDayOfWeek("Run",10,d,w);
 }
 p.swapDaysOnWeek(5,6,w);
}

4 Additional DSMML for the Workout Plan Domain

In this section we introduce a new language for the same domain, designed to define
constraints on workout plan models.

 Metamodel Independence in Domain Specific Modeling Languages 149

It's worth to mention that we can use OCL to define constraints on models.
However, given that OCL is a domain independent language, it cannot capture the
knowledge of the subjacent domain in a smooth way, thus making the task of writing
constraints harder and little intuitive. Additionally, OCL constraints are bounded to
the meta model structure.

A domain specific constraint language allows us to reduce the complexity of the
constraint expressions. Domain experts feel more comfortable using a specific
language with constructs reflecting well-known concepts, such as exercise in our
example, instead of the generic constructs provided by the OCL language.
Additionally, the DSL is metamodel independent.

This section is organized in two subsections, in the first one we introduce the new
DSL by examples and in the second we discuss about its implementation.

4.1 A DSL to Define Constraints on Workout Plan Models

As the knowledge of the domain is what gives sense to any DSL, we summarize a part
of the knowledge we have about the workout plan domain in the next paragraph:

The duration of a workout plan is given in weeks. Each week is composed by a
sequence of days. For each day, the plan establishes the point in time for each
exercise. We know about the chronological order of the activities, the different kinds
of exercises and the time required for their completion.

Based on that, we are able to create a language to define constraints on the
particular elements in the domain, such as a given day, or week or the entire plan. The
cons-traints could be as follows:
─ Duration of exercises
─ Sequence of exercises
─ Recover time
─ Relation between the different kind of exercises included in the plan

The following example specifies that the time of running shouldn’t be increased more
than a 10% per week:

use plan "myplan.plan"

on all weeks {
 ensures (minutes of Run on current week)
 lower or equal to
 110% of (minutes of Run on previous week)
}

Another constraint could be that whenever the person runs and does gym in the same
day, he/she should finish the gym session before start running

use plan "myplan.plan"

on all weeks {
 on all days {
 ensures (has done (Run and Gym) today)
 then
 (end of Gym today before start of Run today)
 }
}

150 J. Irazábal and C. Pons

It's important to remark that as the objective of this work is to present an
implementation approach to a set of DSLs for the same domain; our DSLs are
illustrative and help us to present the implementation approach of multiple DSLs on
the same domain. In the next subsection we discuss about how this new language
could be implemented using the proposed implementation schema.

4.2 Implementation of the Constraint Language

We have identified two alternatives that can be chosen to implement this additional
language. The first option and the easier to implement consists in checking the
constraints on an existent model. The second implementation alternative would be to
check the constraints every time a plan is modified. That is, check no constraint is
invalidated with the requested change. The schemas are illustrated in figures 7 and 8
respectively.

Fig. 7. Constraints checked after changes

Fig. 8. Constraints checked before changes

According to the implementation approach purposed in this work, the constraints
would be translated to a general transformation language such as EOL, ATL or in this
case OCL would be another alternative, especially when the constraints are checked
over an existent workout plan model, that is to say, when the changes were already
made to the source model.

Both implementation schemas are viable, but when all the changes in the model
can be undone without side effects, the first one is easier to implement.

5 Related Work

There are a number of features of our work that can be contrasted to previous works:

• The schema presented in this work is an evolution of the implementation
schemas presented in [16], where the first approach covered consists in writing a
transformation in a general transformation language (e.g. ATL) taking two models as

 Metamodel Independence in Domain Specific Modeling Languages 151

input, one with the model to be manipulated and the other with the statements to be
executed, and building a model as the result of applying those statements to the model
given as input; the other schema consists in a two step transformation scenario, the
first transformation (a model to text transformation) takes a model conforming the
new DSMML and translates it to a general transformation language (e.g. ATL). Then,
the generated transformation when executed on a model of the domain of interest
performs the desired changes to it. In our current work, the transformation is written
in a general transformation language (e.g. EOL) with the characteristic of being
parameterised code. This way, the statements written in the new DSMML are
translated (with a model to text transformation) to invocations to the previously
written transformations, setting the parameters according to the elements to be
manipulated. This way, the transformations are simpler and modularized.

• Abstraction and modularization of model transformations: Our approach can be
seen as a technique for abstraction and modularization in that each high level
manipulation (written in the DSMML) is associated with a lower level manipulation
(written in a more general purpose language), but the users do not need to be aware of
the details of the low level manipulations. In this sense, the works that propose
techniques to build complex transformations by composing smaller transformation
units are related to our proposal. In this category we can mention the composition
technique described in [19], the Model Bus approach [4], the modeling framework for
compound transformations defined in [25] and the module superimposition technique
[33], among others. In contrast to these works, our approach generates the composed
transformation specification in a simpler way, without introducing any explicit
composition machinery.

• Creating languages that abstract from other more abstract languages: This subject
has been intensely discussed in the literature on DSLs. For example, the MetaBorg [5]
is a transformation-based approach for the definition of embedded textual DSLs
implemented based on the Stratego framework. Similarly to our work, the MetaBorg
approach defines new concepts (comparable to our notion of an abstract language) by
mapping them to expansions in the host language (comparable to our notion of a
concrete language). Johannes shows how to develop DSLs as abstractions of other
DSLs by transferring translational approaches for textual DSLs into the domain of
modelling languages [17]. The underlying notion of an embedded DSL has been
discussed in [15]. The idea of forwarding has been introduced in [32]. An important
distinction between these works and our work is the application to the MDE field. The
AMMA framework [21] allows us to define the concrete syntax, abstract syntax, and
semantics of DSLs. In [11]; [3]; [9] the reader can analyze a number of scenarios
where the AMMA framework has been used to define the semantics of DSLs in terms
of other languages or in terms of abstract state machines (ASMs). Our proposal is
similar to the one of AMMA, but we present a novel alternative, where the language
semantics is realized as the interpretation of the DSMML into a general purpose
model manipulation language, by means of a transformation written in a M2T
transformation language.

• Concrete-syntax-based transformations: Contrary to traditional approaches to
model transformation, our approach, such as the one presented in [2], uses the
concrete syntax of a language for expressing transformation rules. The claim is that

152 J. Irazábal and C. Pons

this simplifies the development of model transformations, as transformation designers
do not need deep knowledge of the language's metamodel. In our approach, we use
the abstract DSMML with a similar purpose: users do not need to count with any
knowledge of the abstract syntax of the involved modeling languages; they just use
the simple syntax of the DSMML.

6 Conclusions

In this article we have explained the concept of domain specific model manipulation
language, that is to say model manipulation languages tailored to a specific domain.
In contrast to well-known model manipulation languages, such as EOL and ATL, the
language syntax and semantics are directly related to a specific domain and/or kind of
manipulation, making manipulation easer to write and understand.

In contrast to an approach where a general purpose model manipulation language is
used, our approach provides the following benefits: the complexity of model
manipulation programs gets reduced. A program is composed by few lines of high
expressive commands. Domain experts will feel more comfortable using a specific
language with constructs reflecting well-known concepts (such as, exercise and week
in our example); consequently it is predictable that they will be able to write more
understandable and reusable manipulation programs in a shorter time. Manipulation
developers do not need to know the intricate details of the model manipulation
languages, as these are encapsulated in the DSL constructs. This leads to a natural
separation into a language designer and a manipulation programmer role, with a
reduced learning effort for the later.

Also, we have proposed an implementation schema in which the transformation
that compiles the DSMML sentences consists of invocations to previous defined
operations written in a well known transformation language (e.g. EOL). This fact
provides several advantages: the language semantics is formally described; it is
executable; the semantics is understandable because it is written in a well-known
language; the semantics can be easily modified by adding new transformation rules or
even by radically changing the target language. Although this transformation may be
considered as a compiler, the amount of programming skills required to create it is
smaller than for creating a compiler to source code.

As an experimental example in this article we have reported the definition of a
DSMML in the domain of workout plans and we have described its implementation
using MDE tools. The experience was successful; showing the advantages of defining
DSMML for model transformations within the same language, that is to say,
transformations that locally change an existent model producing a new model that
conforms to the same metamodel.

Also we have shown the implementation approach is compatible with the addition
of new languages in the same domain. We’ve presented a new language to define
constraints on training plan models and we’ve discussed about different alternatives
for its implementation.

It is also important to take the benefits coming from the platform-independence of
the model manipulation language into account; on one hand the language is
independent of the underlying metamodel and on the other hand we are able to

 Metamodel Independence in Domain Specific Modeling Languages 153

transform and execute the manipulation programs onto different model manipulation
platforms, in the examples we have used EOL and ATL, but any other manipulation
language can be used.

References

1. ATLAS MegaModel Management (2006), http://www.eclipse.org/gmt/am3/
2. Baar, T., Whittle, J.: On the Usage of Concrete Syntax in Model Transformation Rules. In:

Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 84–97. Springer,
Heidelberg (2007)

3. Barbero, M., Bézivin, J., Jouault, F.: Building a DSL for Interactive TV Applications with
AMMA. In: Proceedings of the TOOLS Europe 2007 Workshop on Model-Driven
Development Tool Implementers Forum, Zurich, Switzerland (2007)

4. Blanc, X., Gervais, M., Lamari, M., Sriplakich, P.: Towards an integrated transformation
environment (ITE) for model driven development (MDD). In: Proceedings of the 8th
World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2004), USA
(2004)

5. Bravenboer, M., Visser, E.: Concrete syntax for objects: Domain-specific language
embedding and assimilation without restrictions. In: OOPSLA 2004: Proceedings of the
19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 365–383. ACM Press (2004)

6. Steve, C., Jones, G., Kent, S., Wills, A.C.: Domain-Specific Development with Visual
Studio DSL Tools. Addison-Wesley Professional (2007) ISBN 0321398203

7. Czarnecki, H.: Feature-based survey of model transformation approaches. IBM System
Journal 45(3) (2006)

8. DSMML (2011), http://www.lifia.info.unlp.edu.ar/eclipse/DSMML/
9. Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending AMMA for

Supporting Dynamic Semantics Specifications of DSLs (2009), http://hal.
ccsd.cnrs.fr/docs/00/06/61/21/PDF/rr0602.pdf

10. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

11. Frédéric, J., Bézivin, J., Consel, C., Kurtev, I., Latry, F.: Building DSLs with AMMA/ATL, a
Case Study on SPL and CPL Telephony Languages. In: Proceedings of the First ECOOP
Workshop on Domain-Specific Program Development, Nantes, France (2006)

12. GME (2006), http://www.isis.vanderbilt.edu/Projects/gme
13. Greenfield, J., Short, K., Cook, S., Kent, S., Crupi, J.: Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools, 1st edn. Wiley (2004)
14. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.

Addison-Wesley Professional (2009) ISBN: 0-321-53407-7
15. Hudak, P.: Modular domain specific languages and tools. In: ICSR 1998: Proceedings of

the 5th International Conference on Software Reuse, Victoria, B.C., Canada, pp. 134–142.
IEEE Computer Society Press (June 1998)

16. Irazábal, J., Pons, C., Neil, C.: Model transformation as a mechanism for the
implementation of domain specific transformation languages. SADIO Electronic Journal
of Informatics and Operations Research 9(1) (2010)

17. Johannes, J., Zschaler, S., Fernández, M.A., Castillo, A., Kolovos, D.S., Paige, R.F.:
Abstracting Complex Languages through Transformation and Composition. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 546–550. Springer, Heidelberg (2009)

154 J. Irazábal and C. Pons

18. Kleppe, A.G., Jos, W., Bast, W.: MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

19. Kleppe, A.: MCC: A Model Transformation Environment. In: Rensink, A., Warmer, J.
(eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 173–187. Springer, Heidelberg (2006)

20. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

21. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL frameworks. In:
Companion to the 21st ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications, pp. 602–616. ACM Press (2006) ISBN 1-59593-
491-X

22. Marjan, M., Jan, H., Sloane Anthony, M.: When and how to develop domain specific
languages. ACM Computing Surveys 37(4), 316–344 (2005)

23. Meta Object Facility (MOF) 2.0 (2003), http://www.omg.org
24. OCL (2006), http://www.omg.org/spec/OCL/2.0
25. Oldevik, J.: Transformation Composition Modeling Framework. In: Kutvonen, L.,

Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 108–114. Springer, Heidelberg
(2005)

26. Jon, O.: MOFScript User Guide (2006),
http://www.eclipse.org/gmt/mofscript/doc/
MOFScript-User-Guide.pdf

27. OMG (2011), http://www.omg.org
28. Claudia, P., Roxana, G., Gabriela, P.: Model Driven Software De velopment. Concepts and

practical application. EDUNLP and McGraw-Hill Education, Buenos Aires, Agentina
(2010)

29. Claudia, P., Jerónimo, I., Roxana, G., Gabriela, P.: On the semantics of domain specific
transformation languages: implementation issues. Software Engineering: Methods,
Modeling, and Teaching, ch. 13 (2011) ISBN: 9789588692326

30. QVT Adopted Specification 2.0. (2005), http://www.omg.org
31. Stahl, T., Völter, M.: Model-Driven Software Development. John Wiley & Sons, Ltd.,

Chichester (2006)
32. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in attribute

grammars for modular language design. In: Nigel Horspool, R. (ed.) CC 2002. LNCS,
vol. 2304, pp. 128–142. Springer, Heidelberg (2002)

33. Wagelaar, D.: Composition Techniques for Rule-based Model Transformation Languages.
In: Procs. of ICMT2008 – Conference on Model Transformation, Zurich, Switzerland
(2008)

34. Mathias, W.: Business Process Management: Concepts, Languages, Architectures, pp.
3–67. Springer (2008) ISBN 978-3-540-73521-2

35. XTend (2011), http://www.eclipse.org/Xtext/#xtend2
36. XText (2011), http://www.eclipse.org/Xtext/

	Metamodel Independence in Domain Specific Modeling Languages
	1 Introduction
	2 DSMML Semantics: Implementation Schema
	3 Use Case
	3.1 Workout Plan Domain
	3.2 WPML: A DSMML Fitting the Workout Plan Domain
	3.3 WPML: Implementation

	4 Additional DSMML for the Workout Plan Domain
	4.1 A DSL to Define Constraints on Workout Plan Models
	4.2 Implementation of the Constraint Language

	5 Related Work
	6 Conclusions
	References

