
Language Extended Lexicon Points:
Estimating the Size of an Application using Its Language

Leandro Antonelli

Lifia, Fac. de Informática
UNLP, Bs As, Argentina

lanto@lifia.info.unlp.edu.ar

Gustavo Rossi

Lifia, Fac. de Informática
UNLP, Bs As, Argentina

gustavo@lifia.info.unlp.edu.ar

Julio Cesar Sampaio

do Prado Leite

Dep. Informática
PUC-Rio, Gávea, RJ, Brasil

julio@inf.puc-rio.br

Alejandro Oliveros

INTEC
UADE, Bs As, Argentina

oliveros@gmail.com

Abstract—Estimating the size of a software system is a

critical task due to the implications the estimation has in the

management of the development project. There are some

widely accepted estimation techniques: Function Points, Use

Case Points and Cosmic Points, but these techniques can only

be applied after the availability of a requirements specification.

In this paper, we propose an approach to estimate the size of an

application previous to its requirements specification by using

the application language itself, captured by the Language

Extended Lexicon (LEL). Our approach is based on Use Case

Points and on a technique which derives Use Cases from the

LEL. The proposed approach provides a measure of the

application’s size earlier than the usual techniques, thus

reducing the effort needed to apply them. An initial experiment

was conducted to evaluate the proposal.

Index Terms—Requirements specifications, Domain Analysis,

Language Extended Lexicon, Use Case Points, Software Sizing.

I. INTRODUCTION

Estimating the size of a software system is a critical task
since this estimation is used to plan the software system
construction. Function Points [2], Cosmic Points [12] and
Use Case Points [18] are three widely accepted estimation
techniques. Function Points allow us to estimate the size of
an application from the decomposition of the application into
basic functions and files. Cosmic Points analyze functions
that input, store, retrieve and output data. Use Case Points
(UCP) rely on Use Cases (UC) to estimate the software size.
Though these techniques have been widely used in practice,
they are being adjusted continuously [17] [10] [19] [24] [12].

In order to apply any of these techniques, we need to

elicit requirements to gain a deep understanding of the

application, so that we can identify functions or Use Cases,

then write them and afterwards perform the counts. These

techniques can only be applied after requirements elicitation,

analysis, and specification have been carried out. But,

generally, projects are agreed upon previously to the

existence of a full requirements specification.

Thus, we need an approach which can estimate the size of

the software at a very early stage and obtain an objective

measure, i.e., we need an approach which allows the project

manager to obtain a preliminary estimation with low effort

in order to use this information to sign a contract.

In this paper, we propose an approach to estimate the size

of an application prior to requirements specification. We use

the Language Extended Lexicon (LEL) [21] to capture the

application language and we analyze it to estimate the

application’s size. In previous works it has been shown that

it is possible to identify ontologies [9], crosscutting concerns

[5] and requirements [4] from the LEL. Use Cases can be

derived from the LEL [4] and Use Case Points can be

applied to these Use Cases [18]. Thus, inspired by Use Case

Points and considering Use Case derivation from the LEL,

we set out to develop the proposed strategy. Our approach

analyzes the LEL in much the same way as Use Case Points

analyze Use Cases, considering the correlation between the

LEL and Use Cases in terms of the derivation strategy

proposed in [4]. It is important to mention that although

LEL points strategy is similar to Use Case Points, our

approach can be used at an earlier stage than Use Case

Points, since it is applied directly to the LEL and no

derivation or writing of Uses Cases is needed.

People who regularly use the LEL will benefit from this

approach. Once they have built a LEL, they need to elicit

requirements and analyze them, and they may capture this

knowledge in the previously built LEL. Then, they can

apply our approach with the refined LEL in order to obtain a

measure of the application that the LEL describes. Thus,

they do not need to produce a requirements specification to

apply a traditional technique to estimate its size.

We propose a technique to obtain a measure of the LEL

similar to the measure of Unadjusted Use Case Points

(UUCP) from the Use Cases. That is, a measure of the

functionality of the application. This is possible since the

LEL captures the language of the application and some of

the expressions captured will be verbs. These verbs are

further related to Use Cases [4]. Thus, we claim that the size

of the LEL (which we refer to as ULELP) could be used

instead of UUCP in the estimation with Use Case Point

techniques. We performed a case study to show the

applicability of our approach and we carried out an

experiment in order to verify its effectiveness. The rest of

the paper is organized in the following way. Section 2

presents the background necessary to understand the

approach. Section 3 describes the estimation approach.

Section 4 provides an example. Section 5 shows a case

study. Section 6 presents the evaluation process. Section 7

978-1-4799-3033-3/14/$31.00 c© 2014 IEEE RE 2014, Karlskrona, Sweden263

describes related works. Finally, section 8 brings forward

some conclusions and future works.

II. BACKGROUND

This section presents the Language Extended Lexicon,

the technique we use to model the application and from

which we measure its size. The Use Case Point technique is

also presented here, as the approach we propose is based on

it.

A. Language Extended Lexicon (LEL)

LEL [21] is a glossary whose goal is to record the definition
of terms that belong to a domain. It is tied to a simple idea:
understand the language of a problem, without worrying

about the problem.

Terms (symbols) are defined through two attributes:

notion and behavioural responses. Notion describes the

intrinsic and substantial characteristics of the symbol

(denotation), while behavioral responses (connotation)

describe the link between the term being described and

others.

There are two principles that must be followed while

describing symbols: the circularity principle (also called

closure principle) and the minimal vocabulary principle. The

circularity principle states that the use of LEL symbols must

be maximized when describing a new symbol. The minimal

vocabulary principle states that the use of words that are

external to the Lexicon must be minimized. These principles

are vitally important in order to obtain a self-contained and

highly connected LEL. Connections among symbols

determine that the LEL can be viewed as a graph.

Each symbol of the LEL belongs to one of four

categories: subject, object, verb and state. This

categorization guides and assists the requirements engineer

with the description of attributes. Table 1 shows each

category with its characteristics and how to describe them.

TABLE 1. LEL CATEGORIES.

Category Characteristics Notion Behavioral responses

Subject
Active elements
which perform actions

Characteristics or
condition that
subject satisfies

Actions that subject
performs

Object
Passive elements on
which subjects
perform actions

Characteristics or
attributes that
object has

Actions that are
performed on object

Verb
Actions that subjects
perform on objects

Goal that verb
pursues

Steps needed to
complete the action

State
Situations which
subjects and objects
can be in

Situation
represented

Actions that must be
performed to change
into another state

Some examples of LEL symbols are presented here. The

classic bank application is used to show symbols from each

category. The example consists in a bank which allows its

clients to open and close accounts. If the account is activated

(open) the client can deposit or withdraw money and consult

the balance. The bank can also perform a cash audit.

It is important to mention that in the written descriptions
we underline the terms which correspond with other defined
symbols in order to show the application of the circularity
principle. The following examples are: subject client in
Figure 1; object account in Figure 2; verb withdraw in
Figure 3; and state activated in Figure 4.

Fig. 1. Client symbol description.

Fig. 2. Account symbol description.

Fig. 3. Withdraw symbol description.

Fig. 4. Activated symbol description

.

State: Activated
Notion
Situation where the client is ready to use an open account.
Behavioral responses

The client can close the account and he will have a

closed account.

Verbs: withdraw
Notion
Act of taking money from the account.
Behavioral responses
The bank must check that the account has enough money to
perform the withdrawal.
The bank must check that the owner of the account has not
withdrawn more times than the limit allows.
The bank must check that the owner of the account doesn’t
have any credit card debts.
The bank reduces the balance of the account according to the
amount withdrawn.

Object: account
Notion
The account has a balance.
Behavioral responses
The client can open an account.
The client can deposit money into his account.
The client can withdraw money from his account.
The client can consult his account balance.
The bank performs a cash audit.

The client can close an account.

Subject: client
Notion
Person that operates an account.
Behavioral responses

The client can open an account.
The client can deposit money into his account.
The client can withdraw money from his account.
The client can consult his account balance.
The client can close an account.

264

B. Use Case Points (UCP)

The Use Case Point method is a software sizing and
measurement that uses Use Case Documents and is based on
[18]. This work is an adaptation of that done by Allen
Albrecht on function points [2].

UCP states that the time to construct the application is

affected by:

(i) The number and complexity of Use Cases.

(ii) The number and complexity of actors.

(iii) The technical requirements of the application, such as

concurrency, security and performance.

(iv) Various environmental factors such as the development

team’s experience and knowledge.

UCP analyzes Use Case scenarios, actors and various

technical and environmental factors:

(i) Unadjusted Use Case Points (UUCP). This value includes

complexity of the Use Cases and the actors.

(ii) Productivity Factor (PF).

(iii) Technical Complexity Factor (TCF).

(iv) Environment Complexity Factor (ECF).

All these factors are combined in the following equation:

ECFTCPPFUUCPUCP ***=

Fig. 5. Use Case Points equation.

1) Unadjusted Use Case Points (UUCP). Unadjusted Use

Case Points are calculated based on two values:

(i) The Unadjusted Use Case Weight (UUCW) based on the

classes, database entities, and the total number of activities

(or steps) contained in all the Use Case Scenarios.

(ii) The Unadjusted Actor Weight (UAW) based on the

combined complexity of all the Use Cases Actors.

2) Unadjusted Use Case Weight (UUCW). Individual use

cases are categorized as Simple, Average or Complex, and

weighed mainly depending on the classes, database entities,

and the number of steps they contain. Table 2 summarizes

the characteristics.

TABLE 2. USE CASES RANKS.

Use Case Type Description Weight

Simple It is a simple user interface and accesses only a
single database entity; its success scenario has 3
steps or less; its implementation involves less than 5
classes.

5

Average It involves more interface design and accesses 2
database entities; between 4 and 7 steps; its
implementation involves between 5 and 10 classes.

10

Complex It involves a complex user interface or processing
and accesses 3 or more database entities; over seven
steps; its implementation involves more than 10
classes.

15

3) Unadjusted Actor Weight (UAW).Actors are classified as

Simple, Average or Complex in relation to the external

interface they represent in the software system. Human

interacting through graphical user interface represents the

Complex level, while another software system which

interacts through an API is the Simple rank. Table 3

summarizes the characteristics of the actors.

TABLE 3. ACTOR RANKS.

Actor Type Description Weight

Simple Another system through an API. 1

Average Another system through a protocol. A person through
a text-based user interface

2

Complex A person through a graphical user interface 3

4) Productivity Factor. The Productivity Factor (PF) is a

ratio of the number of man hours per Use Case Point based

on past projects. If no historical data has been collected, a

figure between 15 and 30 is suggested by industry experts.

A typical value is 20.

5) Technical Complexity Factors. Thirteen standard

technical factors exist to estimate the impact on productivity

that various technical issues have in an application. Each

factor is weighed according to its relative impact. A weight

of 0 indicates that the factor is irrelevant, while value 5

means that the factor has the most impact.

6) Environmental Complexity Factors. Eight environmental

complexity factors are defined and they must be weighed in

a similar way as technical complexity factors. According to

Ribu [26], environmental factors play a very important role

in the estimation. A slight variation will increase the Use

Case Point by a very drastic amount.

III. OUR APPROACH

The counting scheme proposed must be applied to a LEL
which describes symbols of a specific application. It is
important to mention that the LEL must not describe an
application domain language which can give origin to several
different applications; instead, the LEL must describe a
specific application. Thus, before performing the counting
scheme, the application domain LEL must be refined into a
specific application LEL, for example by removing the verb
symbols which will not be developed as functionality.

The counting scheme proposed is based on the Use Case

Points estimation technique. Since Use Cases can be derived

from the LEL [4], we designed a counting scheme that uses

the same calculations performed in Use Case Points, but the

calculations are performed in the LEL using the relationship

in the information from both models. It is worth mentioning

that the measure calculated with this approach is equivalent

to Unadjusted Use Case Points (UUCP), which we refer to

as Unadjusted LEL Points (ULELP). This measure includes

Unadjusted Verbs Weight (UVW) and Unadjusted Subject

Weight (USW) which are equivalent to Unadjusted Use

Case Weight (UUCW) and Unadjusted Actor Weight

(UAW). Our approach does not consider measures

265

equivalent to: (i) Productivity Factor, (ii) Technical

Complexity Factors and (iii) Environmental Complexity

Factors. Since ULELP is based on UUCP and considering

that (i), (ii) and (iii) do not depend on functionality

described by Use Cases, occasionally the UCP framework

for (i), (ii) and (iii) can be used with ULELP. The rest of the

section describes how to calculate USW and UVW.

A. Unadjusted Subject Weight (USW)

The measure of UAW in UCP consists in analyzing the
actors who use the application. These actors are modeled as
symbols of the subject category in LEL descriptions
according to [4]. Thus, subject symbols must be ranked in a
similar way as actors of UCP are ranked.

TABLE 4. SUBJECT RANKS.

Subject Type Description Weight

Simple Another system through an API. 1

Average Another system through a protocol. A person
through a text-based user interface

2

Complex A person through a graphical user interface 3

B. Unadjusted Verb Weight (UVW)

The measurement of UUCW in UCP consists in
analyzing the following characteristics for each piece of
functionality (UC): (i) user interface, (ii) access to database
entity, (iii) number of steps in the success scenario and (iv)
number of classes that involve its implementation. Most of
this information is also present in the LEL according to [4].

Although a LEL models the language of an application,

we must consider that the language corresponds to a specific

application, thus we must analyze the user interface in the

same way as it is analyzed in UCP.

The UC has a description of the main success scenario. In

verb symbols, this description is given in their behavioural

responses. Therefore, the number of steps is counted

according to the number of steps in behavioural responses.

Database entities and classes must be analyzed from this

attribute.

Since a LEL describes the language of the application, it

does not explicitly mention database entities or classes.

Nevertheless, the LEL considers symbols of the object and

subject categories, which are related to database entities and

classes. Wirfs-Brock et al. [30] also make this connection

when they relate nouns to objects. Then, in an Object

Oriented application, some objects will be persisted into a

database, thus, they can be considered database entities.

In general, every object symbol of the LEL can be

considered a database entity in UCP. But as the LEL is very

detailed, it can have descriptions of object symbols which

are not commonly described in UC, and they will only

appear in a detailed Entity Relationship model as attributes

instead of entities. Thus, symbols of the object category and

with a low level of detail must not be considered.

Additionally, symbols of the subject category which are

used passively must be taken into account. Although they

are subjects, if they are used passively as objects they must

be considered objects too.

The last element to count in UC is the number of classes

that involve its implementation. In the LEL description,

subject symbols are candidates to be implemented as classes

because they are active elements which perform actions (this

is the definition of a class). Nevertheless, we must also

consider objects and count them when they perform actions

too.

Finally, Table 5 describes how to rank verb symbols.

TABLE 5. VERBS RANK.

Verb Type UI Objects Steps Subjects Weight

Simple Simple 1 <=3 <=4 5

Average Average 2 4-7 5-10 10

Complex Complex >2 >7 >10 15

IV. AN EXAMPLE

In this section we show how to apply the strategy
proposed. We use an example from a small application
extracted from a Human Resources Management system. We
describe how to rank and measure three verb symbols in
order to exemplify the strategy. Although the example is very
small, it depicts the three situations that can be encountered
when applying the counting strategy.

The rest of the section is organized in the following way.

First, a description of the application is given. Then, the

symbols of the LEL identified from the application are

shown. Finally, subject and verb symbols are described and

analyzed according to the strategy proposed so as to rank

them.

A. The Application

The software application’s goal is to manage vacation
periods for the employees of a company. Employees have a
certain number of vacation days per year. This number
depends on how many years the employee has been working
for the company. When the employee requests a vacation
period, the request needs two authorizations to become
effective. First of all, the Human Resources Department must
verify that the employee is not requesting more days than
those he is allowed to take. After that, the employee’s
manager must analyze the project schedule in order to
determine whether or not the employee’s presence is
essential at work in the vacation period he has requested.

B. LEL

The symbols identified from the vacation management
application are summarized in Table 6.

266

TABLE 6. LEL SYMBOLS OF VACATION APPLICATION.

Subjects Objects Verbs States

Employee Vacation
Request

Request
vacation

New

Human
Resources
Department

Period Verify request Verified

Manager Analyze
request

Analyzed

 Approved

 Rejected

C. Ranking of Elements

ULELP is calculated from USW and UVW. There are 3
subjects in the example: employee, human resources

department, and manager. We can consider that the
application will have a graphical user interface. Thus, each
subject is considered complex and its weight is 3. So, there
are 3 subjects with a weight of 3 each. Therefore, USW is 9.

In the following paragraphs we describe each verb
symbol and also analyze steps, objects and subjects in order
to rank them. In general, all the user interfaces are simple, so
they are not mentioned. The first verb symbol is request

vacation, which is described in Figure 6.

Fig. 6. Request vacation symbol description.

The strategy demands to analyze three variables in order

to rank the symbol: (i) number of steps, (ii) number of

objects and (iii) number of subjects. All of them are related

to behavioural responses. The number of steps in the

behavioral responses is two, shown in each sentence.

Although the number of objects in the behavioural responses

is also two (period and vacation request), we must consider

only one object: vacation request, because period would

actually be an attribute of vacation request, and would

therefore not be an object, so it must not be taken into

account. Finally, the number of subjects is two: employee

and Human Resources Department. According to these

variables, the verb symbol request vacation must be ranked

as a simple verb. Table 7 summarizes this information.

TABLE 7. RANKING OF THE REQUEST VACATION SYMBOL

Verb Type UI Objects Steps Subjects Weight

Simple Simple 1 2 2 5

The following verb symbol to analyze is verify request,

which is described in the Figure 7.
The number of steps is three, because there are three

sentences in the behavioral responses. The number of
objects in the behavioral responses is one (vacation request),
but we must count one more object. Although employee is a
subject symbol, it is used as an object, so two objects must
be counted. Finally, the number of subjects is two: Human
Resources Department and employee. Although three
variables are in simple rank, there is one variable in average
rank.

Fig. 7. Verify request symbol description.

Using the same criteria as with UCP, the verb symbol:

verify request must be ranked as an average verb because

one variable (objects) is ranked as average. Table 8

summarizes this information.

TABLE 8. RANKING OF THE VERIFY REQUEST SYMBOL

Verb Type UI Objects Steps Subjects Weight

Simple Simple 3 2

Average 2 10

The last verb symbol to analyze is: analyze request. It is

described in Figure 8. The number of steps in behavioural

responses is one. Although the manager needs to do some

comparison with the project schedule, the contrast he must

do is beyond the scope of the application; this is the reason

why the symbol contrast is not defined and there are no

more steps in describing the constraint. The number of

objects is one: vacation request. The schedule tasks are

mentioned, but they are beyond the scope of the application,

too. Finally, the number of subjects is one: Manager.

According to these variables, the verb symbol analyze

request must be ranked as a simple verb. It is important to

mention that the application only needs to make it possible

for the manager to accept or reject the vacation request.

This functionality is very easy to implement, so ranking it as

simple makes sense. Table 9 summarizes this information.

Verb: verify request
Notion
Act of verifying that the number of days requested by the
employee does not exceed the days allowed to him.
Behavioral responses
Human Resources Department identifies the number of days
that the employee can take.
Human Resources Department calculates the number of days
that the employee has already taken, if any.

Human Resources Department checks that the number
of days in his vacation request do not exceed the
number of remaining days allowed.

Verb: request vacation
Notion
Act of asking for permission to take some days off work
Behavioral responses

The employee defines the time period
Human Resources Department records the vacation request

267

Fig. 8. Analyze request symbol description.

TABLE 9. RANKING OF THE ANALYZE REQUEST SYMBOL

Verb Type UI Objects Steps Subjects Weight

Simple Simple 1 1 1 5

Summing up, USW is 3+3+3, and UVW is 5+10+5.

Thus, ULELP is USW + UVW, that is, 29. This value could

be used instead of UUCP in UCP. Adding the Technical

Complexity Factor (TCF), the Environment Complexity

Factor (ECF) and the Productivity Factor (PF), an effort

estimation in man hours could be reached.

V. CASE STUDY

In order to verify and show the applicability of the

approach, we applied the counting strategy to a real software

system. The system is an open government platform which

integrates different tools: a social network, a content

repository, instant messaging, voice over IP communication,

and many others. Some of the tools were developed by us

while others were open source software. The development

began in 2010 and nowadays there are 22 team members

who play different roles: leaders, architects, analysts, testers,

UX designers, and developers.

We built the LEL with the knowledge gathered from

being part of the team and we also consulted a document in

order to validate the completeness of the LEL. The vision

and scope document was used. This document describes the

boundaries and features of the system, but it does not

describe the requirements. It is worth mentioning that we

use this document because the focus of the case study is to

verify the counting strategy and not to assure completeness

of the LEL. The analyst needs to elicit and analyze

requirements to refine the LEL. This activity can be done

either interacting with a stakeholder or using the vision and

scope document as we did for this case study. Moreover, we

need a LEL and Use Cases that represent the same system in

order to compare their measures, thus we need to ensure that

both models represent the same functionality.

We identified a total of 234 symbols. The number of

symbols from each category is shown in Table 10.

All of the subjects correspond to people using the system

through a graphical user interface. Thus, they are ranked as

complex. Each of the 8 subjects has a weight of 3, so USW

is 8 * 3 = 24. Then, verbs are ranked according to Table 11.

TABLE 10. NUMBER OF SYMBOLS FOR EACH CATEGORY OF THE SOCIAL

NETWORK SYSTEM

Category Symbols

Subjects 8

Objects 26

Verbs 170

States 30

TABLE 11. VERBS RANK.

Verb Type Number

Simple 140

Average 23

Complex 7

Thus, UVW is 140 * 5 + 23 * 10 + 7 * 15 = 1035.

Finally, the Unadjusted LEL Points (ULELP) is USW +

UVW = 1059. This case study allows us to verify the

applicability of the approach and the proximity between the

measure of ULELP and UUCP. The strategy to measure

USV is quite simple and similar to UAW in UCP. We

identified 8 subject symbols which match the 8 actors

identified in the Use Case analysis. Thus, considering that

the application has a graphical user interface, USW was 24

(equal to the UAW).

The weight of verbs is different from the weight of Use

Cases. The main difference arises from the functionality

related with workflows. Each transition of the workflow was

modeled as an individual verb symbol, while one Use Case

describes functionality related to several steps in the

workflows. Thus, 12 verbs were ranked as simple while the

same functionality was represented by 4 Use Cases ranked

as average. There were also 10 verb symbols ranked as

simple while their related functionality was modeled into 2

Use Cases ranked as complex. This was a remarkable

difference in the definition of the LEL and the Use Cases.

The difference had an impact on the measurement, but it

was small. The weight related to these symbols was 110,

while the weight related to the Use Cases was 70.

There were other verb symbols which were ranked as a

different category from their related Use Cases. These 11

verb symbols were ranked as simple while their related Use

Cases were ranked as complex. The reason for the different

ranks lies in the description of the symbols, as they were not

fully described; that is, their related Use Cases have more

information than the LEL symbols.

Table 12 summarizes the Use Case ranks.

TABLE 12. USE CASES RANK.

Use Case Type Number

Simple 107

Average 28

Complex 19

Verb: analyze request
Notion
Act of analyzing the project schedule needs for the period
requested.
Behavioral responses

Manager contrasts the vacation request with the schedule
tasks.

268

Thus, UUCW is 107 * 5 + 28 * 10 + 19 * 15 = 1100.

Finally, the Unadjusted Use Case Points value (UUCP) is

UAW + UUCW = 1124.

In summary, the ULELP and UUCP measures were

similar. In fact, they were quite close: 1059 and 1100

respectively. The analysis of UAW and USW is similar in

both approaches, so it is not necessary to perform any

comparison between them. The analysis of UUCW and

UVW depends on the construction of each model. The

description of functionality related to workflows is modeled

in a different way in the LEL and UC. Although the weight

of both models was quite close too, we must continue to

consider and study this situation.

VI. EVALUATION

An experiment was performed in order to assess the

precision of the strategy proposed. Since our approach is

based on Use Case Points, the experiment consisted in

comparing our strategy with Use Case Points. The previous

case study showed that the difference between Use Case

Points and LEL Points lies in the Unadjusted Use Case

Weight and the Unadjusted Verb Weight. Unadjusted Actor

Weight and Unadjusted Subject Weight were equal in both

strategies, thus we focused on contrasting UUCW with

UVW in the experiment. There are four attributes that define

UUCW and UVW: (i) user interface (UI), (ii) database

entities / objects, (iii) steps, and (iv) classes / subjects. Since

the analysis of UI is similar in both approaches, we did not

consider this attribute in the experiment. We decided to

design an experiment where we provided the participants

with a description of Use Cases and LEL, so we could

measure the subjectivity in the application of the strategy

with the same model. It is irrelevant to compare steps

between Use Cases and LEL, because this measure is

objective. We were particularly interested in comparing how

subjective the identification of the other two variables is in

the two strategies. The goal of the experiment is described

according to the Goal/Question/Metric (GQM) method
formulated by Basili et al. [7]:

Analyze Unadjusted Use Case Weight and Unadjusted Verb Weight

for the purpose of contrasting the variables “database entities vs

object” and “Classes vs Subjects”

with respect to precision

The participants of the experiment were 18 students from

a Computer Science postgraduate course. The experiment

was part of the course activities. All the students had a

degree in Computer Science and experience in the software

development industry, some of them as developers, others as

analysts and some others as team leaders. Some participants

were also teachers at the University. The majority of the

participants were Argentinean, but there were also people

from Colombia.

The materials used consisted of a slide show presentation,

a basic guide about how to apply Use Case Points and LEL

Points, and a description of the application, which was an

issue tracker system. Three different materials were

produced: (i) a colloquial description, (ii) Use Cases and

(iii) a LEL. From the same colloquial description, 10 Use

Cases and their related verb symbols were described. This

functionality was: (i) create an issue, (ii) assign an issue,

(iii) start, (iv) pause, (v) finish and (vi) cancel working on an

issue, (vii) break down an issue, (viii) browse issues, (ix)

calculate working factor for each member (in order to

perform resource leveling) [25], and (x) perform resource

leveling.

The experiment was carried out during a class. At the

beginning of the experiment, the participants were instructed

how to calculate UUCP and ULELP (all the participants

were instructed in both strategies). Then, two groups were

formed. A group of 9 students was asked to apply Use Case

Points while another group of 9 students was asked to apply

LEL points. We decided to make two groups of people and

ask them to apply only one strategy each, in order to avoid

bias from one technique to the other. The participants were

asked to complete the counting in two hours. First, they

needed to read the description of the application, because

they were not given any information about it during the

presentation, in which only the counting strategies were

described. After that, every participant had to provide the

following information for each Use Case or Verb: (i)

Database entities or Objects identified and (ii) Classes or

Subjects identified.

The analysis consisted in calculating the variance for

each attribute in each technique for every requirement.

These variances allow us to determine the precision of the

techniques. The number of participants was small in order to

obtain statistical results. Nevertheless, the experiment

allows us to obtain general qualitative information to make

adjustments and carry out the experiment again with more

participants. For this reason, instead of showing the values

for each variance, we categorize situations into four groups

according to the difference in variance:

(A) Both variances of ULELP and UUCP are low and

close to each other. Both techniques are equally good.

(B) The variance of ULELP is low; the variance of

UUCP is high. ULELP is more precise than UUCP.

(C) The variance of ULELP is high; the variance of

UUCP is higher. Neither approach is precise, but this high

variance does not impact on the ranking of both strategies.

(D) The variance of ULELP is high; the variance of

UUCP is higher. Neither approach is precise, but this high

variance impacts on the ranking of both strategies.

In relation to database entities / object comparison, both

techniques were equally good in 4 out of 10 requirements.

Features i (create an issue) and vii (break down an issue)

were more precisely ranked with ULELP than with UUCP.

Features viii (browse issues), ix (calculate working factor)

and x (perform resource leveling) were not precise in either

technique.

269

TABLE 13. COMPARISON OF THE VARIANCE OF EACH VARIABLE IN USE

CASE AND LEL FOR ALL REQUIREMENTS

Req

Variance of

Database

Entity in

UUCP

 Variance of

Objects in

ULELP

Variance of

Classes in

UUCP

Variance of

Subjects in

ULELP

i B B A A

ii D D A A

iii A A A A

iv A A A A

v A A A A

vi A A A A

vii B B A A

viii D D A A

ix D D C C

x D D C C

In relation to class / subject comparison, both techniques

were equally good in 8 out of 10 requirements. Features ix

(calculate working factor) and x (perform resource leveling)

were not precise in either technique, but as the ranks are 0-4,

5-10 and 11-more this difference did not impact on rank

definition.

In summary, the variance of ULELP was equal to or

better than UUCP. We can thus claim that ULELP is more

precise than UUCP. The reason for this is that participants

must count objects and subjects and they are assisted in this

by LEL symbols, while they do not have this help when they

rank with UUCP. This experience allows us to design a new

experiment with more participants in order to prove this

finding statistically. Moreover, the new experiment will

include the description of Use Cases and LEL by

participants, so as to assess the variance in number of steps.

Feldt et al [13] state the importance of analyzing threats

to the validity of the study and the results. Wohlin et al. [31]

group validity threats into four categories: conclusion,

internal, construct and external validity. The following

paragraphs analyze different threats from each category.

Concerning conclusion category, one possible threat is

random heterogeneity of subjects. The participants are

heterogeneous as regards years of experience in industry,

but there is homogeneity regarding overall experience. Since

the application of the technique is very simple,

heterogeneity of subjects does not represent any threat.

The second category of threats to analyze is internal

validity. Selection is the main threat to internal validity. In

order to tackle the effect of natural variation in human

performance we selected people with experience in the

application domain and in requirements engineering, but

with no experience in the approaches we analyzed. Then, we

carried out a randomization to assign subjects to treatments.

According to the construct validity category, we observed

that the experiment did not suffer from such threats referred

to as hypothesis guessing, evaluation apprehension or

experimenter expectancies. The subjects were not familiar

with the approaches, so they could not force specific results.

Also, the experiment did not have to deal with the

interaction of different treatments, because each subject was

assigned only one treatment, so there was no bias.

Sjøberg et al [27] state that many threats to external

validity are caused by an artificial setting of the experiment.

Taking this into account, we set up an experiment which had

the complexity of a small but real application (a real

application was developed in an organization where one of

the authors works).

VII. RELATED WORKS

The goal of our approach is to measure the size of an

application. Niknafs [23] states that while a requirements

engineer has in-depth domain knowledge that helps him to

understand the problem easier, he can nevertheless fall for

tacit assumptions of the domain and might overlook issues

that are obvious to domain experts. Since we model the

application through a glossary that must be refined from a

general glossary of the domain, our approach makes it

possible to tackle the problem stated by Niknafs, since one

requirements engineer can write the general glossary, while

another can write the specific application glossary.

Our approach is also in agreement with Glinz [14] and

Waldmann [29]. Glinz proposes a lightweight requirements

modeling language as an alternative to textual and pictorial

specifications. Waldmann states that requirements

engineering must learn from agile development. In our

approach, requirements specifications can be automated

from the LEL as in [8]

LEL can be considered a lightweight requirements model

to be used in agile methodologies. Although a LEL is an

early product, the measurement from early products (and

early activities) was shown to be effective by Tsunoda in

[28]. This early measurement is also important for business

decisions [20], and it is crucial for small companies that do

not have a defined process [6].

Abrahao [1] proposes a measurement procedure

(ReqPoints) to estimate the size of object-oriented software

projects from a requirements specification. Specifically, a

set of measurement rules is defined as a mapping between

the concepts of the Requirements Metamodel onto the

concepts of the Function Point Analysis (FPA) Metamodel.

Our approach is similar to Abrahao’s since the elementary

functions identified are similar to verb symbols. Then, they

map the elements onto Function Points while we map them

onto Use Case Points.

Harput et al [16] present an approach to apply FPA to an

object-oriented requirements model which is specified with

scenarios as well as sequence diagrams and class diagrams.

This approach defines rules to interpret the object-oriented

model and apply FPA. It is similar to our approach because

in some way we provide a strategy to interpret the LEL as if

it were UC; nevertheless our translation is simpler. This is

an important distinction: we work with a simple and easy to

use technique, i.e., LEL. These features are essential to

foster applicability and improve the obtained results. Anda

et al [3] and Ribu [26] report the difficulty of estimating

from complex structures. Anda reports the results of three

270

industrial case studies on the application of a method based

on Use Case Points. They state that the design of the use

case models has a strong impact on the estimation, since the

more complex the design of the product, the more difficult

and more sensible the application of the estimation

techniques is. Ribu agrees with these views, reporting that

the main difficulty she encountered when applying the Use

Case Points method was that practitioners wrote use cases in

very different ways and with different levels of detail. Our

approach relies on the LEL, and although different subjects

can bias the descriptions, LEL has very basic rules which

help to write homogeneous descriptions.

Cockcroft [11] empirically proved that it is possible to

calculate the size of a data flow diagram (which is built

early at software development) and this size is related to the

code line of the coded application. MacDonell [22] works

on measuring the specification and the relationship between

specification and process effort. We work with the

specification of the application, but the size we obtain can

be translated to effort because there is a relationship

between LEL-points and Use Case Points obtained from the

Use Cases derived from a LEL. Zhao [32] calculates a

measuring from an ER diagram. He developed a complexity

path in a data-oriented model. Although our model is

functional oriented, it also has object symbols which make a

similar analysis possible. Grimstad [15] states that

estimation-irrelevant information should be removed from

the requirements specification prior to its use as the input

to estimate work. Since we use raw material to construct

Use Cases, our approach is in agreement with Grimstad’s.

VIII. CONCLUSION

We have presented an approach to calculate the size of an

application from the application language captured by the

Language Extended Lexicon. Estimating the size of the

application prior to requirements specification can be very

difficult, and wrong measures are dangerous for project

planning. With the proposed approach we focus on the

language, and from there we estimate the size of the

application. With this size in mind, a more realistic

estimation can be performed before the existence of a

requirements specification.

Our approach consists in analyzing a Language Extended

Lexicon in the same way as Use Case Points analyzes Use

Cases. Since there is a strategy to derive Use Cases from a

Language Extended Lexicon, we have adapted Use Case

Points based on Use Case derivation from LEL in order to

measure a LEL. Thus, if we have a LEL, we can measure it

directly and avoid the extra effort of deriving Use Cases and

then calculating Use Case Points from such a derivation. We

obtain a similar measure with less effort because our

technique works with a previous product. Moreover, we

obtain a measure earlier. Although it is necessary to elicit

and analyze requirements to transform the domain LEL into

a specific application LEL, we believe it is useful for

requirements engineers who use LEL, as the extra effort

they make adjusting the LEL is less than the effort necessary

to specify Use Cases. From that LEL, Unadjusted LEL

Points can be semi-automatically calculated obtaining a

measure of the system previous to specifying its

requirements.

The similarities between Use Case Points and LEL Points

arise from the fact that the design of LEL Points is based on

Use Case Points. In this paper we described an experiment

which showed that the measures obtained using LEL Points

have an equal or smaller variance than Use Case Points, thus

people who do not use LEL regularly, can begin using it in

order to get benefits from the better precision our technique

has. In order to further sustain this initial result, we are

working on more evaluations based on different case

studies. Particularly, we are working on obtaining measures

from enough participants in order to perform a statistical

analysis. Moreover, we will work in analyzing relationships

such as “is a” between symbols and their impacts on

measurement. We are also working in tool support to partial

automate the counting process.

REFERENCES

[1] S. Abrahao, and E. Insfran, “A metamodeling approach to

estimate software size from requirements specifications”, in

Proceeding of the Software Engineering and Advanced

Applications (SEAA'08), ISBN 978-0-7695-3276-9, 3-5 Sept,

Parma, 2008, pp 465 – 475.

[2] A. J. Albrecht, “Measuring application development

productivity”, in Proc. IBM Applications Development

Symp., GUIDE Int. and SHARE Inc., IBM Corp., Monterey,

CA, 1979, p. 83.

[3] B. Anda, H. Dreiem, D. I. K. Sjøberg, and M. Jørgensen,

“Estimating software development effort based on Use Cases

– Experiences from industry”, in Proc. of the 4th Int.

Conference on the Unified Modeling Language, Springer

Verlag, Toronto, Canada, 2001, pp. 487-502.

[4] L. Antonelli, G. Rossi, J.C.S.P. Leite, and A. Oliveros,

“Deriving requirements specifications from the application

domain language captured by Language Extended Lexicon”,

in proceedings of the Workshop in Requirements Engineering

(WER), Buenos Aires, Argentina, April 2012, pp 24 – 27.

[5] L. Antonelli, G. Rossi, J.C.S.P. Leite, and J. Araújo, “Early

identification of crosscutting concerns with the Language

Extended Lexicon”, Requirements Engineering Journal,

http://dx.doi.org/10.1007/s00766-013-0193-4, Springer

London, 2013, pp 1-23.

[6] J. Aranda, S. Easterbrook, and G. Wilson, “Requirements in

the wild: how small companies do it”, in Proc of the 15th

IEEE International Requirements Engineering Conference (RE

'07), ISBN 978-0-7695-2935-6, 10.1109/RE.2007.54, 15-19

Oct. 2007, Delhi, 2007, pp 39 – 48.

[7] V.R. Basili, G. Caldiera, and H.D. Rombach, “The goal

question metric approach”, in Encyclopedia of Software

Engineering, John Wiley & Sons, Vol. 1, 1994, pp.528-532.

[8] E. Boutkova and F. Houdek, “Semi-automatic identification of

features in requirement specifications”, in Proceedings of the

19th IEEE International Requirements Engineering

271

Conference (RE), ISBN 978-1-4577-0921-0,

10.1109/RE.2011.6051626, Aug. 29 2011-Sept. 2, Trento,

2011, pp 313 - 318.

[9] K.K. Breitmanm and J.C.S.P. Leite, “Ontology as a

requirements engineering product”, in Proceedings of the 11th

IEEE International Conference on Requirements Engineering

(RE), IEEE Computer Society, Monterey Bay, California,

USA, ISBN 0-7695-1980-6, 2003.

[10] E.R. Carroll, “Estimating software based on use case points”,

Companion to the 20th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and

applications, San Diego, CA, USA, October 16-20 2005.

[11] S. Cockcroft, “Estimating CASE development size from

outline specifications”, Information and Software Technology

38, 1996, pp. 391-399.

[12] Cosmic Common Software Measurement International

Consortium, Cosmic Functional Size Measurement. Available

at: http://www.cosmicon.com/.

[13] R. Feldt and A. Magazinius, “Validity threats in empirical

software engineering research - An initial survey”, in

proceedings of the 22nd International Conference on Software

Engineering and Knowledge Engineering (SEKE), July 1-3,

San Francisco Bay, 2010, pp 374-379.

[14] M. Glinz, “Very lightweight requirements modeling”, in

Proceeding of the 18th IEEE International Requirements

Engineering Conference (RE), ISBN 978-1-4244-8022-7,

10.1109/RE.2010.73, Sept. 27 2010-Oct. 1, Sydney, NSW,

2010, pp 385 – 386.

[15] S. Grimstad and M. Jorgensen, “The impact of irrelevant

information on estimates of software development effort”, in

Proceedings of the 18th Australian Software Engineering

Conference (ASWEC 2007), ISBN 0-7695-2778-7,

10.1109/ASWEC.2007.48, 10-13 April, Melbourne, Vic.,

2007, pp 359 – 368.

[16] V. Harput, H. Kaindl, and S. Kramer, “Extending Function

Point analysis to Object-Oriented requirements

specifications”, in Proceeding of the 11th IEEE International

Symposium of Software Metrics, September 2005.

[17] International Function Points User Groups, available at:

http://www.ifpug.org/.

[18] G. Karner, “Metrics for objectory”, Master Thesis, Linkoping

University (LiTH-IDA-. Ex-9344:21), Linkoping, Sweden,

1993.

[19] S. Kusumoto, M. Fumikazu, H. Shigeo, and M. Yuusuke,

“Estimating effort by Use Case Points: method, tool and sase

study”, Proceedings of the 10th International Symposium on

Software Metrics, 2004.

[20] L. Lehtola, M. Kauppinen, and J. Vähäniitty, “Strengthening

the link between business decisions and RE: Long-term

product planning in software product companies”, in

Proceedings of the 15th IEEE International Requirements

Engineering Conference (RE '07), ISBN 978-0-7695-2935-6,

10.1109/RE.2007.30, 15-19 Oct., Delhi, 2007, pp 153 – 162.

[21] J.C.S.P. Leite and A.P.M. Franco, “A strategy for conceptual

model acquisition”, in Proceedings of the First IEEE

International Symposium on Requirements Engineering, San

Diego, California, IEEE Computer Society Press, 1993, pp

243-246.

[22] S.G. MacDonell, “Establishing relationships between

specification size and software process effort in CASE

environments”, Information and Software Technology, 39 - 1,

1997, pp 35-45.

[23] A. Niknafs and D.M. Berry, “The impact of domain

knowledge on the effectiveness of requirements idea

generation during requirements elicitation”, in Proceeding of

the 20th IEEE International Requirements Engineering

Conference (RE), 10.1109/RE.2012.6345802, ISBN 978-1-

4673-2783-1, 24-28 Sept, Chicago, IL, 2012, pp181 – 190.

[24] J. Ouwerkerk and A. Abran, “Evaluation of the design of Use

Case Points (UCP)”, MENSURA2006, Shaker Verlag, 4-5

November, Cadiz, Spain, 2006.

[25] Project Management Institute, A Guide to the Project

Management Body of Knowledge (PMBOK Guide), Fifth

Edition, ISBN 9781935589679, 2013.

[26] K. Ribu, “Estimating Object-Oriented software projects with

Use Cases”, Master of Science Thesis, University of Oslo

Department of Informatics, 7th November 2001.

[27] D.I.K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen,

A. Karahasanovic, E.F. Koren, and M. Vokác, “Conducting

realistic experiments in software engineering”, in Proceedings

of the International Symposium on Empirical Software

Engineering (ISESE), ISBN 0-7695-1796-X, 2002, pp 17.

[28] M. Tsunoda, Y. Kamei, K. Toda, and M. Nagappan,

“Revisiting software development effort estimation based on

early phase development activities”, in Proceeding of the 10th

IEEE Working Conference on Mining Software Repositories

(MSR), ISBN 978-1-4799-0345-0,

10.1109/MSR.2013.6624059, 18-19 May, San Francisco, CA,

2013, pp 429 - 438.

[29] B. Waldmann and A.G. Phonak, “There's never enough time:

Doing requirements under resource constraints, and what

requirements engineering can learn from agile development”,

in Proceedings of the 19th IEEE International Requirements

Engineering Conference (RE), ISBN 978-1-4577-0921-0,

10.1109/RE.2011.6051626, Aug. 29 2011-Sept. 2, Trento,

2011, pp 301 – 305.

[30] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, “Designing

Object-Oriented software”, Prentice Hall, 1990.

[31] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell,

and A. Wesslén, “Experimentation in software engineering an

introduction”, ISBN 0-7923-8682-5 Academic Publishers

2000.

[32] Y. Zhao, H.B. Kuan Tanm, and W. Zhang, “Software cost

estimation through conceptual requirement”, in Proceedings of

the Third International Conference on Quality Software, ISBN

0-7695-2015-4, 10.1109/QSIC.2003.1319096, 6-7 Nov. 2003,

pp141 - 144.

272

