
An Automated Approach to Hardware Performance
Monitoring Counters

Fernando G. Tinetti
Comisión de Inv. Cientı́ficas Prov. de Bs. As.

III-LIDI, Fac. de Informática, UNLP

1900 La Plata, Argentina.

Email: fernando@info.unlp.edu.ar

Mariano Méndez
III-LIDI, Fac. de Informática

Universidad Nacional de La Plata (UNLP)

1900 La Plata, Argentina.

Email: marianomendez@gmail.com

Abstract—Program performance optimization could be a very
complex process, even with current software development facili-
ties/tools. An Integrated Development Environment (IDE) usually
does not include many aids for optimization and/or perfor-
mance evaluation. We propose to include performance evaluation
through hardware monitoring counters into IDE software. Cur-
rently, it is possible to reach hardware monitoring counters via
many libraries, and we have also seen that many of those libraries
are approximately at the same abstraction level (including the
way at which they allow access to the hardware counters). Thus,
it is not only possible to include some performance evaluation
library into the development process but, also, including specific
aids to use some library via configurable/adjustable code snippets.
We show, as a proof of concept, an Eclipse plug-in to help
High Performance Computing (HPC) programmers to access
hardware monitoring event counters using PAPI (Performance
API). The plug-in is able to automatically include source code
to count specific events available via PAPI in sections of source
code defined by the programmer. Also, given that the code is
automatically included, it would be also possible to remove that
code from the release version (for the production environment).

Keywords—Performance, Hardware Counters, High Perfor-
mance Computing, Fortran

I. INTRODUCTION

Programming in the HPC field implies at least optimization
since response time should be reduced for solving grand
challenge/compute intensive problems [1]. Even when HPC
has always been related to parallel computing, the relationship
HPC-parallel computing is now stronger, because sequential
computing is almost tied to a few GHz mainly due to heat
dissipation problems found on current technology [2] [3] [4].
There are well known optimization techniques, and many
of them are already implemented in compilers [5] [6] [7].
However, the increasing complexity of (microprocessors’) mi-
croarchitectures plus the usage of (at least) multiple cores for
parallel processing has led to HPC programmers to have into
account a large number of guidelines for optimization and
parallelization [8] [9] [10]. Development tools in this scenario
do not provide enough aids or, at least, have not evolved
accordingly.

Most of the optimization and parallelization work is
mainly guided through timing experiments [11]. Even when
the methodology has been successful, sometimes does not
provide enough information about specific bottlenecks and
performance penalties to the non-specialist or inexperienced

HPC programmer. Even more, timing is a good but indirect
measurement of what is going on at the hardware level.
Since the availability of hardware performance event counters,
the HPC developer has access to invaluable (and otherwise
impossible to obtain) hardware performance, thus having more
reliable information for the optimization and parallelization
work [12].

Even when manufacturers have provided access to event
counters and there are specific libraries for access to such
counters, the instrumentation process is too detailed/of low
abstraction level, quite complex, and prone to error. In the per-
formance evaluation cycle of: a) instrumentation, b) profiling
execution, and c) performance analysis of results, we propose
to aid the developer by adding the portions of instrumentation
source code. We have identified a methodology enabling the
programmer to select event counters for automatic inclusion of
the necessary (source code) instrumentation and, also, we have
implemented that methodology into a specific IDE as a proof
of concept. Thus, the scientific programmer can be focused on
“what” to analyze (for optimization and parallelization) instead
of “how” to carry out the access to hardware monitoring event
counters when such counters are part of the analysis.

The organization of the rest of this article is as follows.
In Section II we describe hardware counters, their usage, and
how they have evolved throughout time. Section III includes
a description of the Performance Application Programming
Interface (PAPI). The proposed automated methodology and
the implemented tool are described in Sections IV and V. In
Section VI a Fortran example program has been measured by
adding a counter for the number of store and load instructions
at runtime. Finally, the conclusions and further work are given
in Section VII.

II. HARDWARE PERFORMANCE COUNTERS

Hardware counters are a consequence of a hardware design
technique called Design For Test (DFT). DFT “is a general
term applied to design methods that lead to more thorough
and less costly testing” [13]. This technique has been used
since the early age of electronics to include a set of testability
features in the hardware for fault detection. In the 40’s and
50’s, engineers used to check some features like the voltage
from the analog computers by using some instruments [14].

Nowadays, the DFT concept is applied on modern mi-
croprocessors as the broadly known hardware performance

2014 International Conference on Computational Science and Computational Intelligence

978-1-4799-3010-4/14 $31.00 © 2014 IEEE

DOI 10.1109/CSCI.2014.19

71

2014 International Conference on Computational Science and Computational Intelligence

978-1-4799-3010-4/14 $31.00 © 2014 IEEE

DOI 10.1109/CSCI.2014.19

71

2014 International Conference on Computational Science and Computational Intelligence

978-1-4799-3010-4/14 $31.00 © 2014 IEEE

DOI 10.1109/CSCI.2014.19

71

2014 International Conference on Computational Science and Computational Intelligence

978-1-4799-3010-4/14 $31.00 © 2014 IEEE

DOI 10.1109/CSCI.2014.19

71

2014 International Conference on Computational Science and Computational Intelligence

978-1-4799-3010-4/14 $31.00 © 2014 IEEE

DOI 10.1109/CSCI.2014.19

71

event counters. Paradoxically, the history of Intel’s computer
hardware counters has been related to unrevealed corporation
secrets at least regarding the programming community [15].
The most emblematic and known case is the Intel Pentium
set of hardware counters which saw the light of the day, in
1994, as a non documented feature [16][15]. The Intel Pentium
processor “has a comprehensive set of performance counters
similar to the ones existing in PowerPC and it also has four
breakpoint registers for establishing breakpoints. Although
these features are not documented, and are only available
through a non-disclosure agreement with Intel, Pentium debug-
ging and performance monitoring features have been reverse-
engineered and published in [15]” [17]. Intel changed its
policy regarding this undocumented registers from “considered
Intel confidential and proprietary” Apendix H from [18] to
“The developers realized that the utility would be useful for
other programmers, so they obtained permission from Intel to
distribute the program, as long as the source code was kept
secret” [15].

After that incident there has been a shift of perspective
regarding the use of DFT features by Intel Corporation, Intel
made these features accessible for the programmers commu-
nity. The first Intel processors which had performance monitor-
ing capabilities were those in the Pentium P5 family, although
these capabilities were not officially available to be used until
the appearance of Pentiun P6 family. In the P5 Pentium family
processors and the P6 Family processors 2 hardware counters
were available. In the Intel Core Microarchitecture, 3 function
counters per thread can be used. The processors based on Intel
NetBurst Microarchitecture have 18 performance counters. The
processors based on Intel Sandy Bridge Microarchitecture and
processors based on Intel Westmere Microarchitecture have 8
general-purpose performance counters (g.p.p.c.) and 3 function
counters per thread (f.c.p.t). Finally, the processors based on
Intel Nehalem Microarch have 4 g.p.p.c. and 3 f.c.p.t [19].

Programmers have been using hardware counters for
analysing how their programs behave in a specific platform
by using the chips monitoring features in two ways. The
broadest way is to perform an analysis by using a third
party software made for this purpose, such as: perf, perfsuite,
perfcrt, perfmon, Oprofile, Vtune, and so forth. The second
and less known way, perhaps because it is more complicated
and tailored, is performing the analysis by using a specific
API/library. Using some library implies instrumentation, i.e.
changing the source code to be measured, including calls to
some libray such as: PAPI [20], Intel Performance Counter
Monitor library [21], Rabbit [22], PCL [23], and so forth.
There are, however, a succession of tasks when accessing
libraries: start the library, build a set of events to be monitored,
start to count, stop to count and, finally, get measurements. All
the steps listed up above, are similar in the different libraries,
as shown in Figure 1 on two examples, one written in Fortran
using PCL and one written in C using PAPI.

III. PAPI: PERFORMANCE APPLICATION PROGRAMMING

INTERFACE

Using and measuring the processors monitoring features
has been “an imprecise art” [24] for many years. The main
reasons probably are: poor hardware documentation, unavail-
ability to the programmer, portability, and so forth [25].

PROGRAM PCL_test
!declarations
INCLUDE ’pclh.f’
INTEGER counter_list(1), flags, res
INTEGER*8 i_result, descr
REAL*8 fp_result
INTEGER PCLquery,PCLstart,PCLstop
EXTERNAL PCLquery,PCLstart,PCLstop

res = PCLinit(descr)
IF(res .NE. PCL_SUCCESS)

WRITE(*,*) ’error in PCLinit’

!count for user mode
flags = PCL_MODE_USER

!count cycles
counter_list(1) = PCL_CYCLES

!check if event is available
res = PCLquery(descr,counter_list,1,flags)
IF(res .EQ. PCL_SUCCESS)THEN

!start counting
IF(PCLstart(descr, counter_list&

, 1, flags) .NE. PCL_SUCCESS) THEN
WRITE(*,*) ’problem starting events’&
,counter_list(1)

END IF

!do some work

!stop counting
IF(PCLstop(descr,i_result,fp_result,1)&

.NE. PCL_SUCCESS) THEN
WRITE(*,*) ’probl. stopping events’&
,counter_list(1)

ELSE
WRITE(*,*) ’result: ’, i_result

END IF

ELSE
!event not supported
WRITE(*,1001) counter_list(1),res

ENDIF

res = PCLexit(descr)
IF(res .NE. PCL_SUCCESS)

WRITE(*,*) ’error in PCLexit’

STOP
END PROGRAM

#include <papi.h>
#include <stdio.h>

#define NUM_FLOPS 10000

main()
{
int retval, EventSet=PAPI_NULL;
long_long values[1];

/* Initialize the PAPI library */
retval=PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT) {

// Error
}

/* Create the Event Set */
if (PAPI_create_eventset(&EventSet)

!= PAPI_OK) handle_error(1);

/* Add Total Instructions Executed to
our Event Set */
if (PAPI_add_event(EventSet, PAPI_TOT_INS)

!= PAPI_OK) handle_error(1);

/* Start counting events in the
Event Set */
if (PAPI_start(EventSet) != PAPI_OK)

handle_error(1);

// Do some work

/* Read the counting events in
the Event Set */
if (PAPI_read(EventSet, values)!=PAPI_OK)

handle_error(1);

printf("After reading counters: %lld\n",
values[0]);

/* Stop the counting of events in
the Event Set */

if (PAPI_stop(EventSet, values)!=PAPI_OK)
handle_error(1);

printf("After stopping the counters:
%lld\n",values[0]);

}

Fig. 1. Example of PCL and PAPI Usage

PAPI, also known as Performance Application Programming
Interface, provides two ways to approach hardware counters
[20][24]. The first one is called the “high-level interface”
which allows programmers to acquire simple measurements
easily. This interface only allows the user to start, stop and
show measurements taken for a specific set of events [20].
The second one, called the “low level-interface”, allows pro-
grammers to perform complex measurements by introducing
the abstract concept of the EventSet that allows to access to
platform specific events to be measured [20] [25]. We will
focus on the Fortran library but our work is also applicable to
the C library.

IV. AN AUTOMATED APPROACH TO HARDWARE

COUNTER

We have analysed how PAPI counters should be introduced
manually in Fortran source code by using the low-level in-
terface. After some few examples we noticed that there is a
clear process that enables the automated Fortran source code
instrumentation. This process can be described as:

1) Initialize PAPI Library
2) Create the set of events
3) Set counters
4) Start counting
5) Stop counting
6) Print Results

Currently, this process has to be implemented directly by
the programmer with the possibility of adding at least new
bugs related to the measurement process. Another level of

7272727272

complexity is introduced because the availability of PAPI
hardware counters depends on the platform [25]. We propose
the automation of this process by integrating PAPI counter
into a modern IDE (Integrated Development Environment) like
Eclipse [26]. In addition, we propose a tool with the ability
to detect the PAPI library availability and the list of counters
which are available to the platform. We have designed two
Eclipse plug-ins, the first one to interact between the IDE and
the operating system. The second one to integrate platform
specific available hardware counters to a Fortran Program.
The second plug-in should insert the necessary Fortran source
code to measure a set of specific counters, previously selected
from the editor by the programmer. We will base our second
plug-in on Photran [27], an advanced multiplatform integrated
development environment (IDE) for Fortran based on Eclipse
[26]. From the beginning, Photran was designed to support
restructuring (called refactorings in Photran), and much of its
development effort has been focused on providing a robust
restructuring infrastructure. We have used Photran’s infrastruc-
ture that supports source code transformations for developing
our Eclipse plug-in.

V. THE TOOL

The tool has been divided into 2 sets of plug-ins. In this
section we will offer a thorough description of these two
eclipse plug-ins.

A. PAPI Integration Plug-in

This first plug-in has been designed to integrate PAPI
library into the Eclipse Environment. For this purpose the PAPI
Integration plug-in will provide the following new features:

• Determine the PAPI version.

• Show the PAPI version to the user.

• Gather the available PAPI events to count in the
working platform.

• Show the available PAPI events to count in the work-
ing platform.

In order to implement these features two plug-in projects called
papi.core and papi.core.ui have been created [28]. The project
called papi.core contains the core classes to implement the
required functionality, including the class called PAPI whose
implementation is to act as a wrapper to interact with the papi-
avail command. In addition, a class called PapiEvent has been
implemented for modelling each PAPI event.

The second project will contain the classes to implement
the required user interface to use papi.core classes by extending
eclipse using the extension points. In other words, papi.core.ui
will implement the new eclipse user interface extension to
interact with the papi.core classes by extending the eclipse
main Source menu, creating two new commands, adding the
new commands to the eclipse’s Source menu, and creating two
new command handlers [28].

To determine and show the PAPI Version a new Eclipse
command has been implemented by extending the Eclipse
Command Extension Point [29][28]. In order to make it
available in the eclipse workbench, a new Eclipse command

Handler has been developed: VersionHandler class. This class
will interact with the papi.core classes to gather the informa-
tion about the PAPI library availability and its installed version.
Once all this information has been retrieved, successfully or
not, the information will be communicated to the Eclipse
workbench [29].

A new Eclipse Command has been implemented in order
to Gather and show the available PAPI events to count in
the working platform [25]. This command is handled by the
class ShowAvailablePapiEventsHandler which interacts with
the papi.core plug-in to obtain the list of PAPI events available
for this machine [28]. Once the information is available to be
shown, it is displayed as an HTML file in a new Eclipse editor.

B. PAPI Photran Integration Plug-in

The Photran Integration Plug-in is responsible for gathering
the set of PAPI events available in the working machine from
the user interface, and then to adding these events to a piece
of Fortran source code selected in the Fortran editor. This
Plug-in is implemented in the papi.core.photran plug-in project
as a source code transformation including an InputDialog for
selecting the counter to add to the source code (as a new eclipse
editor action). The most complex component of this plug-in
is the way source code transformation is implemented. Our
approach is using a rewritable AST (Abstrac Syntax Tree) to
represent the Fortran source code [30]. Photran infrastructure
allows to apply precondition checking in order to determine the
correctness of the selected source code (e.g. a transformation
is not made if the user selects source code withou executable
statements). After these checks have been performed a dialog
will be presented to the user in order to select events from the
available Papi events in the platform. This dialog will contain
two list boxes. the first listing available PAPI events, and the
second one is a list for keeping the selected events to add to
the source code, as shown in Figure 3.

Fig. 2. A dialog implemeted for selection available PAPI events to measure.

The next step will be focused on building the necessary
Fortran source code to initialize the PAPI library:

! initialize PAPI Library
chkflg = PAPI_VER_CURRENT
call PAPIF_library_init(chkflg)
if (chkflg .ne. PAPI_VER_CURRENT) then

7373737373

print *, ’Error PAPI Library out of date’
call abort

end if

and, after that, an event set must be created:

! create the eventset
event_set = PAPI_NULL
call PAPIF_create_eventset(event_set, check)
if (check .ne. PAPI_OK) then

print *, ’Error in subroutine PAPIF_create_eventset’
call abort

end if

Once the event set has been created each PAPI event to be
used must be added to the event set. These events have been
selected from the User Interface so they must be included one
by one:

! set counters to <should be replaced by the event descr.>
event_code = <should be replaced by the event name>
call PAPIF_add_event(event_set, event_code, check)
if (check .NE. PAPI_OK) then

print *, "Abort After PAPIF_add_events: ", check
call abort

endif

After all the selected events have been inserted in the source
code, the source code needed to start the counting process
should be added as well:

! start counting
call PAPIF_start(event_set, check)
if(check .ne. PAPI_OK) then

print *, ’Abort after PAPIF_start: ’, check
call abort

endif

The automated source code generated must be inserted at the
starting point from the selected Fortran statement sequence.
There are two further steps to be performed. The first one is
to stop the measurement process:

! stop counting
call PAPIF_stop(event_set, values, check)
if (check .ne. PAPI_OK) then

print *, ’Abort after PAPIF_stop: ’, check
call abort

endif

The second one is to print results:

print *, ’Number of < event name>: ’, values(1)
print *, ’Number of < event name>: ’, values(2)

...
print *, ’Number of < event name>: ’, values(<N>)

Before all these changes are be applied they will be shown in
a diff view (Figure 3), allowing the user to confirm changes
or cancel them. Once changes are confirmed, the original AST
structure of the program will be rewritten by adding new AST
nodes corresponding to the new Fortran code required to make
the program capable of using the PAPI library.

VI. USING THE TOOL

A matrix multiplication Fortran program has been used to
test the tool, i.e. to transform the source code by inserting
instrumentation code. The source code is listed in Figure 4:

As an example we will focus on measurement of condi-
tional branch instructions taken in the three nested do state-
ments. First, the Fortran source code is selected and PAPI
Hardware Counter –> Add Hardware Counters menu option
is selected, as shown in Figure 5. Once the Event Selection

Fig. 3. Diff view before applying changes.

program matmul
integer :: row,col,i,j,k
integer,allocatable :: a(:,:),b(:,:), c(:,:)

row=3000
col=3000
allocate(a(1:row,1:col))
allocate(b(1:row,1:col))
allocate(c(1:row,1:col))
! init matrices a and b such that c(i, j) = n
do i = 1,row

do j= 1,col
a(i,j) = 1
b(i,j) = 1
c(i,j) = 0
c(i,j) = 0

end do
end do
do i=1,row

do j=1,col
do k=1,col

c(i, j) =c(i, j) + a(i, k) * b(k, j)
end do

end do
end do
deallocate(a)
deallocate(b)
deallocate(c)

end program matmul

Fig. 4. Matrix Multiplication Frotran Program.

Dialog is shown, the PAPI BR TKN is selected and added to
the selected events list, as shown in Figure 6 for the event
PAPI LST INS. A preview is shown as in Figure 7 and,
finally, the changes are applied to the source code as shown in
Figure 8. The programmer selects the code to be monitorized,

Fig. 5. Selecting source code to be transformed.

selects the specific events (from those available, which depend
on the architecture and PAPI), and accepts/rejects the actual

7474747474

Fig. 6. Selecting PAPI Events to Measure.

Fig. 7. Diff View Before Applying Changes.

source code transformation. After following the previous steps,
the resulting program is as follows:

program matmul
implicit none
integer, parameter :: NUM_EVENTS =1
integer, dimension(NUM_EVENTS) :: event_set
integer*8, dimension(NUM_EVENTS) :: values
integer :: check
integer::event_code
integer :: row,col,i,j,k
integer,allocatable :: a(:,:),b(:,:),c(:,:)

row=100
col=100
allocate(a(1:row,1:col))
allocate(b(1:row,1:col))
allocate(c(1:row,1:col))
! init matrices a and b such that c(i, j) = n
do i = 1,row

do j= 1,col
a(i,j) = 1
b(i,j) = 1
c(i,j) = 0
c(i,j) = 0

end do
end do

!********* THIS IS AN AUTOGENERATED STUB **************
! initialize PAPI Library
chkflg = PAPI_VER_CURRENT
call PAPIF_library_init(chkflg)
if (chkflg .ne. PAPI_VER_CURRENT) then

print *, ’Error PAPI Library out of date’
call abort

end if

! create the eventset
event_set = PAPI_NULL
call PAPIF_create_eventset(event_set, check)
if (check .ne. PAPI_OK) then
print *, ’Error in subroutine PAPIF_create_eventset’
call abort

Fig. 8. Tranformed Source Code.

end if

! set counters to count Conditional branch instructions taken
event_code = PAPI_BR_TKN !Conditional branch instructions taken
call PAPIF_add_event(event_set, event_code, check)
if (check .NE. PAPI_OK) then

print *, ’Abort After PAPIF_add_events: ’, check
call abort

end if

! start counting
call PAPIF_start(event_set, check)
if(check .ne. PAPI_OK) then
print *, ’Abort after PAPIF_start: ’, check

call abort
end if

do i=1,row
do j=1,col
do k=1,col

c(i, j) =c(i, j) + a(i, k) * b(k, j)
end do

end do
end do

!********* THIS IS AN AUTOGENERATED STUB **************
! stop counting
call PAPIF_stop(event_set, values, check)
if (check .ne. PAPI_OK) then

print *, ’Abort after PAPIF_stop: ’, check
call abort

end if
print *, ’Number of Conditional branch instructions

taken: ’, values(1)

deallocate(a)
deallocate(b)
deallocate(c)

end program matmul

The source code transformation is successful, providing the
conditional branch instructions taken at runtime.

VII. CONCLUSIONS AND FURTHER WORK

In this article we have identified some repetitive steps
necessary for hardware counters monitoring performance eval-
uation. Furthermore, we have selected the PAPI library for
gathering hardware counters values. Based on these general
steps we have built a tool which automates the use of the
PAPI library to collect data from a specific platform hardware
counters. Our tool has been built as an Eclipse plug-in, and
determines which hardware counters are available on the
working platform. In addition, the tool allows the user to
select a set of the hardware events and to automatically add
the necessary instrumentation source code to the program to

7575757575

be monitored. We have found some similarities among other
different monitoring libraries (e.g. PCL, Rabbit) in the way
they should be introduced in the source code. Further research
will expand the plug-in capabilities in order to work with these
other libraries. Furthermore, we have worked with the PAPU
low-level approach, but a new feature could be added to the
plug-in to include the PAPI high-level approach.

REFERENCES

[1] NSF-ACCI Task Force, “The nsf-acci task force on grand challenges,
national science foundation advisory committee for cyberinfrastructure
task force on grand challenges final report,” Mar. 2011. [Online]. Avail-
able: https://www.nsf.gov/cise/aci/taskforces/TaskForceReport Grand-
Challenges.pdf

[2] H. Sutter, “The free lunch is over: a fundamental turn
toward concurrency in software,” Dr. Dobb’s Journal, vol. 30,
no. 3, Mar. 2005, (update 2009). [Online]. Available:
http://www.gotw.ca/publications/concurrency-ddj.htm

[3] S. Y. Borkar, P. Dubey, K. C. Kahn, D. J. Kuck,
H. Mulder, S. S. Pawlowski, and J. R. Rattner, “Platform 2015:
Intel processor and platform evolution for the next decade,”
2005, intel Platform 2015 White Paper. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.1433

[4] F. G. Tinetti and M. Méndez, “Fortran legacy software:
Source code update and possible parallelisation issues,” ACM
Fortran Forum, vol. 31, no. 1, Apr. 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2179280.2179281

[5] J. A. Bilmes, K. Asanovic, C. Chin, and J. Demmel, “Optimizing
matrix multiply using phipac: a portable, high-performance, ansi c
coding methodology,” in Proceedings of the International Conference
on Supercomputing, A. SIGARC, Ed., Vienna Austria, 1997.

[6] R. C. Whaley and J. Dongarra, “Automatically tuned linear algebra
software,” in Proceedings of the SC98 Conference, I. Publications, Ed.,
Orlando USA, 1998.

[7] A. V. Aho, M. S. Lam, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd ed. Prentice Hall, 2006.

[8] V. Eijkhout, “Introduction to high performance
scientific computing,” 2011. [Online]. Available:
http://www.tacc.utexas.edu/eijkhout/istc/istc.html

[9] S. Chellappa, F. Franchetti, and M. Püschel, “How to write
fast numerical code: A small introduction,” in Generative
and Transformational Techniques in Software Engineering II,
ser. LNCS 5235, R. Lämmel and J. a. S. Joost Visser,
Eds., Braga Portugal, 2008, pp. 196–259. [Online]. Available:
http://link.springer.com/book/10.1007/978-3-540-88643-3/page/1

[10] R. Hyde, Write Great Code, Volume 2: Thinking Low-Level, Writing
High-Level, 1st ed. No Stach Press, 2006.

[11] R. C. Whaley and A. M. Castaldo, “Achieving accurate and context-
sensitive timing for code optimization,” Software: Practice and Expe-
rience, vol. 38, no. 15, pp. 1621–1642, Dec. 2008.

[12] F. G. Tinetti and S. M. Martin, “Sequential and shared and distributed
memory parallelization in clusters: N-body/particle simulation,” in 24th
IASTED International Conference on Parallel and Distributed Comput-
ing and Systems, ser. PDCS, A. Press, Ed., Las Vegas USA, Dec 2012.

[13] J. F. Wakerly, Digital design principles and practices. Prentice-Hall,
Inc., 1989.

[14] E. Gould, “Serial replacement maintenance philosophies and multiple-
failure diagnostic strategies: a marriage of multiple-fault integrity and
common cause sensibility,” in AUTOTESTCON, 97. 1997 IEEE Au-
totestcon Proceedings. IEEE, 1997, pp. 446–454.

[15] T. Mathisen, “Pentium secrets,” Byte magagize, 1994.

[16] M. Schmit, “Optimizing pentium code,” Dr Dobb’s Journal-Software
Tools for the Professional Programmer, vol. 19, no. 1, pp. 40–49, 1994.

[17] J. Carreira, H. Madeira, J. G. Silva et al., “Xception: Software fault
injection and monitoring in processor functional units,” Dependable
Computing and Fault Tolerant Systems, vol. 10, pp. 245–266, 1998.

[18] Intel, Pentium Processor Family Developer’s Manual Volume 3: Archi-
tecture and Programming Manual, Mt. Prospect, IL, USA., 1995.

[19] I. Intel, “Intel 64 and ia-32 architectures software developers manual,”
Volume 3a, 2013.

[20] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in Proc. Department of Defense
HPCMP Users Group Conference, 1999.

[21] “Intel Performance Counter Monitor - A better way to measure CPU
utilization,” http://software.intel.com/enus/articles/intel-performance-
counter-monitor/.

[22] D. Heller, “Rabbit: A performance counters library for intel/amd
processors and linux,” Scalable Computing Laboratory, Ames Lab-
oratory, USDOE, Iowa State University. http://www. scl. ameslab.
gov/Projects/Rabbit, 2000.

[23] R. Berrendorf and H. Ziegler, Pcl-the performance counter library:
A common interface to access hardware performance counters on
microprocessors. FZJ-ZAM, 1998.

[24] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable
programming interface for performance evaluation on modern proces-
sors,” International Journal of High Performance Computing Applica-
tions, vol. 14, no. 3, pp. 189–204, 2000.

[25] K. London, S. Moore, P. Mucci, K. Seymour, and R. Luczak, “The
papi cross-platform interface to hardware performance counters,” in
Department of Defense Users Group Conference Proceedings, 2001,
pp. 18–21.

[26] “The eclipse foundation, eclipse.org home,” http://www.eclipse.org/.

[27] “Photran, an Integrated Development Environment and Refactoring Tool
for Fortran,” http://www.eclipse.org/photran/.

[28] E. Gamma and K. Beck, Contributing to Eclipse: principles, patterns,
and plug-ins. Addison-Wesley Professional, 2004.

[29] E. Clayberg and D. Rubel, Eclipse: building commercial-quality plug-
ins. Addison-Wesley Reading, 2004, vol. 2.

[30] J. L. Overbey and R. E. Johnson, “Generating rewritable abstract syntax
trees,” in Software Language Engineering. Springer, 2009, pp. 114–
133.

7676767676

