
449

Chapter 17

JAVA IMS Mobile
Application Development

Javier Díaz, Claudia Queiruga, and Jorge Rosso

Contents
17.1	 Motivation	..450
17.2	 What	Is	IMS	...452
17.3	 IMS	Architecture	..454
	 17.3.1	 The	Role	of	the	SIP	Protocol	..454
	 17.3.2	 Application	and	Service	Layer	..463
	 17.3.3	 Session	Control	Layer	.. 464
	 17.3.4	 Transport	and	Access	Layer	... 464
17.4	 The	Challenge	Proposed	by	IMS	for	New	Applications 466
17.5	 Java	Support	for	IMS	and	SIP	.. 466
17.6	 Java	Development	Environments	for	IMS	Applications...........................469
17.7	 IMS	Java	for	Mobile	2.0	..470
	 17.7.1	 Java	Initiatives	for	Mobile	Applications470
	 17.7.2	 Java	Initiatives	for	IMS	in	Mobile	Applications471
	 17.7.3	 Mobile	Development	JME:	MIDlets	..472
17.8	 Development	of	a	Simple	Chatroom	on	IMS	Using	Ericsson	SDS474
	 17.8.1	 Introduction	...474
	 17.8.2	 General	Architecture	of	the	IjcuChat	Application474

K10067_C017.indd 449 8/3/2010 10:35:12 PM

450  ◾  Mobile Web 2.0

17.1 Motivation
During	 the	 year	 2008,	 the	 Computer	 Science	 School	 of	 the	 UNLP	 (National	
University	of	La	Plata)	signed	a	cooperation	agreement	with	Ericsson	Company	in	
Argentina	with	the	goal	of	undertaking	activities	to	promote	innovation,	training,	
and	research	in	the	area	of	NGN	(new	generation	networking)	and	IMS	(IP	mul-
timedia	subsystem),	primarily	addressing	issues	related	to	the	development	of	Java	
applications	on	this	new	vision	of	converged	networks.

Students	from	the	“Software	Lab”	subject,	which	belongs	to	the	fourth	year	of	
the	Computer	Science	and	Systems	degrees,	 learn	to	develop	Java	client	applica-
tions,	both	for	desktop	and	mobile	devices.	We	consider	that	having	a	high-quality	
converged	network	 infrastructure	 like	IMS,	which	makes	 it	possible	 to	 integrate	
services	that	are	usually	provided	by	heterogeneous	networks,	is	a	challenge	for	the	
construction	 of	 new	 applications	 on	 mobile	 devices,	 where	 communication	 and	
sharing	play	a	central	role.

According	to	Patrik	Heldmund,	innovation	area	manager	in	Ericsson-Argentina,	
the	expectations	in	the	development	of	Java	applications	on	IMS	is	to	find	innova-
tive	ideas	on	how	to	use	the	technology	and	create	services	that	create	real	value	
for	the	consumer.	Ultimately,	the	driving	force	for	network	transformation	will	be	
related	 to	 applications	 and	 end	user	 services.	The	 cooperation	between	Ericsson	
and	UNLP	create	interesting	synergy	effects	for	the	students,	the	university,	and	
Ericsson,	and	is	a	successful	example	of	the	need	to	create	more	industry–university	
projects	in	this	field.	Examples	of	applications	on	IMS

To	 fully	understand	 the	 services	provided	by	 the	 IMS	architecture,	we	 illus-
trate	an	example	of	daily	life	according	to	current	communication	behavior,	where	
mobility	 and	 device	 diversity	 are	 already	 in	 common	 use.	 IMS	 encourages	 new	
experiences	for	users,	promoting	the	use	of	a	convergent	network	which	guarantees	
a	comfortable	bandwidth,	quality	of	service,	and	device	neutrality.	When	the	odds	
of	communication	increase,	physical	distances	become	shorter,	and	media	simulta-
neity	and	device	diversity	further	enrich	the	experience.

Let	us	imagine	a	situation	in	which	a	group	of	friends	share	the	experience	of	a	
rock	concert	by	means	of	their	devices	connected	to	an	IMS	network.	Following,	
we	provide	a	possible	IMS	use	case	by	means	of	a	simple	story.

AQ1

	 17.8.3	 	IjcuChat	Functioning	in	a	Simulated	IMS	Network	in	the	
Ericsson	SDS	..475

	 17.8.4	 Analyzing	the	Use	of	JSR	281	in	the	IjcuChat 480
17.9	 Conclusions...489
References	...489
Web	Sites	..489

K10067_C017.indd 450 8/3/2010 10:35:12 PM

JAVA IMS Mobile Application Development ◾  451

David goes to the first show of his friend Charlie’s band in the most important venue of the
city and remembers that his friends Fabiana and Pedro had to leave town unexpectedly.
David decides to share with them the moment in which Charlie does his drum solo by

sending them a live video which he captures with his cellphone camera.

“I cannot beleive it!! Charlie is playing incredibly well!!” Fabiana writes David, as she shows
the video to Pedro. David and Fabiana exchange opinions while they enjoy the fine music.

Fabiana says:

Jhon says:

not hurting

might come:(

I cannot believe it!!

Pedro surprises his father by sending him an invitation to his TV, and while they share the
video they talk about Charlie’s new songs. Fabiana also contacts Charlie’s brothers, who

enjoy their artist brother’s music miles away from their birth city, in their PCs at their office.

K10067_C017.indd 451 8/3/2010 10:35:15 PM

452  ◾  Mobile Web 2.0

17.2 What Is IMS?
The	major	evolution	in	fixed	and	mobile	telephony	networks	occurred	in	the	last	
20	years.	Today,	we	live	in	a	world	in	which	digital	communication	has	changed	
the	way	people	communicate.	Mobile	telephony	has	a	central	role	in	this	change,	
as	it	is	not	only	used	for	“talking,”	but	also	for	capturing	and	reproducing	videos,	
taking	pictures,	consulting	work	schedules,	news	pages,	using	dynamic	maps,	etc.

Historically,	voice,	data,	and	video	services	have	been	provided	on	dedicated	
network	infrastructures,	even	by	different	telecommunication	providers.	In	turn,	it	
took	multiple	types	of	devices	exclusively	designed	to	access	the	services	provided	
by	each	 type	of	network	 (cell	phone,	notebook,	fixed	 telephone,	TV,	etc.)	using	
different	identities	and	without	the	possibility	of	“moving”	(roaming)	in	a	trans-
parent	way	among	those	devices.	These	different	networks	have	offered	us	multiple,	
powerful,	and	attractive	ways	of	communication;	nevertheless,	the	services	offered	
behave	as	islands	(video,	voice,	data,	email,	etc.)	with	no	synergy	between	them.

Figure	17.1	shows	the	services	offered	by	each	access	technology:	cell	phone,	cable	
modem	(TV	and	Internet),	digital	subscriber	line	(DSL)	(fixed	telephony	and	Internet)	
and	Wi-Fi.	The	limitations	given	by	the	base	technology	hinder	agility	in	broadening	
the	range	of	services	offered	as	well	as	their	integration	by	means	of	different	channels.

Classic	 telephony	 employs	 a	 scheme	 based	 on	 an	 end	 device	 connected	 to	 a	
circuit-switched	network	with	services	supplied	only	by	the	provider	of	telephony	
or	specific	services.	This	scheme	tends	to	disappear	in	the	evolution	of	“networks.”	

Applications
Voice, SMS, pictures

User identity User identity User identity User identity
Cellphone network

GSM, UMTS and CDMA
Cable network
Cable Modem

Fixed phone network
DSL, FTTP

WiFi network
Set of standards of IEEE 802.11

Applications
TV, movies, e-mail, IM,

Web, games, videos,
pictures, �les, music

These vertical islands slow deployment of services...

Applications
Voice, e-mail, IM,

Web, games, videos,
pictures, �les, music

Applications
e-mail, IM, Web,
games, movies,
videos, pictures,

�les, music

Figure 17.1 Without IMS, network functionality exists in silos, slowing deploy-
ment of services.

K10067_C017.indd 452 8/3/2010 10:35:16 PM

JAVA IMS Mobile Application Development ◾  453

It	is	a	fact	that,	in	IP	networks,	any	workstation	(host)	may	act	as	a	consumer	or	
a	provider	of	 services,	giving	 rise	 to	P2P	networks	 (peer-to-peer).	At	a	 time,	 the	
most	widespread	service	was	NAPSTER	[L1].	Other	P2P	networks	emerged	later,	
such	as	Kazaa	[L2]	and	eMule	[L3],	which	were	also	used	to	share	files.	Other	P2P	
networks	promote	instant	messaging	services,	from	the	precursor	ICQ	[L4]	to	the	
popular	 SKYPE	 [L5]	 and	 MSN	 [L6],	 which	 permit	 connections	 between	 peers	
without	the	need	of	a	central	Internet	service	provider	server.

IMS	is	a	network	architecture,	which	converges	multiple	services	offered	over	a	
common	infrastructure	for	IP	data	transmission.	IMS	is	a	set	of	specifications	that	
describes	the	NGN	architecture	for	 implementing	IP-based	telephony	and	multi-
media	 services.	 IMS	defines	a	complete	architecture	and	 framework	 that	enables	
the	convergence	of	voice,	video,	data,	and	mobile	networking	technology	over	an	
IP-based	infrastructure.	It	fills	the	gap	between	the	two	most	successful	communi-
cation	paradigms:	cellular	and	Internet	technology.	Did	you	ever	imagine	that	you	
could	surf	the	Web,	play	an	online	game,	or	join	a	videoconference	no	matter	where	
you	are	using	your	cell	phone	from?	This	is	the	initial	vision	for	IMS:	to	provide	cel-
lular	access	to	all	the	services	that	the	Internet	provides.	Another	example	of	the	new	
services	IMS	provides	within	the	world	of	applications	is	thinking	of	systems	such	
as	TWITTER	[L7],	which	currently	enables	people	to	find	out	what	their	friends	
are	doing;	IMS-TWITTER	would	also	allow	us	to	“see”	what	is	happening,	vote	
online,	etc.	This	new	form	of	communication	allows	any	mobile	telephony	device	
to	consume	and/or	produce	multimedia	services,	which	combine	voice	on	IP	calls,	
teleconferences,	file	transference	(music,	video,	general	documents,	etc.),	web	navi-
gation,	instant	messaging,	etc.,	opening	the	doors	to	attractive	multimedia	applica-
tions	[R1].	Also,	communication	companies	can	provide	users	their	service	packages	
in	an	increasingly	attractive	way,	combining,	for	example,	a	flat	rate	for	voice	calls	
over	the	fixed	and	cellular	lines,	broadband	Internet,	and	IP	television	[R1].

The	 3GPP	 consortium	 (Third	 Generation	 Partnership	 Project)	 developed	 the	
first	 standard	 for	delivering	 “Internet	 services”	over	GPRS	 (General	Packet	Radio	
Service)	[L8].	This	specification	is	called	R5	(Release	5)	3GPP	(3GPP	R5).	IMS	is	
part	of	that	specification.	Then,	the	vision	evolved	into	a	standard	that	contemplated	
other	networks	apart	from	GPRS,	such	as	wireless	networks,	fixed	telephoning,	and	
CDMA2000	[L9].	Thus	arises	a	new	specification	called	R7	(Release	7)	3GPP	(3GPP	
R7)	in	which	the	consortiums	3GPP2	[L10]	and	TISPAN	[L11]	also	participated.

The	IMS	architecture	over	network	telecommunications	offers	a	complete	con-
vergence	of	standard	services	(fixed	and	mobile	telephony,	cable	and	satellite	TV,	
Internet).	With	IMS,	telecommunication	operators	can	 integrate	fixed	calls	with	
mobile	ones	and	voice	with	broadband	Internet	access,	TV	and	video	on	demand,	
opening	doors	to	new	multimedia	residential	and	business	applications.	[R1].

Figure	17.2	shows	how	IMS	provides	a	common	consolidated	communications	
network.	This	way,	the	user	has	access	to	a	multiplicity	of	different	services,	inte-
grated	 through	 a	 single	 identity	with	 the	 capacity	 to	 change	media	nimbly	 and	
improve	its	experience.

K10067_C017.indd 453 8/3/2010 10:35:16 PM

454  ◾  Mobile Web 2.0

17.3 IMS Architecture
The	IMS	architecture	design	proposed	by	the	3GPP	is	based	on	functional	layers.	
This	 solution	 facilitates	 the	 services	 offered	 through	 the	 IMS	 network	 indepen-
dent	of	the	access	network.	Thus,	any	IMS	network	subscriber	that	communicates	
throughout	their	mobile	telephone	or	PC	uses	the	same	presence	and	group	man-
agement	service,	to	name	a	few,	regardless	of	the	access	technology	used.	However,	
the	potentials	for	bandwidth	and	latency	of	connections	could	be	different,	like	the	
processing	speed	in	the	IMS	device	[R2].

In	turn,	layer-based	design	minimizes	the	dependency	between	them,	facilitat-
ing	the	addition	of	new	access	networks	to	the	IMS	network.	For	example,	WLAN	
(wireless	 local	 area	 network)	 technology	 was	 added	 to	 the	 IMS	 architecture	 in	
Release	6	and	fixed	broadband	access	in	Release	7	[R2].

Figure	17.3	illustrates	the	layered	modular	design	of	the	IMS	architecture.

17.3.1 The Role of the SIP Protocol
Internet	applications	typically	need	to	create	and	maintain	sessions	between	par-
ticipants	of	 a	 communication	 (client-server	or	peer-to-peer)	 to	 facilitate	 the	data	
exchange	between	them.	In	turn,	the	exchange	of	multimedia	information	is	key	in	
applications	over	an	all-IP	network	such	as	IMS,	and	session	management	becomes	
an	essential	issue.	This	led	to	the	adoption	of	a	protocol	for	session	management	

User identity and status

Cellphone network
UMTS and CDMA

Cable network
Cable Modem

Fixed phone network
DSL, FTTP

WIFI network
Set of standards
of IEEE 802.11

Session control Application framework (tools)

Common network framework

Applications

Voice messaging - Pictures - Entertainment
Music - Movies - News - Collaboration - Interactive Gaming

e-mail - Web -Sharing - Live Video

Users

Converged framework speeds broadband application development

Figure 17.2 With IMS, the networks converge in a common network framework.

K10067_C017.indd 454 8/3/2010 10:35:18 PM

JAVA IMS Mobile Application Development ◾  455

A
pp

lic
at

io
n

an
d

se
rv

ic
e

la
ye

r

A
pp

lic
at

io
n

su
b

la
ye

r

Se
rv

ic
e

su
b

la
ye

r

SC
P

IV
R

I-
C

SC
F

M
RF

C
P-

C
SC

F

TC
P

M
RF

P

G
G

SN
PD

SN

PC
F

SB
C

PD
F

PD
F A

G
F

M
G

W
SG

W

SG
SN

U
M

T
S

RA
N

C
D

M
A

 R
A

N

xD
SL

/L
A

N
A

cc
es

s
W

IF
I/

W
IM

A
X

A
cc

es
s

H
FC

A
cc

es
s

T
D

M
A

cc
es

s
PS

T
N

PL
M

N

PG
F

O
th

er
pa

ck
et

ne
tw

or
k

IP

IP
 n

et
w

or
k

D
H

C
P

IP
Se

c
U

D
P

RT
P

A
G

C
F

M
G

C
F

PG
C

F

S-
C

SC
F

BG
C

F

M
es

sa
gi

ng
Pr

es
en

ce
SM

S
G

ro
up

St
re

am
in

g
…

SI
P

A
S

3r
d

pa
rt

y
ap

pl
ic

at
io

n

O
SS

H
SS

Se
ss

io
n

co
nt

ro
l

la
ye

r

Tr
an

sp
or

t
an

d
ac

ce
ss

la
ye

r

Fi
gu

re
 1

7.
3

IM
S

ar
ch

it
ec

tu
re

–l
ay

er
ed

 d
es

ig
n.

K10067_C017.indd 455 8/3/2010 10:35:19 PM

456  ◾  Mobile Web 2.0

characterized	 by	 its	 simplicity,	 maturity,	 extensibility,	 and	 flexibility	 regarding	
mobility	such	as	SIP.	SIP	(Session	Initiation	Protocol)	is	a	protocol	developed	by	
IETF	belonging	to	the	application	layer	of	TCP/IP	model	and	is	used	to	establish,	
modify,	and	terminate	multimedia	sessions	in	an	IP	network.	The	complete	specifi-
cation	is	available	on	the	IETF	RFC	3261	[L12].	Typical	applications	are	related	to	
video,	voice,	gaming,	messaging,	call	control,	and	presence.	An	SIP	session	could	
be	a	phone	call	between	two	or	more	people	or	a	videoconference.	The	role	of	SIP	in	
these	applications	is,	during	the	establishment	of	the	session,	the	negotiation	of	the	
communication	 parameters	 between	 its	 participants.	 This	 negotiation	 involves	
the	medium	(text,	voice,	video,	or	other)	transport	protocol,	typically	RTP	(Real-time	
Transport	Protocol)	 for	 streaming	and	encoding	technology	(codec).	Once	 these	
parameters	are	agreed	upon,	participants	communicate	using	the	selected	method.	
At	this	point,	SIP	delegates	the	transmission	in	an	appropriate	protocol.	Once	the	
communication	in	completed,	SIP	is	used	again	to	end	the	session.

One	of	the	design	features	of	SIP	is	its	ability	to	operate	in	collaboration	with	
other	protocols	used	for	specific	tasks,	such	as	SDP	(Session	Description	Protocol)	
to	describe	the	parameters	previously	mentioned	in	the	negotiation	phase	and	RTP	
for	multimedia	data	transport.

In	a	word,	the	role	of	SIP	in	relation	to	these	applications	is	session	management	
and	consensus	of	 its	attributes,	delegating	transport	of	voice,	video,	and	stream-
ing	to	other	protocols	such	as	RTP	(Real-time	Transport	Protocol)/RTCP	(RTP	
Control	Protocol)	and	SCTP	(Stream	Control	Transmission	Protocol).	All	this	is	
accomplished	by	exchanging	text	messages.

User	identification	in	IMS	is	based	on	the	addressing	scheme	proposed	by	SIP.	
SIP	addresses	are	similar	to	e-mail,	prepending	prefix	sip:	or	sips:	(secure	SIP)	and	
can	also	contain	additional	parameters	that	may	indicate	preferences.	Some	exam-
ples	of	URIs	are
sip:tom@domain.com
sips:jerry.brown@example.com
sip:mafalda@linti.unlp.edu.ar;	transport=tcp

SIP	is	a	request-response	type	protocol	and	its	messages	have	a	format,	which	is	
similar	to	HTTP	(Hypertext	Transfer	Protocol)	and	SMTP	(Simple	Mail	Transfer	
Protocol),	used	in	Web	pages	and	e-mail	distribution,	respectively.	One	of	the	objec-
tives	of	SIP	design	was	to	transform	telephony	into	another	Internet	service,	which	
is	why	it	was	based	on	two	of	the	most	disseminated	protocols.	The	SIP	message	
format	consists	of	three	parts:	start	line,	header,	and	body.	The	start	line	enables	
to	 distinguish	 between	 the	 SIP	 messages	 that	 represent	 requests	 and	 those	 that	
represent	responses.	In	the	request	SIP	messages,	the	beginning	line	contains	the	
method	name,	the	request	SIP	URI,	and	the	protocol	version	(SIP/2.0	now).	The	
heading	 is	 composed	of	multiple	fields	 that	contain	 information	related	with	
the	request,	i.e.,	who	initiates	it,	who	is	the	receptor,	and	the	CALL-ID	(identifies	a	
SIP	dialogue).	The	information	in	these	fields	is	the	name-value	type,	enabling	the	

K10067_C017.indd 456 8/3/2010 10:35:19 PM

JAVA IMS Mobile Application Development ◾  457

existence	of	multi-value	fields,	like	in	the	case	of	the	field	Via	and	From.	Figure 17.4	
presents	an	example	of	SIP	INVITE	request	message,	which	in	this	case	expresses	
the	case	of	a	user	named	Felipe	who	wishes	to	initiate	a	conversation	with	Mafalda.

The	request	type	messages	provided	by	the	SIP	protocol	are	described	in	Table 17.1	
detailing	the	IETF	RFCs	in	which	they	were	defined.	The	main	specification	of	the	
SIP	RFC	3261	[L12]	defined	the	six	basic	methods	for	session	management.	However,	
these	were	not	sufficient	to	provide	support	services	that	are	widely	accepted	today	
such	as	instant	messaging	and	presence,	which	is	why	SIP	was	extended	in	the	RFC	
3428	[L17],	3265	[L15],	3856	[L20],	and	3903	[L13]	to	include	four	more	methods.	
In	addition,	other	request	type	messages	compete	the	range	of	messages	provided	by	
the	SIP	protocol	defined	in	the	RFC	3311	[L16],	2976	[L18],	and	3262	[L19].

SIP	response	messages	contain	a	starting	line	called	state	line	conformed	by	the	
protocol	version,	state	code,	and	a	description	of	the	error	code	(a	reason	phrase).	
The	state	codes	are	grouped	in	six	categories	also	established	in	the	RFC	3261	[L12]	
and	summarized	in	Table	17.2.

Figure	17.5	shows	an	SIP	OK	response	message	example,	which	expresses	that	
Mafalda	accepts	Felipe’s	invitation.

Next,	we	 see	 the	SIP	dialogue	between	Mafalda	and	Felipe,	held	 for	a	voice	
communication.	The	diagram	in	Figure	17.6	presents	the	sequence	of	SIP	messages	
sent	to	establish	the	session,	delegate	the	voice	transport	on	the	RTP	protocol,	and	
finally	end	the	session.

Table	17.3	describes	in	detail	the	sequence	of	SIP	messages	exchanged	between	
Felipe	and	Mafalda	to	establish	the	session,	which	will	enable	them	to	“speak,”	the	
delegation	on	the	specific	protocol	that	will	transport	(RTP)	the	voice	and	finally,	
the	end	of	the	session.

Request line

Method
name

INVITE sip:mafalda@linti.unlp.edu.ar SIP/2.0

Via: SIP/2.0/UDP 10.20.30.40:5060
From: Felipe <sip:felipe@historieta.com.ar>;tag = 589304
To: Mafalda <sip:mafalda@linti.unlp.edu.ar>
Call-ID: 8204589102
CSeq: 1 INVITE
Contact: <sip:Felipe@10.20.30.40>
Content-Type: application/sdp
Content-Length: 141
v = 0
o = Felipe 2890844526 2890844526 IN IP4 10.20.30.40
s = Session SDP
c = IN IP4 10.20.30.40
t = 3034423619 0
m = audio 49170 RTP/AVP 0
a = r

Request URI
Protocol
version

Felipe invites Mafalda
to participate in a session

Heading

Body

Figure 17.4 SIP Invite message.

K10067_C017.indd 457 8/3/2010 10:35:21 PM

458  ◾  Mobile Web 2.0

Components or elements of the SIP architecture:

User	Agent	(UA):	A	logical	entity	that	can	act	as	both	a	user	agent	client	and	
user	agent	server.

User	Agent	Client	(UAC):	A	user	agent	client	is	a	logical	entity	that	creates	a	new	
request,	and	then	uses	the	client	transaction	state	machinery	to	send	it.	The	
role	of	UAC	lasts	only	for	the	duration	of	that	transaction.	In	other	words,	
if	a	piece	of	software	initiates	a	request,	it	acts	as	a	UAC	for	the	duration	of	

Table 17.1 SIP Request Messages

Name Meaning

Specified in RFC 3261

Invite Establishes a session

Cancel Cancels a pending session

Bye Ends a session

Register Maps a public URI with the current location of
the user

Ack Acknowledges the reception of an end response
originated by INVITE

Options Consults a server about its capabilities

Specified in RFC 3265, RFC 3856 Y RFC 3903

Publish Updates information on a server

Subscribe Requests notifications about particular events

Notify Notifies the User Agent about the occurrence of a
particular event

Specified in RFC 3311

Update Modifies some session characteristics

Specified in RFC 3428

Message Transport PSNT telephone signaling

Specified in RFC 2976

Info Transport PSNT telephone signaling

Specified in RFC 3262

Confirms the reception of a provisional response

K10067_C017.indd 458 8/3/2010 10:35:21 PM

JAVA IMS Mobile Application Development ◾  459

SIP/2.0 200

From: Felipe <sip:felipe@historieta.com.ar>;tag = 589304
To: Mafalda <sip:mafalda@linti.unlp.edu.ar>;tag = 314159
Call-ID: 8204589102
CSeq: 1 INVITE
Contact: <sip:Mafalda@10.20.30.41>
Content-Type: application/sdp
Content-Length: 140

v = 0
o = Mafalda 2890844527 2890844527 IN IP4 10.20.30.41
s = Session SDP
c = IN IP4 10.20.30.41
t = 3034423619 0

OK

Protocol
version

Error
code

Error
description

Header

Body

Figure 17.5 SIP OK message.

Table 17.2 Family of State Codes in the SIP Response Messages

Code Class Functions Examples

1XX Provisional
informational

Request has been
received and is being
processed

100 trying

180 ringing

183 session in progress

2XX OK Successful, understood,
accepted

20 OK

202 accepted

3XX Redirect Redirect or revise request 300 moved

305 use proxy

4XX Client error Error detected by the
client, syntax error

401 unauthorized

404 not found

415 unsupported
media type

5XX Server error Error detected by the
server, cannot fulfill a
valid request

500 not implemented

501 server timeout

6XX Global
network error

Request cannot be
fulfilled by any server

600 busy everywhere

603 decline

K10067_C017.indd 459 8/3/2010 10:35:22 PM

460  ◾  Mobile Web 2.0

that	transaction.	If	it	receives	a	request	later,	it	assumes	the	role	of	a	user	agent	
server	for	the	processing	of	that	transaction.

User	Agent	Server	(UAS):	A	user	agent	server	is	a	logical	entity	that	generates	
a	 response	 to	 a	 SIP	 request.	 The	 response	 accepts,	 rejects,	 or	 redirects	 the	
request.	 This	 role	 lasts	 only	 for	 the	 duration	 of	 that	 transaction.	 In	 other	
words,	if	a	piece	of	software	responds	to	a	request,	it	acts	as	a	UAS	for	the	
duration	of	that	transaction.	If	it	generates	a	request	later,	it	assumes	the	role	
of	a	user	agent	client	for	the	processing	of	that	transaction.

The	role	of	UAC	and	UAS,	as	well	as	proxy	and	redirect	servers,	are	defined	on	a	
transaction-by-transaction	basis.	For	example,	the	user	agent	initiating	a	call	
acts	as	a	UAC	when	sending	the	initial	INVITE	request	and	as	a	UAS	when	
receiving	a	BYE	request	from	the	callee.

Similarly,	the	same	software	can	act	as	a	proxy	server	for	one	request	and	as	a	
redirect	server	for	the	next	request.

Felipe Mafalda

1: INVITED ()

2: 100 Trying ()

3: 180 Ringing ()

5: ACK ()

7: BYE ()

8: 200 Ok ()

6: voice transmission over RTP

4: Transmissiόn de voz por RTP

Multiple ringing
messages until

Mafalda responds

Now Felipe
decides to end

the communication

Figure 17.6 SIP dialogue between Felipe and Mafalda.

K10067_C017.indd 460 8/3/2010 10:35:22 PM

JAVA IMS Mobile Application Development ◾  461

Table 17.3 Sequence of SIP Messages between Felipe and Mafalda

INVITE sip:mafalda@linti.unlp.edu.arSIP/2.0

Via: SIP/2.0/UDP 10.20.30.40:5060

From: Felipe <sip:felipe@historieta.com.
ar>;tag=589304

To: Mafalda <sip:mafalda@linti.unlp.edu.ar>

Call-ID: 8204589102

CSeq: 1 INVITE

Contact: <sip:Felipe@10.20.30.40>

Content-Type: application/sdp

Content-Length: 141

v = 0

0 = Felipe2890844526 2890844526 IN
IP410.20.30.40

s = Session SDP

c = IN IP410.20.30.40

t = 3034423619 0

M = audio 49170 RTP/AVP 0

a = rtpmap:0 PCMU/8000

Felipe sends an INVITE message
to Mafalda telling her that he
wishes to communicate with
her. The body of the message
contains the negotiation
parameters for voice
transmission in SDP format.

SIP/2.0 100 Trying

From: Felipe <sip:felipe@historieta.com.
ar>;tag=589304

To: Mafalda <sip:mafalda@linti.unlp.edu.ar>

Call-ID: 8204589102

CSeq: 1 INVITE

Content-Length: 0

Mafalda’s device responds
automatically with a Trying
message to signal that the
INVITE has been received.

SIP/2.0180 Ringing

From: Felipe <sip:felipe@historieta.com.
ar>;tag=589304

To: Mafalda <sip:mafalda@linti.unlp.edu.
ar>;tag=314159

Call-ID: 8204589102

CSeq: 1 INVITE

Content Length: 0

While Mafalda’s device rings, it
automatically sends ringing
messages to inform of this
situation.

(continued)

K10067_C017.indd 461 8/3/2010 10:35:22 PM

462  ◾  Mobile Web 2.0

Table 17.3 (continued) Sequence of SIP Messages between Felipe
and Mafalda

SIP/2.0 200 OK

From: Felipe <sip:felipe@historieta.com.
ar>;tag=589304

To: Mafalda <sip:mafalda@linti.unlp.edu.
ar>;tag=314159

Call-ID: 8204589102

CSeq: 1 INVITE

Contact: <sip:Mafalda@10:20.30.41>

Content-Type: application/sdp

Content-Length: 140

v = 0

o = Mafalda 2890844527 2890844527 IN
IP410.20.30.41

s = Session SDP

c = IN IP410.20.30.41

t = 30344236190

m = audio 3456 RTP/AVP 0

a = rtpmap:0 PCMU/8000

Mafalda takes Felipe’s call
sending the OK response
message. The body of the
message contains the agreed
parameters for voice
transmission in SDP format.

ACK sip:mafalda@linti.unlp.edu.ar SIP/2.0

Via: SIP/2.0/UDP 10.20.30.41:5060

Route: <sip:Mafalda@10.20.30.41>

From: Felipe <sip:felipe@historieta.com.
ar>;tag=589304

To: Mafalda <sip:mafalda@linti.unlp.edu.
ar>;tag=314159

Call-ID: 8204589102

CSeq: 1 ACK

Content-Length: 0

Felipe confirms with an ACK
message. This is the only
request message that cannot be
replied and is only sent for
INVITE.

Now Mafalda and Felipe are talking through a voice channel established with
the SDP parameters which were agreed upon by means of the OK method.
RTP packets of audio data are going in both directions over ports 49170 and
3456 using PCMU/8000 encoding.

K10067_C017.indd 462 8/3/2010 10:35:22 PM

JAVA IMS Mobile Application Development ◾  463

The	most	relevant	functions	of	each	layer	of	the	IMS	network	are	detailed	below.

17.3.2 Application and Service Layer
In	this	layer,	the	services	offered	by	the	IMS	network	are	available,	whether	pro-
vided	in	a	standard	way	or	as	the	new	services	that	arise	from	the	adoption	of	this	
new	converging	network.	Typically,	all	the	applications	and	services	over	the	IMS	
network	are	running	on	SIP	application	services	(SIP	AS)	located	in	the	Application	
sub-layer.	Its	important	to	highlight	the	flexibility	of	the	IMS	architecture	for	the	
deployment	 of	 new	 services	 through	 third-party	 application	 servers,	 available	 as	
well	through	a	peer-to-peer	architecture	based	on	SIP	that	do	not	require	a	cen-
tral	 server.	 The	 Open	 Mobile	 Alliance	 (OMA)	 comprised	 by	 the	 main	 mobile	
operators	and	equipment	manufacturers	promotes	the	use	of	interoperable	services	
among	 different	 devices,	 geographic	 locations,	 service	 providers,	 operators,	 and	
networks,	named	by	OMA	as	IMS enablers.	They	provide	specific	Internet	services	
with	rich	capabilities	related	to	communities,	such	as	presence	information,	group	
management,	location,	instant	messaging	(IM),	push-to-talk	over	cellular,	and	IP	
conferencing.	 The	 IMS	 enablers	 collaborate	 on	 the	 development	 of	 multimedia	
applications	from	the	Services	sub-layer.

Table 17.3 (continued) Sequence of SIP Messages between Felipe
and Mafalda

BYE sip:mafalda@linti.unlp.edu.ar SIP/2.0

Via: SIP/2.0/UDP 10.20.30.41:5060

To: Mafalda <sip:mafalda@linti.unlp.edu.
ar>;tag=314159

From: Felipe <sip:felipe@historieta.com.
ar>;tag=589304

Call-ID: 8204589102

CSeq: 1 BYE

Content-Length: 0

To end the communication, any
of the users, either Mafalda or
Felipe, can send a BYE message
to finalize the SIP session. In
this case, Felipe decides to end
the session.

SIP/2.0 200 OK

To: Mafalda <sip:mafalda@linti.unlp.edu.
ar>;tag=314159

From: Felipe <sip:felipe@historieta.com.
ar>;tag=589304

Call-ID: 8204589102

CSeq: 1 BYE

Content-Length: 0

Mafalda receives the BYE
request and responds with an
OK message, terminating the
communication.

K10067_C017.indd 463 8/3/2010 10:35:22 PM

464  ◾  Mobile Web 2.0

One	of	the	key	features	of	the	IMS	architecture	is	its	flexibility	to	incorpo-
rate	new	 services	 to	 end	users.	 It	 is	 possible	 to	use	network	 resources	 (such	 as	
caller	 ID,	 user	 location	 service)	 and	 provide	 reliable	 services	 with	 feature-rich	
Web	2.0-type,	among	other	things	for	entertainment	and	games.	Currently,	these	
collaboration	 capabilities	 and	 real-time	 communications	 provided	 by	 the	 IMS	
enablers	are	being	incorporated	into	Internet	services	and	applications.	The	gen-
eration	of	this	new	ecosystem	of	new	applications	is	the	great	challenge	of	IMS.	
Multimedia	 push,	 real-time	 video	 sharing,	 real-time	 peer-to-peer	 multimedia	
streaming	service,	interactive	gaming,	and	videoconferencing	can	be	considered	
in	the	category	of	services.

17.3.3 Session Control Layer
This	 layer	 basically	 implements	 the	 control	 session.	 This	 aspect	 covers	 from	 the	
user	 registration,	 the	 SIP	 session	 routing,	 to	 the	 maintenance	 and	 management	
of	 the	user	data	and	policies	 that	ensure	service	quality.	The	SIP	session	routing	
could	consist	on	requests	from	a	device,	toward	specific	services	hosted	in	an	AS	
or	toward	another	user	in	the	network	(peer-to-peer)	of	the	same	provider	or	doing	
roaming	 from	another	network	or	 toward	a	predefined	component	which	meets	
calls	in	eventual	situations.

The	core	of	the	IMS	architecture	is	the	CSCF	(call	session	control	function)	
and	its	main	functions	 include	registration,	session	establishment	and	SIP	rout-
ing	 strategies,	which	 it	 carries	out	 through	 the	 following	components:	P-CSCF	
(proxy-call	 session	 control	 function),	 I-CSCF	 (interrogating-call	 session	 control	
function),	and	S-CSCF	(serving-call	session	control	function)	[R2].	In	turn,	the	
IMS	architecture	 specifies	 a	main	database	 server	 called	HSS	 (home	 subscriber	
server)	which	stores	information	of	all	the	subscribers	and	data	related	to	the	ser-
vices.	P-CSCF	is	 the	first	contact	point	of	 the	end	user	with	the	IMS	network;	
this	implies	that	all	SIP	signaling	traffic	between	the	user	device	and	the	network	
passes	through	the	P-CSCF.

The	main	function	of	I-CSCF	is	the	recovery	of	the	S-CSCF	or	the	AS	name	
that	 will	 attend	 the	 SIP	 request.	 It	 is	 carried	 out	 using	 the	 subscriber’s	 profile	
information	stored	 in	the	HSS.	Another	 function	of	I-CSCF	is	 to	provide	con-
cealment	of	 the	 topology	among	networks	 from	different	operators.	S-CSCF	 is	
responsible	for	the	registration,	the	SIP	routing	decisions,	and	the	maintenance	of	
the	session	states.

17.3.4 Transport and Access Layer
The	 most	 important	 goal	 of	 IMS	 is	 the	 convergence	 between	 fixed	 and	 mobile	
networks	 by	 creating	 a	 new	 paradigm	 in	 telecommunications	 services,	 where	
the	 system	 focuses	 on	 the	 user	 as	 opposed	 to	 the	 current	 paradigm	 focused	 on	
devices	[R2].	This	convergence	was	designed	to	give	end	users	new	communication	

K10067_C017.indd 464 8/3/2010 10:35:22 PM

JAVA IMS Mobile Application Development ◾  465

experiences	provided	across	multiple	geographic	locations,	devices,	access	technolo-
gies	and	services.	The	integration	of	fixed	and	mobile	world	presents	the	user	the	
best	of	each,	offering	the	convenience	and	availability	of	mobile	services,	and	the	
reliability	and	quality	of	fixed	[R2].

As	 shown	 in	Figure	17.3,	 one	of	 the	most	prominent	 features	 of	 IMS	 is	 the	
capacity	 to	 separate	 services	 from	 transport	 technology;	 thus	 a	 3G	 mobile	 tele-
phone	connects	to	IMS	network	using	protocols	from	the	IP	and	SIP	family	in	the	
same	way	that	a	PC	does	through	the	DSL.	More	significantly,	in	a	mobile	environ-
ment	in	which	the	user	is	able	to	move	geographically,	the	IMS	independent	access	
not	only	enables	the	user	to	roam	between	different	providers	but	the	device	could	
allow	the	user	to	change	the	connection	method	between	different	access	technolo-
gies,	making	better	use	of	available	types	of	connections.	For	example,	a	telephone	
with	Wi-Fi	 technology	 could	 change	 in	 a	 transparent	way	between	 the	3G	and	
Wi-Fi	access,	and	the	users	could	also	change	the	device,	i.e.,	between	a	cell	phone	
and	the	PC,	maintaining	the	same	session	and	user	[R4].	In	this	layer,	we	can	find	
the	traditional	Internet	protocols	and	devices.

With	a	look	into	the	OSI	model,	we	have	in	the	physical	and	data	link	lay-
ers	 the	 access	 technologies	 DSL,	 3G,	 Cable	 Modem,	 WiFi,	 Ethernet,	 etc.,	 in	
the	network	layer	the	IP	protocol,	essential	for	the	interconnection	of	all	these	
underlying	 technologies,	 and	 in	 the	 transport	 layer	 the	protocols	TCP,	UDP,	
RTP/RCTP,	etc.

The	core	of	the	IMS	network	is	based	on	the	same	pillars	as	the	Internet,	as	
illustrated	in	Figure	17.3.	IP	is	the	core	of	this	converging	network	architecture.	
In	 turn,	 the	 IMS	design	was	 conceived	 as	well	 taking	 into	 account	 the	 service	
security	and	quality	as	essential	elements.	Security	in	IMS	networks	is	applied	in	
three	different	scenarios:	in	the	first	contact	point	of	the	user	with	the	IMS	net-
work,	which	is	between	the	user	device	and	the	IMS	network,	among	the	different	
devices	of	 the	diverse	 layers	of	 the	operator’s	core	network	and	among	the	core	
networks	of	the	different	operators	for	the	case	of	the	use	of	roaming.	Originally,	
IMS	security	support	was	provided	by	the	IPSec	protocol	(RFC	2401,	RFC	2406,	
RFC	2407,	and	RFC	2409)	for	access	from	both	the	user’s	device	and	for	routing	
between	different	networks,	then	the	TLS	protocol	(Transport	Layer	Security—
RFC	2246)	was	added	also	for	the	same	scenarios.	Moreover,	the	protocol	annexed	
AKA	(Authentication	and	Key	Agreement)	for	user	authentication	when	accessing	
the	network.

The	service	quality	(QoS)	is	a	key	component	of	IMS;	for	a	particular	session,	
it	could	be	determined	by	multiple	factors,	among	them,	the	maximum	bandwidth	
assigned	to	a	user	based	on	his	 subscription	or	 the	current	 state	of	 the	network.	
IMS	supports	multiple	models	of	point-to-point	quality	service,	the	user’s	devices	
can	use	specific	protocols	of	a	link	layer	for	resource	reservation,	i.e.,	PDP	Context	
Activation	for	parameter	reservation	of	QoS	in	mobile	networks,	RSVP	(Resource	
ReSerVation	Protocol,	RFC	2205)	or	DiffServ	(Differentiated	Services,	RFC	2475	
and	RFC	3260).

K10067_C017.indd 465 8/3/2010 10:35:23 PM

466  ◾  Mobile Web 2.0

17.4 The Challenge Proposed by IMS
for New Applications

The	advantage	of	having	a	converging	network	of	a	higher	bandwidth	and	service	
quality	support	enables	us	to	build	new	multimedia	applications	and	services	which	
enhance	user	experience.

The	possibility	of	using	multimedia	services	in	a	simultaneous	way	encourages	
the	 construction	 of	 content	 rich	 applications,	 interactive	 and,	 in	 general	 terms,	
more	 suited	 to	 people’s	 new	 communication	 behaviors	 that	 only	 consume	 what	
they	are	 interested	 in	 (iTunes	 in	an	example),	 that	 register	 themselves	 in	virtual	
communities,	 etc.	The	IMS	network	user	can	manage	 their	own	contents,	 share	
them	with	other	users,	such	as	“live	video.”	Thus,	IMS	facilitates	“user–user”	and	
“user–content”	communication.

Cell	 phones	 bring	 more	 and	 more	 benefits,	 their	 screens	 are	 more	 accurate	
and	larger,	they	have	photograph	and	video	cameras	incorporated,	they	reproduce	
music,	and	have	GPS	navigators.	They	are	mobile	devices	with	the	capacity	of	being	
always	on,	 representing	a	challenge	 for	new	applications	 that	 stop	being	 isolated	
entities	that	exchange	information	through	the	user	interface.	The	new	generation	
of	applications	will	be	peer-to-peer,	enabling	to	share	music,	games,	boards,	 live	
video,	etc.

17.5 Java Support for IMS and SIP
The	neutrality	of	the	Java	platform,	the	ability	to	be	available	“everywhere”	from	
mobile	devices	with	limited	hardware	resources	including	servers	to	desktop	PCs,	
laptops,	etc.,	and	the	standardization	of	APIs	to	access	the	incorporated	function-
alities	and	build	new	ones	without	depending	on	manufacturer’s	particular	imple-
mentations,	 positions	 Java	 as	 an	 ideal	 and	 convenient	development	platform	 for	
building	new	converging	applications	through	IMS.	Another	important	Java	fea-
ture	 is	 its	availability	 in	different	IDEs	(integrated	development	environment)	of	
the	free	software	community,	like	the	Eclipse	and	NetBeans	initiatives.

JCP	(Java	Community	Process)	has	various	activities	focused	on	the	definition	
of	multiple	JSRs	(Java	Specification	Request)	that	provide	support	for	the	develop-
ment	of	applications	based	on	SIP	in	the	different	Java	technology	flavors.

In	turn,	the	JAIN	(Java	APIs	for	Integrated	Networks)	initiative	of	JCP	defines	
APIs	(application	programming	interface)	that	enable	the	use	of	JAVA	technologies	
to	develop	telecommunication	services	in	converging	networks	[L21].

The	JAIN	initiative	extends	Java	technology	to	provide	service	portability	(write	
once,	run	anywhere),	network	independence	(any	network),	and	open	development	
(by	anyone)	promoting	a	chain	of	open	value	ranging	from	the	network	equipment,	
computer	 and	 device	 manufacturers	 to	 the	 outsource	 service	 providers,	 having	
impact	in	the	technological	structure	and	telecommunication	company	businesses.

K10067_C017.indd 466 8/3/2010 10:35:23 PM

JAVA IMS Mobile Application Development ◾  467

The	goal	of	this	initiative	is	to	change	from	closed	and	proprietary	systems	to	
open	environments,	having	an	influence	in	the	same	way	JEE	has	done	in	the	IT	
industry.	This	way,	the	communication	operators	can	extend	their	portfolio	services	
by	getting	faster,	simpler,	and	less	expensive	applications	[L22].

Within	the	JCP,	multiple	APIs	JAVA	evolve	in	relation	to	SIP	and	IMS	[L23–
L30];	they	are	described	in	Table	17.4:

Java	is	the	standard	platform	for	both	server-side	and	client-side	IMS	applica-
tion	development.	Server-side	applications	 require	an	SIP	 servlet	container	com-
patible	with	JSR	289	[L25]	(or	the	earlier	JSR	116	[L31]).	Client	applications	are	
implemented	using	the	JSR	281	[L29]	and	JSR	325	[L30]	specifications.

The	 most	 significant	 initiative	 in	 relation	 to	 IMS	 client	 development	 is	 the	
ICP	(IMS	Client	Platform)	[R5],	included	in	Ericsson	SDS	(Service	Development	
Studio)	[L32].	The	ICP	was	proposed	as	a	standard	Java	in	2005	under	JSR	281,	
led	by	Ericsson	and	BenQ.	In	its	final	state,	the	JSR	281	standard	was	divided	into	
two	 specifications:	 JSR	281	and	 JSR	325.	The	first	one,	 called	 IMS Service API,	
approved	as	standard	in	July	2008,	contains	basic	IMS	features	like	logging	and	
setting	up	audio	and	video	sessions,	as	well	as	a	generic	framework	to	access	IMS	
services.	JSR	325,	called	IMS Communication Enablers	and	currently	in	progress,	
provides	an	interface	to	access	specific	IMS	service	enablers	such	as	presence,	group	
management,	and	instant	messaging.	This	part	was	removed	from	the	original	ver-
sion	of	JSR	281.	The	ICP,	together	with	the	related	JSRs,	simplifies	the	development	
of	IMS	client-side	applications.

As	for	the	development	of	IMS	server-side	applications,	JCP	developed	the	JSR	
116	specifications	called	SIP	Servlet	API	1.0	and	the	JSR	289	SIP	Servlet	API	1.1.	
Both	specifications	are	an	abstraction	of	the	SIP	protocol	based	on	the	Java	Servlet	
API.	SIP	Servlets	are	the	Java	components	that	run	in	a	Servlet	container	within	
a	server.	The	SIP	container	simplifies	the	creation	of	SIP	applications	managing	
the	life	cycle	of	the	SIP	servlets	and	providing	support	for	the	interaction	between	
SIP	servlets	and	SIP	clients	(User	Agent)	through	SIP	request	and	reply	message	
exchange.	 A	 container	 can	 enqueue	 messages,	 manage	 states	 in	 the	 server,	 and	
transfer	control	to	the	components	or	the	SIP	servlets,	which	are	responsible	for	
addressing	messages.	As	the	SIP	protocol	is	based	on	the	popular	HTTP	Web	pro-
tocol,	Java	SIP	Servlets	share	a	common	nature	with	Java	HTTP	Servlets.	Thus,	
the	 programming	 interface	 available	 in	 the	 SIP	 Servlet	 API	 will	 be	 familiar	 to	
developers	of	Web	applications	in	Java,	particularly	for	those	who	make	use	of	the	
Servlet	API.

In	connection	with	the	implementation	of	the	JSR	289	and	JSR	116,	the	SailFin	
[L33]	project	is	the	most	important	initiative	within	the	free	software	community.	
SailFin	is	a	java.net	project	contributed	by	Ericsson,	which	extends	the	JEE	applica-
tion	server,	GlassFish	[L34],	SIP	Servlet	technology,	included	in	the	Ericsson	SDS	
(Service	Development	Studio)	[L32].	GlassFish	is	an	open-source	server	implemented	
by	Sun	Microsystems	and,	like	SailFin,	has	dual	license—GNU-GPL	Version	2	and	
CDDL	Version	1.0.	There	are	other	proprietary	products	with	similar	capabilities	as	

K10067_C017.indd 467 8/3/2010 10:35:23 PM

468  ◾  Mobile Web 2.0

Table 17.4 JCP Java APIs for handling SIP and IMS

API JSR
Java

Platform Description

JAIN SIP JSR32 JSE Low-level API for SIP. Requires
extensive knowledge of the SPI
protocol. Provides call control
management.

JAIN SIP Lite JSR 125 JSE
adaptable
a JME

Abstraction of the SIP protocol
which does not require a
comprehensive understanding of
the protocol. Being a lightweight
API, it adapts to devices with scarce
computing and memory capabilities.

SIP Servletq JSR 289 JEE Abstraction of the SPI protocol
based on Java servlets.

The SIP servlets are run and
managed by a servlet container that
hides the complexity of the
protocol.

SIP for JME JSR 180 JME SIP for mobile devices with limited
resources.

JAIN SIMPLE
Presence

JSR 164 JME y JSE API that allows clients and SIMPLE/
SIP servers to exchange presence
information between a client and a
server SIMPLE/SIP.

JAIN SIMPLE IM JSR 165 JME y JSE API that allows instant messaging
between clients SIMPLE/SIP.
Generally applications use JSR 164
and JSR 165 Implementations
together.

IMS services JSR 281 JME High-level abstraction of IMS
technology and protocols to
facilitate JME applications
development.

IMS
communication
enablers

JSR 325 JME High-level abstraction of IMS
technology and protocols to facilitate
application development JME.
Provides access to the IMS enablers
(presence, group management,
Instant Messaging, etc.).

K10067_C017.indd 468 8/3/2010 10:35:23 PM

JAVA IMS Mobile Application Development ◾  469

SailFin,	among	them,	OCMS	Oracle,	WLSS	BEA,	and	IBM	Websphere;	however,	
SailFin	is	the	first	one	contributed	by	the	free	software	community.

Figure	17.7	illustrates	the	two	most	relevant	implementations	described	above	
that	 facilitate	 the	 development	 of	 client-side	 and	 server-side	 Java	 applications	 in	
IMS.	They	both	provide	high-level	abstraction	for	the	developer,	hiding	the	par-
ticularities	of	IMS	technology.

17.6 Java Development Environments
for IMS Applications

Our	school	has	over	10	years	of	experience	 training	highly	qualified	students	 in	
development	 on	 Java	 technology	 through	 various	 graduate	 and	 postgraduate	
courses.	The	agreement	of	the	Computer	Science	School	with	Ericsson-Argentina	
enabled	us	to	leverage	the	strengths	of	both	teams.	Ericsson	Company	is	a	world	
leader	in	2G	and	3G	mobile	technologies	and	is	now	betting	heavily	on	the	con-
vergence	 of	 multiservice	 networks	 to	 promote	 IMS	 technology	 and	 foster	 the	

IMS applications

End to end IMS services

JSR 281

CSCF
SIP CSCF

SIPMRF

IMS

Multi-access

3GPPTISPAN

HSS

JSR 289 and JSR 116

IMS Application Server (GlassFish/SailFin)IMS Client Platform (ICP)

Figure 17.7 Implementations for Java IMS application development.

K10067_C017.indd 469 8/3/2010 10:35:24 PM

470  ◾  Mobile Web 2.0

development	of	innovative	applications	that	exploit	the	facilities	provided	by	this	
technology,	being	one	of	the	leaders	in	the	standardization	of	Java	APIs	for	appli-
cation	development	on	IMS-capable	mobile	devices.	Ericsson	has	established	the	
SDS	[L32],	which	is	an	integrated	development	environment	based	on	Eclipse	open	
access	[L35]	that	facilitates	the	construction	of	IMS	services	and	applications.	We	
believe	that	Ericsson	SDS	is	the	best	IDE	that	accompanies	the	evolution	of	the	dif-
ferent	standardizations	promoted	by	the	JCP	in	relation	to	IMS;	also,	being	based	
on	Eclipse	turns	it	into	a	popularly	adopted	tool	by	the	Java	developer	community.

SDS	is	a	comprehensive	tool	for	development,	testing,	and	deployment	of	IMS	
services	and	applications,	both	on	the	client	side	and	the	server	side.	It	is	possible	to	
develop	client-side	applications	using	ICP,	Ericsson’s	implementation	of	JSR	281,	
and	on	the	other	end,	SDS	integrates	and	supports	the	GlassFish/SailFin	server	that	
implements	the	JSR	289	for	development	of	IMS	services.	To	facilitate	testing	of	
mobile	applications,	SDS	also	includes	a	set	of	mobile	device	emulators.

Ericsson	SDS	simulates	a	complete	IMS	infrastructure,	enabling	the	developers	
to	test	their	software	through	an	execution	environment	that	emulates	all	the	real	
IMS	network	components	in	an	only	PC.

17.7 IMS Java for Mobile 2.0
17.7.1 Java Initiatives for Mobile Applications
Currently,	 JME	is	 the	most	accepted	 technology	among	cell	phone	manufactur-
ers,	 wireless	 connection	 carriers,	 and	 mobile	 application	 developers.	 It	 has	 been	
adopted	as	a	standard	development	and	application	execution	platform	in	most	cell	
phones.	The	JME	platform	has	evolved	in	response	to	the	growing	capabilities	of	
the	devices,	which	have	been	introduced	in	the	mobile	world,	based	on	the	MIDP	
(Mobile	Information	Device	Profile)	specification.	Today,	the	tendency	in	the	soft-
ware	industry	is	toward	standardizing	the	access	to	these	new	hardware	capabilities	
in	mobile	devices	and	to	the	new	services	provided	through	the	Internet.	JCP	sup-
ports	this	tendency	with	the	elaboration	of	a	specification	built	over	MIDP	called	
MSA	(Mobile	Service	Architecture).

The	MIDP	2	specification	defined	by	JCP	is	the	JSR	118	[L36]	is	designed	to	
operate	on	CLDC	(Connected,	Limited	Device	Configuration)	1.0	(JSR	30	[L37]),	
1.1	(JSR	139	[L38])	and	subsequent	versions.	This	last	specification	defines	some	
basic	APIs	and	a	virtual	machine	for	mobile	devices	with	limited	resources,	such	as	
the	cell	phone	case.	MIDP	is	the	foundational	piece	of	JME	technology;	it	defines	
a	platform	to	deploy	in	a	dynamic	and	secure	way	for	optimized	applications,	with	
graphic	capacities	and	with	connectivity	possibilities	through	different	technologies	
(Wi-Fi,	Bluetooth,	Infrared,	USB,	etc.).

Today,	the	mobile	world	is	not	limited	to	cell	phones;	it	also	includes	devices	
such	as	netbooks,	smartbooks,	Amazon	Kindle,	PlayStation	3,	etc.	In	response	

K10067_C017.indd 470 8/3/2010 10:35:24 PM

JAVA IMS Mobile Application Development ◾  471

to	this	evolution,	the	Java	ME	platform	was	expanded	to	consider	the	new	hard-
ware	 and	 software	 capabilities	 of	 these	devices,	 giving	way	 to	 the	 JTWI	 (Java	
Technology	for	the	Wireless	Industry)	platforms	[L39]	and	later	to	MSA	[L40],	
which	 are	 now	 a	 standardized	 environment	 for	 building	 mobile	 applications.	
These	two	new	JME	platforms	include	MIDP	2.	Figure	17.8	shows	the	specifica-
tion	stack	of	the	MSA	and	MSA	Subset	platform.	The	difference	between	both	
specifications	 is	 related	 with	 the	 option	 of	 including	 conditionally	 mandatory	
APIs	 that	depend	on	 the	hardware	capacity	of	 the	device,	as	 is	 the	case	of	 the	
Location	API	(JSR	179)	that	depends	on	the	existence	of	a	GPS	incorporated	to	
the	device.

17.7.2 Java Initiatives for IMS in Mobile Applications
As	described,	the	MSA	1	specification	[L40]	for	JME	defines	a	set	of	standard	func-
tions	for	mobile	devices.	JCP	continued	to	work	on	a	new	version	of	MSA	called	

JSR 238 (Internationalization)

JSR 234 (Multimedia supplements)

JSR 180 (SIP)

JSR 211 (Content handler)

JSR 229 (Payment)

JSR 179 (Location)

JSR 177 (Security and Trust)

JSR 172 (Web services)

JSR 226 (Vector graphics)

JSR 205 (Messaging)

JSR 184 (3D graphics)

JSR 135 (Mobile media)

JSR 82 (Bluetooth)

JSR 75 (File and PIM)

JSR 118 (MIDP)

JSR 139 (CLDC)

MSA

JSR 226 (Vector graphics)

JSR 205 (Messaging)

JSR 184 (3D graphics)

JSR 135 (Mobile media)

JSR 82 (Bluetooth)

JSR 75 (File and PIM)

JSR 118 (MIDP)

JSR 139 (CLDC)

MSA Subset

Figure 17.8 MSA 1.0 stack.

K10067_C017.indd 471 8/3/2010 10:35:25 PM

472  ◾  Mobile Web 2.0

MSA	Advanced	or	MSA	2	(JSR	249)	[L41],	which	improved	the	standard	function-
ality	by	incorporating	current	technologies	with	a	good	future	prospect,	especially	
in	 the	multimedia	area	 such	as	 the	case	of	 JSR	281	called	 IMS	Services.	Figure	
17.9	shows	the	new	APIs	that	were	added	to	MSA	to	version	2	in	relation	with	ver-
sion	1.	The	incorporation	of	JSR	281	IMS	Services	API	[L29]	to	MSA	2	standard	
shows	that	IMS	technology	will	be	available	in	the	JME	platform,	promoting	its	
adoption	by	mobile	device	manufacturing	firms	and	with	a	favorable	impact	in	the	
development	of	applications	for	these	devices.	Mobile	application	developers	can	
take	advantage	of	IMS	multimedia	capabilities	such	as	QoS,	single	login	to	access	
multiple	services,	with	the	confidence	that	their	applications	will	run	on	any	device	
compatible	with	the	MSA	2	platform.

17.7.3 Mobile Development JME: MIDlets
As	already	mentioned,	MSA	is	based	on	MIDP	and	from	its	origins	MIDP	applica-
tions	are	called	MIDlets.	These	applications	are	written	with	JME	APIs	that	com-
prise	 the	MSA	standard	and	run	on	a	mobile	computing	environment.	MIDlets	
require	a	special	execution	environment	given	by	a	specific	piece	of	software	in	the	
device	called	Application Management System	(AMS)	that	controls	the	installation,	
execution,	and	life	cycle	of	the	MIDlet.

To	build	 a	MIDlet	 it	 is	necessary	 to	define	 a	 class	 that	 extends	 javax.micro
edition.midlet.MIDlet	and	overwrites	at	least	the	following	three	methods:

	 1.	startApp():	It	is	invoked	by	the	AMS	to	initiate	the	MIDlet	or	to	resume	the	
MIDlet	execution	in	pause	state.

	 2.	pauseApp():	 It	 is	 invoked	 by	 the	 AMS	 when	 certain	 events	 take	 place,	 for	
example,	an	incoming	call.

	 3.	destroyApp():	It	is	invoked	by	the	AMS	to	release	the	resources	allocated	by	
the	application.

A	MIDlet	has	three	different	states	that	determine	its	functioning:	Paused,	Active,	
and	Destroyed.	These	states	correspond	with	the	three	methods	earlier	described	
called	collectively	as	MIDlet	life	cycle	methods.	The	AMS	is	responsible	for	con-
trolling	 the	 MIDlet	 life	 cycle	 by	 invoking	 the	 life	 cycle	 methods.	 Figure	 17.10	
describes	the	MIDlet	states	and	the	methods	invoked	by	the	AMS	that	cause	the	
passage	between	the	different	states.

The	AMS	decides	when	to	invoke	the	life	cycle	methods:	beginning	the	execu-
tion,	 the	MIDlet	passes	 to	Active	 state,	but	what	happens	 if	 it	 receives	 a	 call	 or	
a	 message	 while	 running?	 The	 AMS	 is	 in	 charge	 of	 changing	 the	 MIDlet	 state	
according	to	the	external	events	that	are	produced.	In	this	case,	the	AMS	tempo-
rarily	stops	the	MIDlet	execution	to	attend	the	call	or	read	the	message,	passing	it	
to	a	Paused	state.

K10067_C017.indd 472 8/3/2010 10:35:25 PM

JAVA IMS Mobile Application Development ◾  473

JSR 180 SIP

JSR 177 - SATSA - PKI*

JSR 177 - SATSA - CRYPTO

JSR 172 - Web Services

JSR 234 - Multimedia Suppl.

JSR 179 - Location API 1.0.1*

JSR 211 - Content Handler

JSR 177 - SATSA - APDU*

JSR 177 - SATSA - PKI*

JSR 177 - SATSA - CRYPTO

JSR 172 - Web Services

JSR 234 - Multimedia Suppl.

JSR 238 - Internationalization

JSR 226 - Vector Graphics 1.1

JSR 184 - 3D Graphics

JSR 082 - Bluetooth*

JSR 075 - File and PIM

JSR 205 - Messaging 2.0

JSR 135 - Mobile Media

JSR 118 - MIDP 2.1

JSR 139 - CLDC/CDC

JSR 238 - Internationalization

JSR 280 - XML

JSR 258 - UI Customization*

JSR 257 - Contactlees*

JSR 272 - Mobile Broadcast*

JSR 256 - Sensor

JSR 234 - Multimedia Suppl.

JSR 293 - Location API 2.0*

JSR 211 - Conten Handler

JSR 177 - SATSA-APDU*

JSR 287 - Vector Graphics 2.0

JSR 184 - 3D Graphics

JSR 082 - Bluthoot*

JSR 075 - File and PIM

JSR 205 - Messaging 2.0

JSR 135 - Mobile Media

JSR 271 - MIDP 3.0

JSR 139 - CLDC/CDC

JSR 238 - Internationalization

JSR 280 - XML

JSR 281 - IMS Services*

JSR 258 - UI Customization*

JSR 257 - Contactlees*

JSR 272 - Mobile Broadcast*

JSR 256 - Sensor

JSR 180 - SIP

JSR 293 - Location API 2.0*

JSR 211 - Conten Handler

JSR 177 - SATSA - APDU*

JSR 287 - Vector Graphics 2.0

JSR 184 - 3D Graphics

JSR 082 - Bluthoot*

JSR 075 - File and PIM

JSR 205 - Messaging 2.0

JSR 135 - Mobile Media

JSR 271 - MIDP 3.0

JSR 139 - CLDC/CDC

JSR 226 - Vector Graphics 1.1

JSR 184 - 3D Graphics

JSR 082 - Bluetooth*

JSR 075 - File and PIM

JSR 205 - Messaging 2.0

JSR 135 - Mobile Media

JSR 118 - MIDP 2.1

JSR 139 - CLDC/CDC

MSA 1.1

MSA 2.0

MSA 1.1 Subset MSA 2.0 Subset

Figure 17.9 MSA 2.0 stack.

K10067_C017.indd 473 8/3/2010 10:35:27 PM

474  ◾  Mobile Web 2.0

17.8 Development of a Simple Chatroom
on IMS Using Ericsson SDS

17.8.1 Introduction
Below,	we	describe	an	example	of	a	simple	chat	application,	IjcuChat,	taken	from	
the	 Ericsson Developer Connection*	 Web	 site.	 Despite	 continuous	 growth,	 inter-
est,	and	expectations	regarding	the	development	of	Java	applications	on	IMS	net-
works,	we	must	consider	that	this	is	a	software	development	technology	that	is	not	
yet	mature	and	there	is	no	consolidated	documentation	on	the	issues	to	take	into	
account	 for	 the	development	of	 applications.	While	 the	 IMS	architecture	design	
promotes	the	abstraction	of	the	network	architecture	for	application	development,	it	
currently	requires	the	programmer	to	be	aware	of	some	key	elements	and	some	basic	
configurations	of	the	components	that	constitute	it.	Today,	programming	an	IMS	
Java	application	using	the	SDS	requires	management	of	the	specific	APIs	to	access	
the	IMS	network	and	services	and	the	assembly	of	a	simulated	execution	context	of	
an IMS	network	by	setting	its	key	elements	(CSCF,	HSS,	DNS,	etc.).	That	is	why	
in	this	description	we	also	consider	the	commonly	requested	configuration	aspects.

17.8.2 General Architecture of the IjcuChat Application
IjcuChat	 is	 a	 JME	 (CLDC	 1.1/MIDP2.0)	 client	 implemented	 through	 a	 Java	
Midlet	that	connects	to	the	application	server	called	Twitty	by	means	of	the	IJCU	
platform.	The	basic	functionality	of	this	application	is	the	registration	of	users,	the	

*	 http://www.ericsson.com/developer/sub/open/technologies/ims_poc/tools/sds_40

New ()
startApp ()

pauseApp ()

destroyApp ()destroyApp ()

Paused Active

Destroyed

Figure 17.10 The MIDlet life cycle.

K10067_C017.indd 474 8/3/2010 10:35:27 PM

JAVA IMS Mobile Application Development ◾  475

invitation	from	one	user	to	another	to	start	a	conversation,	and	exchange	messages	
between	them.	Figure	17.11	shows	a	conceptual	scheme	of	the	main	components	
and	the	communication	protocols	used	in	the	IMS	IjcuChat	Java	application.

The	 user	 interface	 is	 a	 simple	 form	 that	 allows	 users	 to	 complete	 text	 fields	
required	for	the	registration	in	the	IMS	network,	the	invitation	and	exchange	of	
messages	 between	 two	 users.	 Figure	 17.12	 shows	 screenshots	 of	 the	 screens	 that	
enable	the	user	to	interact	with	IjcuChat application; in this case,	we will call the users
of this application Bob and Alice.

The Twitty	server	is	a	Java	SIP	server-side	application	implemented	through	a	
SIP	Servlet	(JSR	116)	that	runs	in	a	SailFil	application	server.	It	provides	a	sim-
ple	functionality	that	consists	of	sending	the	invitation	message	from	one	user	to	
another	to	establish	a	conversation	and	forward	the	exchange	of	messages.

17.8.3 IjcuChat Functioning in a Simulated
IMS Network in the Ericsson SDS

The	DSD	has	a	feature	that	facilitates	the	view	of	the	exchange	of	SIP	messages	
that	pass	through	the	CSCF	through	a	flowchart.	This	feature	is	available	in	two	
ways,	one	is	online	and	shows	the	exchange	of	SIP	message	during	the	application	

IP network

P-CSCF

S-CSCF

HSS

I-CSCF IP network

ljcuChat client ljcuChat client

SIP

Servlet container
(SailFin)

Twitty SIP servlet

SIP

SIP

Figure 17.11 Conceptual IjcuChat architecture.

K10067_C017.indd 475 8/3/2010 10:35:28 PM

476  ◾  Mobile Web 2.0

execution,	 and	 the	other	 is	offline	and	 shows	 the	exchange	 recorded	 in	a	CSCF	
log	file.	This	diagram	is	very	educational	to	understand	how	the	different	actors	in	
the	IMS	network	interact;	it	is	also	a	very	useful	tool	when	testing	the	application	
behavior	in	the	different	user	interactions.	Figure	17.13	shows	an	image	capture	of	
the	SDS	during	the	execution	of	the	IjcuChat	application	and	the	Twitty	server.

The	flowchart	 in	Figure	17.13	 is	described	 in	detail	 in	relation	to	the	main	
actors	of	an	IMS	network	and	this	way	we	can	understand	what	happens	in	the	
IjcuChat	application	“backstage.”	Figure	17.13	shows	the	SIP	methods	used	for	
the	IjcuChat application.

SIP REGISTER:	when	the	application	starts,	the	first	screen	prompts	the	user	reg-
istration	 in	 the	 IMS	network	 (Figure	17.12),	which	 results	 in	 the	 sending	of	 an	
SIP	REGISTER	message	to	the	CSCF	component;	this	is	the	Alice	and	Bob	case.	
Considering	that	 the	CSCF	has	 three	main	components,	P-CSCF,	I-CSCF,	and	
S-CSCF,	in	this	interaction,	the	S-CSCF	plays	a	main	role.	The	functionality	pro-
vided	by	the	S-CSCF	is	to	facilitate	the	establishment	and	ending	of	the	SIP	ses-
sion	with	help	from	the	HSS.	The	latter	 is	the	one	that	contains	the	subscriber’s	
permanent	data	and	 the	most	 relevant	 temporal	data	 related	with	 the	users	 that	
are	connected.	Figures	17.14	and	17.15	show	the	screenshots	from	the	Provisioning	
perspective	of	the	SDS	where	it	 is	possible	to	view	the	IMS	network	subscriber’s	
permanent	information	and	the	temporary	information,	respectively;	both	aspects	
of	the	user	management	are	stored	in	the	HSS.	In	particular,	the	information	pre-
sented	 is	 related	with	 the	 registration	of	Alice	and	Bob	 in	 the	 IMS	network.	 In	
conclusion,	when	the	S-CSCF	receives	the	request,	SIP	REGISTER	delegates	the	

AQ2

(a) Registración
de ALICE

Invitación de
BOB a ALICE

Mensaje de
BOB a ALICE

Mensaje de
ALICE a BOB

(b) (c) (d)

Figure 17.12 IjcuChat screenshots.

K10067_C017.indd 476 8/3/2010 10:35:29 PM

JAVA IMS Mobile Application Development ◾  477

ALICE CSCF

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

[1] REGISTER sip:ericsson.com SIP/2.0

[3]REGISTER sip:ericsson.com SIP/2.0

[5] INVITE sip:alice@ericsson.com SIP/2.0

[6] INVITE sip:alice@ericsson.com SIP/2.0

[7] SIP/2.0 100 Trying

[8] INVITE sip:alice@ericsson.com SIP/2.0

[9] SIP/2.0 100 Trying

[10] SIP/2.0 100 Trying

[13] SIP/2.0 180 Ringing

[17] SIP/2.0 200 OK

[12] SIP/2.0 100 Trying

[11] INVITE sip: 169.254.99.155:57275;transport = tcp SIP/2.0

[22] ACK sip:169.254.99.155:57275;transport = tcp SIP/2.0

[21] ACK sip:169.254.99.155:57275;transport = tcp SIP/2.0

[14] SIP/2.0 180 Ringing

[18] SIP/2.0 200 OK

[20] SIP/2.0 200 OK

[19] SIP/2.0 200 OK

[16] SIP/2.0 180 Ringing

[15] SIP/2.0 180 Ringing

[4] SIP/2.0 200 OK

[2] SIP/2.0 200 OK

TWITTY BOB

Figure 17.13 Flowchart of the IjcuChat application and the Twitty server.

K10067_C017.indd 477 8/3/2010 10:35:30 PM

478  ◾  Mobile Web 2.0

specific	function	of	registration	of	the	SIP	session	to	later	build	and	send	the	SIP	
answer	 to	 the	user.	 In	the	flowchart	 in	Figure	17.13,	 these	 interactions	are	 sum-
marized	in	the	messages	exchanged	between	the	users	Bob	and	Alice	in	the	CSCF.

SIP INVITE and SIP MESSAGE:	Once	Bob	and	Alice	are	registered,	Bob	decides	
to	invite	Alice	to	a	chat	session.	For	this	purpose,	in	the	invitation	screen	(Figure	
17.12),	he	indicates	Alice’s	SIP	address.	With	this	user	request,	the	application	gen-
erates	a	message	and	sends	a	SIP	INVITE	message	whose	final	receptor	is	Alice.	In	
the	IMS	networks,	this	message	in	canalized	through	the	CSCF	that	again	plays	a	
central	role.	The	S-CSCF	component	is	the	most	intensive	processing	node	of	the	
IMS	nucleolus	because	it	is	responsible	for	determining	what	services	will	the	users	
have	available	according	to	their	profiles	and	which	will	be	the	application	servers	
in	charge	of	attending	those	requests.	Figures	17.16	through	17.19	show	the	HSS	
configuration	screen	that	relates	the	user’s	profiles	with	the	services	that	will	attend	
their	requests.	Particularly,	each	time	a	user	interacts	with	an	application	that	gen-
erates	a	SIP	INVITE	or	SIP	MESSAGE	request	message,	they	will	be	attended	by	
the	service	identified	as	twitty_profile.	Figures	17.18	and	17.19	show	these	configu-
rations,	called	iFC	(Initial	Filter	Criteria)	in	the	IMS	vocabulary.	In	our	example,	

Figure 17.14 Provisioning perspective that shows the subscribers loaded in
the HSS.

Figure 17.15 Provisioning perspective showing the online registered users in
the HSS.

K10067_C017.indd 478 8/3/2010 10:35:30 PM

JAVA IMS Mobile Application Development ◾  479

the	established	iFC	is	called	twitty.	In	the	flowchart	in	Figure	17.13,	we	can	see	that	
the	SIP	INVITE	message	sent	from	Bob	to	Alice	is	headed	toward	the	CSCF	who	
internally,	as	we	explained	previously,	uses	the	S-CSCF	component	to	determine	
through	the	iFC	what	server	will	attend	the	request;	in	this	particular	case,	Twitty.	
Figure	17.17	shows	the	relationship	between	the	iFC	twitty	and	the	server	sip:pgm.
ericsson.com	where	the	Twitty	service	is	hosted,	and	Figure	17.20	shows	the	reso-
lution	of	the	IP	address	in	the	DNS.	As	described	before,	Twitty	provides	a	very	

AQ3

Figure 17.17 HSS configuration: Definition of the Initial Filter Criteria twitty.

Figure 17.16 HSS configuration: Definition of the service profile twitty_profile.

Figure 17.18 HSS configuration: iFC twitty INVITE criteria.

K10067_C017.indd 479 8/3/2010 10:35:31 PM

480  ◾  Mobile Web 2.0

simple	functionality	that	will	forward	the	SIP	messages	received	addressed	to	Alice,	
once	 again	 through	 the	 CSCF.	 In	 relation	 to	 the	 SIP	 MESSAGE,	 the	 message	
flow	between	Bob	and	Alice	is	similar	to	the	one	described	previously	on	the	SIP	
INVITE	message.	The	difference	between	them	is	that	both	Bob	and	Alice	gener-
ate	this	type	of	message	each	time	they	chat	using	the	IjcuChat	client.

17.8.4 Analyzing the Use of JSR 281 in the IjcuChat
As	mentioned	before,	IjcuChat	 is	an	application	for	mobile	devices	 implemented	
by	a	MIDlet	that	uses	the	IMS	network	to	communicate	with	the	server	and	its	set	
up	in	the	chat	session.	Figures	17.21	through	17.28	show	the	most	relevant	code	
segments	 in	which	 the	API	 from	 JSR	281	 is	 used	 to	 access	 the	 communication	
services	provided	by	 the	 IMS	network.	MIDP	defines	a	mechanism	called	Push	
Registration	that	enables,	among	other	things,	to	register	MIDlets	that	that	cor-
respond	to	network	events	such	as	incoming	connections.	IMS	applications	must	
declare	the	capacities	it	can	manage	though	Push	Registration.	After	an	incoming	

Figure 17.19 HSS configuration: iFC twitty MESSAGE criteria.

Figure 17.20 DNS configuration in the provisioning perspective.

K10067_C017.indd 480 8/3/2010 10:35:32 PM

JAVA IMS Mobile Application Development ◾  481

p
r
i
v
a
t
e

S
t
r
i
n
g
I
t
e
m

c
h
a
t
A
r
e
a
;

p
r
i
v
a
t
e

S
t
r
i
n
g

i
a
r
i

=

"
c
o
m
.
e
r
i
c
s
s
o
n
.
c
l
i
e
n
t
.
l
j
c
u
C
h
a
t
"
;

p
r
i
v
a
t
e

S
t
r
i
n
g

s
c
h
e
m
e

=

"
i
m
s
c
o
r
e
:
/
/
"
;

p
r
i
v
a
t
e

s
t
a
t
i
c

S
t
r
i
n
g

c
o
n
t
e
n
t
T
y
p
e

=

"
t
e
x
t
/
p
l
a
i
n
"
;

p
r
i
v
a
t
e

S
t
r
i
n
g

t
r
a
n
s
p
o
r
t

=

"
t
c
p
"
;

p
r
i
v
a
t
e

S
t
r
i
n
g

I
A
R
I
_
P
R
E
F
I
X

=

"
u
r
n
%
3
A
u
r
n
-
x
x
x
%
3
A
"
;

p
r
i
v
a
t
e

S
t
r
i
n
g

a
l
i
c
e
U
s
e
r
I
d

=

"
s
i
p
:
a
l
i
c
e
@
e
r
i
c
s
s
o
n
.
c
o
m
"
;

p
r
i
v
a
t
e

S
t
r
i
n
g

s
e
r
v
i
c
e
I
d

=

"
c
h
a
t
"
;

p
u
b
l
i
c

v
o
i
d

s
t
a
r
t
A
p
p(
)

t
h
r
o
w
s

M
I
D
l
e
t
S
t
a
t
e
C
h
a
n
g
e
E
x
c
e
p
t
i
o
n

{

s
h
o
w
R
e
g
i
s
t
r
a
t
i
o
n
F
o
r
m(
)
;

}p
r
i
v
a
t
e

C
o
r
e
S
e
r
v
i
c
e

c
o
r
e
S
e
r
v
i
c
e
;

p
r
i
v
a
t
e

F
r
a
m
e
d
M
e
d
i
a

f
r
a
m
e
d
M
e
d
i
a
;

p
r
i
v
a
t
e

S
e
s
s
i
o
n

s
e
s
s
i
o
n
;

p
r
i
v
a
t
e

T
e
x
t
F
i
e
l
d

d
o
m
a
i
n
U
R
I
F
i
e
l
d
;

p
r
i
v
a
t
e

T
e
x
t
F
i
e
l
d

p
u
b
l
i
c
U
s
e
r
I
d
F
i
e
l
d
;

p
r
i
v
a
t
e

T
e
x
t
F
i
e
l
d

r
e
a
l
m
F
i
e
l
d
;

p
r
i
v
a
t
e

T
e
x
t
F
i
e
l
d

p
r
i
v
a
t
e
U
s
e
r
I
d
F
i
e
l
d
;

p
r
i
v
a
t
e

T
e
x
t
F
i
e
l
d

m
o
b
i
l
e
P
h
o
n
e
N
u
m
b
e
r
F
i
e
l
d
;

p
r
i
v
a
t
e

T
e
x
t
F
i
e
l
d

p
a
s
s
w
o
r
d
F
i
e
l
d
;

p
r
i
v
a
t
e

T
e
x
t
F
i
e
l
d

o
u
t
b
o
u
n
d
P
r
o
x
y
U
R
I
F
i
e
l
d
;

p
u
b
l
i
c

c
l
a
s
s

l
j
c
u
C
h
a
t

e
x
t
e
n
d
s

M
I
D
l
e
t

{

Re
gi

st
ra

tio
n

fo
rm

 �
el

ds
 in

 th
e I

M
S

ne
tw

or
k

Ap
pl

ic
at

io
n

ca
pa

bi
lit

y d
ec

la
ra

tio
n

�e
ld

s

�
e a

pp
lic

at
io

n
in

iti
at

es
 w

ith
 th

e d
isp

lay
of

 th
e n

et
w

or
k

re
gi

st
ra

tio
n

fo
rm

Fi
gu

re
 1

7.
21

D

ec
la

ra
ti

on
 o

f r
eg

is
tr

at
io

n
fi

el
ds

 in
 t

he
 I

M
S

ne
tw

or
k

an
d

of
 a

pp
lic

at
io

n
ca

pa
bi

lit
ie

s.

K10067_C017.indd 481 8/3/2010 10:35:33 PM

482  ◾  Mobile Web 2.0

r
e
a
l
m
F
i
e
l
d

=

n
e
w

T
e
x
t
F
i
e
l
d
(
"
r
e
a
l
m
:
"
,

e
r
i
c
s
s
o
n
.
c
o
m
"
,

4
0
,

T
e
x
t
F
i
e
l
d
.
A
N
Y
)
;

p
u
b
l
i
c
U
s
e
r
I
d
F
i
e
l
d

=

n
e
w

T
e
x
t
F
i
e
l
d
(
"
P
u
b
l
i
c
U
s
e
r
I
d
:
"
,

a
l
i
c
e
U
s
e
r
I
d
,

4
0
,

T
e
x
t
F
i
e
l
d
.
A
N
Y
)
;

r
e
g
i
s
t
e
r
F
o
r
m
.
a
p
p
e
n
d
(
o
u
t
b
o
u
n
d
P
r
o
x
y
U
R
I
F
i
e
l
d
)
;

In
iti

at
e o

f t
he

 IM
S

ne
tw

or
k

re
gi

st
ra

tio
n

pr
oc

es
s

Cr
ea

tio
n

an
d

di
sp

lay
 o

f I
M

S
ne

tw
or

k
re

gi
st

ra
tio

n
fo

rm

r
e
g
i
s
t
e
r
F
o
r
m
.
s
e
t
T
i
t
l
e
(
"
C
h
a
t

C
l
i
e
n
t
"
)
;

r
e
g
i
s
t
e
r
F
o
r
m
.
s
e
t
C
o
m
m
a
n
d
L
i
s
t
e
n
e
r
(
n
e
w

C
o
m
m
a
n
d
L
i
s
t
e
n
e
r
(
)

{

r
e
g
i
s
t
e
r
F
o
r
m
.
a
p
p
e
n
d
(
p
a
s
s
w
o
r
d
F
i
e
l
d
)
;

r
e
g
i
s
t
e
r
F
o
r
m
.
a
p
p
e
n
d
(
m
o
b
i
l
e
P
h
o
n
e
N
u
m
b
e
r
F
i
e
l
d
)
;

r
e
g
i
s
t
e
r
F
o
r
m
.
a
p
p
e
n
d
(
p
r
i
v
a
t
e
U
s
e
r
I
d
F
i
e
l
d
)
;

r
e
g
i
s
t
e
r
F
o
r
m
.
a
p
p
e
n
d
(
r
e
a
l
m
F
i
e
l
d
)
;

r
e
g
i
s
t
e
r
F
o
r
m
.
a
p
p
e
n
d
(
p
u
b
l
i
c
U
s
e
r
I
d
F
i
e
l
d
)
;

r
e
g
i
s
t
e
r
F
o
r
m
.
a
p
p
e
n
d
(
d
o
m
a
i
n
U
R
I
F
i
e
l
d
)
;

p
a
s
s
w
o
r
d
F
i
e
l
d
.
s
e
t
S
t
r
i
n
g
(
"
a
l
i
c
e
"
)
;

} }
}

}
}
)
;

e
x
i
t
(
)
;

e
l
s
e

i
f
(
c
o
m
m
a
n
d
.
g
e
t
C
o
m
m
a
n
d
T
y
p
e
(
)

=
=

C
o
m
m
a
n
d
.
E
X
I
T
)

{

t
h
r
e
a
d
.
s
t
a
r
t
(
)
;

T
h
r
e
a
d

t
h
r
e
a
d

=

n
e
w

T
h
r
e
a
d
(
r
e
g
i
s
t
e
r
T
h
r
e
a
d
)
;

R
e
g
i
s
t
e
r
T
h
r
e
a
d

r
e
g
i
s
t
e
r
T
h
r
e
a
d

=

n
e
w

R
e
g
i
s
t
e
r
T
h
r
e
a
d
(
)
;

i
f(
c
o
m
m
a
n
d
.
g
e
t
C
o
m
m
a
n
d
T
y
p
e(
)

=
=

C
o
m
m
a
n
d
.
O
K
)

{

p
u
b
l
i
c

v
o
i
d

c
o
m
m
a
n
d
A
c
t
i
o
n
(
C
o
m
m
a
n
d

c
o
m
m
a
n
d
,

D
i
s
p
l
a
y
a
b
l
e

d
i
s
p
l
a
y
a
b
l
e
)

{

p
a
s
s
w
o
r
d
F
i
e
l
d

=

n
e
w

T
e
x
t
F
i
e
l
d
(
"
P
a
s
s
w
o
r
d
"
,

"
a
l
i
c
e
"
,

1
0
,

T
e
x
t
F
i
e
l
d
.
P
A
S
S
W
O
R
D
)
;

m
o
b
i
l
e
P
h
o
n
e
N
u
m
b
e
r
F
i
e
l
d

=

n
e
w

T
e
x
t
F
i
e
l
d
(
"
M
o
b
i
l
e
P
h
o
n
e
N
u
m
b
e
r
:
"
,

"
5
1
4
3
4
5
7
9
0
0
"
,

4
0
,

T
e
x
t
F
i
e
l
d
.
D
E
C
I
M
A
L
)
;

p
r
i
v
a
t
e
U
s
e
r
I
d
F
i
e
l
d

=

n
e
w

T
e
x
t
F
i
e
l
d
(
"
P
r
i
v
a
t
e
U
s
e
r
I
d
:
"
,

"
a
l
i
c
e
@
e
r
i
c
s
s
o
n
.
c
o
m
"
,

4
0
,

T
e
x
t
F
i
e
l
d
.
A
N
Y
)
;

d
o
m
a
i
n
U
R
I
F
i
e
l
d

=

n
e
w

T
e
x
t
F
i
e
l
d
(
"
D
o
m
a
i
n
U
R
I
:
"
,

"
s
i
p
:
e
r
i
c
s
s
o
n
.
c
o
m
"
,

4
0
,

T
e
x
t
F
i
e
l
d
.
A
N
Y
)
;

o
u
t
b
o
u
n
d
P
r
o
x
y
U
R
I
F
i
e
l
d

=

n
e
w

T
e
x
t
F
i
e
l
d
(
"
O
u
t
b
o
u
n
d
P
r
o
x
y
U
R
I
:
"
,

"
s
i
p
:

1
2
7
.
0
.
0
1
:
5
0
8
1
"
,

4
0
,

T
e
x
t
F
i
e
l
d
.
A
N
Y
)
;

g
e
t
D
i
s
p
l
a
y
(
)
.
s
e
t
C
u
r
r
e
n
t
(
r
e
g
i
s
t
e
r
F
o
r
m
)
;

r
e
g
i
s
t
e
r
F
o
r
m
.
a
d
d
C
o
m
m
a
n
d
(
e
x
i
t
C
o
m
m
a
n
d
)
;

r
e
g
i
s
t
e
r
F
o
r
m
.
a
d
d
C
o
m
m
a
n
d
(
r
e
g
i
s
t
e
r
C
o
m
m
a
n
d
)
;

C
o
m
m
a
n
d

e
x
i
t
C
o
m
m
a
n
d

=

n
e
w

C
o
m
m
a
n
d
(
"
E
x
i
t
"
,

C
o
m
m
a
n
d
.
E
X
I
T
,

1
)
;

C
o
m
m
a
n
d

r
e
g
i
s
t
e
r
C
o
m
m
a
n
d

=

n
e
w

C
o
m
m
a
n
d
(
"
R
e
g
i
s
t
e
r
"
,

C
o
m
m
a
n
d
.
O
K
,

1
)
;

F
o
r
m

r
e
g
i
s
t
e
r
F
o
r
m

=

n
e
w

F
o
r
m
(
"
R
e
g
i
s
t
e
r
"
)
;

p
r
i
v
a
t
e

v
o
i
d

s
h
o
w
R
e
g
i
s
t
r
a
t
i
o
n
F
o
r
m
(
){

Fi
gu

re
 1

7.
22

R

eg
is

tr
at

io
n

fo
rm

 d
is

pl
ay

.

K10067_C017.indd 482 8/3/2010 10:35:33 PM

JAVA IMS Mobile Application Development ◾  483

call,	the	AMS	is	responsible	for	launching	the	MIDlet	whose	declared	capabilities	
match	the	ones	required	by	the	incoming	call.

The	Push	Registration	can	be	carried	out	statically	or	dynamically.	Static	reg-
istration	consists	on	declaring	the	capabilities	through	properties	in	the	MIDlet’s	
(JAD)	description	file.	In	our	example,	we	use	dynamic	registration	that	consists	
of	declaring	the	capabilities	through	an	array	of	strings,	which	will	be	established	
as	a	parameter	to	the	method	Configuration.setRegistry(),	as	shown	in	Figure	17.23.

After	declaring	the	application	capabilities,	the	MIDlet	registers	the	user	in	the	
IMS	network	invoking	the	Connector.open()	method,	and	thus	the	application	can	
initiate	and	receive	invitations	for	chat	and	text	message	exchange.	The	Connector.
open()	method	performs	the	registration	through	the	message	exchange	of	the	SIP	
REGISTER	transaction	displayed	graphically	 in	Figure	17.13.	This	method	may	

public void register() {

catch (ConnectionNotFoundException e2) {

catch (Exception e) {

catch (IOException e1) {

alert("Can not register the phone: receive IllegalArgumentException");

alert("Can not register the phone: receive ConnectionNotFoundException");

alert("Can not register the phone: receive IOException");

alert("Can not register the phone: receive Exception");

catch (IllegalArgumentException e3) {

}

}

}

}

}

}

}

Inicio de formulario de invitacióninitializeSession();

}

register();

String url = scheme + iari + ";serviceId=" + serviceId;

coreService.setListener(coreServiceAdapter);

CoreServiceClientAdapter coreServiceAdapter = new CoreServiceClientAdapter();

coreService = (CoreService) Connector.open(url);

ConnectionState.setListener(new ConnectionStateAdapter());

ConnectionState connectionState = ConnectionState.getConnectionState();

{"CoreService", serviceId, IARI_PREFIX + iari, "",""}};

myConfiguration.setRegistry(iari, ljcuChat.class.getName(), properties);

String properties = new String {{"Framed", contentTyper},
Configuration myConfiguration = Configuration.getConfiguration();

ijcuUserManagement.setPlatform(ljcuChat.this);

ijcuUserManagement.setTransport(transport);

ijcuUserManagement.setPassword(passwordField.getString());

ijcuUserManagement.setPrivateUserId(privateUserIdField.getString());

ijcuUserManagement.setRealm(realmField.getString());

ijcuUserManagement.setPublicUserId(publicUserIdField.getString());

ijcuUserManagement.setOutboundProxyURI(outboundProxyURIField.getString());

ijcuUserManagement.setDomainURI(domainURIField.getString());

ljcuUserManagement ijcuUserManagement = ljcuUserManagement.getInstance();

try {

public void run() {

protected class RegisterThread implements Runnable {

IMS network registration
transaction triggers

sending a SIP Register
to CSCF

�e application capabilities
are declared using
Push Registration

Figure 17.23 Registration of the application capabilities and network registration.

K10067_C017.indd 483 8/3/2010 10:35:34 PM

484  ◾  Mobile Web 2.0

f
o
r
m
.
a
d
d
C
o
m
m
a
n
d
(
e
x
i
t
C
o
m
m
a
n
d
)
;

f
o
r
m
.
s
e
t
C
o
m
m
a
n
d
L
i
s
t
e
n
e
r
(
n
e
w

C
o
m
m
a
n
d
L
i
s
t
e
n
e
r
(
)

p
u
b
l
i
c

v
o
i
d

c
o
m
m
a
n
d
A
c
t
i
o
n
(
C
o
m
m
a
n
d

c
o
m
m
a
n
d
,

D
i
s
p
l
a
y
a
b
l
e

d
i
s
p
l
a
y
a
b
l
e
)

i
f
(
c
o
m
m
a
n
d
.
g
e
t
C
o
m
m
a
n
d
T
y
p
e
(
)

=
=

C
o
m
m
a
n
d
.
O
K
)

{

{

{ { {} }
e
x
i
t
(
)
;

In
iti

at
io

n
of

 th
e c

ha
t s

es
sio

n
in

vi
ta

tio
n

pr
oc

es
s

Cr
ea

tio
n

an
d

di
sp

lay
of

 th
e c

ha
t i

nc
ita

tio
n

fo
rm

g
e
t
D
i
s
p
l
a
y
(
)
.
s
e
t
C
u
r
r
e
n
t
(
f
o
r
m
)
;

t
h
r
e
a
d
.
s
t
a
r
t
(
)
;

T
h
r
e
a
d

t
h
r
e
a
d

=

n
e
w

T
h
r
e
a
d
(
s
t
a
r
t
S
e
s
s
i
o
n
T
h
r
e
a
d
)
;

e
l
s
e

i
f
(
c
o
m
m
a
n
d
.
g
e
t
C
o
m
m
a
n
d
T
y
p
e
(
)

=
=

C
o
m
m
a
n
d
.
E
X
I
T
)

}

S
t
a
r
t
S
e
s
s
i
o
n
T
h
r
e
a
d

s
t
a
r
t
S
e
s
s
i
o
n
T
h
r
e
a
d

=

n
e
w

S
t
a
r
t
S
e
s
s
i
o
n
T
h
r
e
a
d
(
r
e
m
o
t
e
U
s
e
r
I
d
.
g
e
t
S
t
r
i
n
g
(
)
)
;

}
}
)
;

f
o
r
m
.
a
d
d
C
o
m
m
a
n
d
(
i
n
v
i
t
e
C
o
m
m
a
n
d
)
;

C
o
m
m
a
n
d

e
x
i
t
C
o
m
m
a
n
d

=

n
e
w

C
o
m
m
a
n
d
(
"
E
x
i
t
"
,

C
o
m
m
a
n
d
.
E
X
I
T
,

1
)
;

C
o
m
m
a
n
d

i
n
v
i
t
e
C
o
m
m
a
n
d

=

n
e
w

C
o
m
m
a
n
d
(
"
I
n
v
i
t
e
"
,

C
o
m
m
a
n
d
.
O
K
,

1
)
;

f
o
r
m
.
a
p
p
e
n
d
(
r
e
m
o
t
e
U
s
e
r
I
d
)
;

r
e
m
o
t
e
U
s
e
r
I
d
.
s
e
t
L
a
b
e
l
(
"
P
l
e
a
s
e

e
n
t
e
r

t
h
e

r
e
m
o
t
e

u
s
e
r

I
d
:
"
)
;

f
i
n
a
l

T
e
x
t
F
i
e
l
d

r
e
m
o
t
e
U
s
e
r
I
d

=

n
e
w

T
e
x
t
F
i
e
l
d
(
"
R
e
m
o
t
e
U
s
e
r
I
d
"
,

"
s
i
p
:
a
l
i
c
e
@
e
r
i
c
s
s
o
n
.
c
o
m
"
,

4
0
,

T
e
x
t
F
i
e
l
d
.
A
N
Y
)
;

f
o
r
m
.
s
e
t
T
i
t
l
e
(
"
S
e
n
d

i
n
v
i
t
a
t
i
o
n
"
)
;

F
o
r
m

f
o
r
m

=

n
e
w

F
o
r
m
(
"
I
n
i
t
i
a
l
i
z
e

S
e
s
s
i
o
n
"
)
;

p
r
i
v
a
t
e

v
o
i
d

i
n
i
t
i
a
l
i
z
e
S
e
s
s
i
o
n
(
)

{

Fi
gu

re
 1

7.
24

In

vi
ta

ti
on

 fo
rm

 d
is

pl
ay

.

K10067_C017.indd 484 8/3/2010 10:35:35 PM

JAVA IMS Mobile Application Development ◾  485

} }

t
r
y

{

d
i
s
p
l
a
y
A
l
e
r
t
(
"
P
r
o
b
l
e
m

s
t
a
r
t
i
n
g

a

s
e
s
s
i
o
n
-
I
m
s
E
x
c
e
p
t
i
o
n
"
,

t
r
u
e
)
;

d
i
s
p
l
a
y
A
l
e
r
t
(
"
P
r
o
b
l
e
m

s
t
a
r
t
i
n
g

a

s
e
s
s
i
o
n
-
S
e
r
v
i
c
e
C
l
o
s
e
d
E
x
c
e
p
t
i
o
n
"
,

t
r
u
e
)
;

d
i
s
p
l
a
y
A
l
e
r
t
(
"
P
r
o
b
l
e
m

s
t
a
r
t
i
n
g

a

s
e
s
s
i
o
n
-
I
l
l
e
g
a
l
S
t
a
t
e
E
x
c
e
p
t
i
o
n
"
,

t
r
u
e
)
;

c
a
t
c
h

(
I
l
l
e
g
a
l
S
t
a
t
e
E
x
c
e
p
t
i
o
n

e
)

{

c
a
t
c
h

(
I
m
s
E
x
c
e
p
t
i
o
n

e
1
)

{

}
}

}}}} c
a
t
c
h

(
S
e
r
v
i
c
e
C
l
o
s
e
d
E
x
c
e
p
t
i
o
n

e
2
)

{

Ch
at

 se
ss

io
n

in
vi

ta
tio

n
tr

an
sa

ct
io

n
th

at
 tr

ig
ge

rs
 a

SI
P

IN
VI

TE
s
e
s
s
i
o
n
.
s
t
a
r
t
(
)
;

f
r
a
m
e
d
M
e
d
i
a
.
s
e
t
L
i
s
t
e
n
e
r
(
o
u
t
g
o
i
n
g
F
r
a
m
e
d
A
d
a
p
t
e
r
)
;

F
r
a
m
e
d
M
e
d
i
a
A
d
a
p
t
e
r

o
u
t
g
o
i
n
g
F
r
a
m
e
d
A
d
a
p
t
e
r

=

n
e
w

F
r
a
m
e
d
M
e
d
i
a
A
d
a
p
t
e
r
(
)
;

f
r
a
m
e
d
M
e
d
i
a
.
s
e
t
A
c
c
e
p
t
e
d
C
o
n
t
e
n
t
T
y
p
e
s
(
n
e
w

S
t
r
i
n
g
[
]

{
"
t
e
x
t
/
p
l
a
i
n
"
}
)
;

f
r
a
m
e
d
M
e
d
i
a

=

(
F
r
a
m
e
M
e
d
i
a
)

s
e
s
s
i
o
n
.
c
r
e
a
t
e
M
e
d
i
a
(
"
F
r
a
m
e
M
e
d
i
a
"
,

M
e
d
i
a
.
D
I
R
E
C
T
I
O
N
_
S
E
N
D
_
R
E
C
E
I
V
E
)
;

S
e
s
s
i
o
n
.
s
e
t
L
i
s
t
e
n
e
r
(
s
e
s
s
i
o
n
A
d
a
p
t
e
r
)
;

S
e
s
s
i
o
n
A
d
a
p
t
e
r

s
e
s
s
i
o
n
A
d
a
p
t
e
r

=

n
e
w

S
e
s
s
i
o
n
A
d
a
p
t
e
r
(
)
;

s
e
s
s
i
o
n

=

c
o
r
e
S
e
r
v
i
c
e
.
c
r
e
a
t
e
S
e
s
s
i
o
n
(
p
u
b
l
i
c
U
s
e
r
I
d
F
i
e
l
d
.
g
e
t
S
t
r
i
n
g
(
)
,

r
e
m
o
t
e
U
s
e
r
I
d
)
;

Cr
ea

tio
n

of
 an

 o
bj

ec
t t

ha
t r

ep
re

se
nt

s a
 se

ss
io

n
fo

r m
ed

ia
 ex

ch
an

ge
 an

d
th

ei
r c

on
�g

ur
at

io
n

t
h
i
s
.
r
e
m
o
t
e
U
s
e
r
I
d

=

r
e
m
o
t
e
U
s
e
r
I
d
;

i
n
v
i
t
e
(
r
e
m
o
t
e
U
s
e
r
I
d
)
;

d
i
s
p
l
a
y
A
l
e
r
t
(
"
P
l
e
a
s
e

e
n
t
e
r

a

v
a
l
i
d

U
R
I
"
,

t
r
u
e
)
;

i
f
(
!
i
s
U
r
i
V
a
l
i
d
(
r
e
m
o
t
e
U
s
e
r
I
d
)
)
{

p
r
i
v
a
t
e

v
o
i
d

i
n
v
i
t
e
(
S
t
r
i
n
g

r
e
m
o
t
e
U
s
e
r
I
d
)

{

p
u
b
l
i
c

v
o
i
d

r
u
n
(
)

{

p
r
i
v
a
t
e

S
t
a
r
t
S
e
s
s
i
o
n
T
h
r
e
a
d
(
S
t
r
i
n
g

r
e
m
o
t
e
U
s
e
r
I
d
)

{

p
r
i
v
a
t
e

S
t
r
i
n
g

r
e
m
o
t
e
U
s
e
r
I
d
;

p
r
i
v
a
t
e

c
l
a
s
s

S
t
a
r
t
S
e
s
s
i
o
n
T
h
r
e
a
d

i
m
p
l
e
m
e
n
t
s

R
u
n
n
a
b
l
e

{

Fi
gu

re
 1

7.
25

Se

ss
io

n
se

tt
in

g
an

d
m

ed
ia

 c
on

fi
gu

ra
ti

on
.

K10067_C017.indd 485 8/3/2010 10:35:35 PM

486  ◾  Mobile Web 2.0

end	successfully	with	the	user	registered	in	the	network,	or	with	an	encapsulated	
failure	 as	 an	 exception.	 A	 code	 of	 nonsatisfactory	 answer	 as	 a	 result	 of	 the	 SIP	
REGISTER	request	is	abstracted	in	an	IOException.

Once	 the	users	 are	 registered	 in	 the	network,	 the	MIDlet	presents	 the	 form	
which	allows	the	user	to	identify	another	user	to	start	a	chat	session	with.	Figure	
17.24	shows	the	code	for	the	creation	and	display	of	this	form.

Figure	 17.25	 shows	 the	 code	 related	 with	 the	 session	 establishment	 between	
two	connection	ends.	The	CoreService.createSession()	method	enables	the	creation	
of	the	session	through	the	IMS	network	for	the	media	exchange.	In	our	example,	
we	use	the	FramedMedia	type,	which	represents	a	media	transference	connection	
in	 which	 the	 content	 is	 sent	 in	 packets	 and	 may	 be	 used	 for	 instant	 messaging	
as	 well	 as	 object	 serialization	 or	 file	 transference.	 Through	 the	 constant	 Media.
DIRECTION_SEND_RECEIVE,	 it	 specifies	 that	 the	 media	 exchange	 will	 take	
place	in	both	directions.

The	 object	 that	 represents	 the	 session	 is	 associated	 with	 a	 listener	 in	 charge	
of	 listening	 and	 processing	 the	 events	 it	 generates.	 In	 our	 example,	 the	 class	
SessionAdapter	in	Figure	17.26	implements	this	listener.
When	 the	user	at	 the	other	end	of	 the	 session	accepts	 the	 invitation,	 the	 imple-
mentation	of	the	API	JSR	281	generates	an	event	that	represents	this	situation	and	
results	in	the	invocation	to	the	sessionStarted()	method,	which	in	our	implementa-
tion	invokes	the	MIDlet	startSession()	method	that	displays	the	form	for	entering	
and	sending	messages	during	the	chat	session,	as	shown	in	Figure	17.27.

Finally,	 Figure	 17.28	 shows	 how	 the	 message	 sending	 is	 done	 using	 the	
FramedMedia	object	created	in	the	StartSessionThread	class	of	Figure	17.25.

}

}

}

Established session alert
that triggers the message exchage

}

terminateSession();

initializeSession();
public void session terminated(Session arg0) {

public void sessionUpdated(Session arg0) {}

public void sessionUpdateReceived(Session arg0) {}

public void sessionUpdateFailed(Session arg0) {}

startSession();

public void sessionStarted(Session arg0) {

displayAlert("Session can’t be started", true);

public void sessionStartFailed(Session arg0) {

public void sessionReferenceReceived(Session arg0, Reference arg1) {}

public void sessionAlerting(Session arg0) {}

private class SessionAdapter implements SessionListener {

Figure 17.26 Session events listener.

K10067_C017.indd 486 8/3/2010 10:35:36 PM

JAVA IMS Mobile Application Development ◾  487

f
o
r
m
.
a
d
d
C
o
m
m
a
n
d
(
b
y
e
C
o
m
m
a
n
d
)
;

p
u
b
l
i
c

v
o
i
d

c
o
m
m
a
n
d
A
c
t
i
o
n
(
C
o
m
m
a
n
d

c
o
m
m
a
n
d
,

D
i
s
p
l
a
y
a
b
l
e

d
i
s
p
l
a
y
a
b
l
e
)

{

i
f
(
c
o
m
m
a
n
d
.
g
e
t
C
o
m
m
a
n
d
T
y
p
e
(
)

=
=

C
o
m
m
a
n
d
.
O
K
)

{

T
h
r
e
a
d

t
h
r
e
a
d

=

n
e
w

T
h
r
e
a
d
(
s
e
n
d
T
h
r
e
a
d
)
;

}

}

}

}
)
;

D
i
s
p
l
a
y
.
g
e
t
D
i
s
p
l
a
y
(
t
h
i
s
).
s
e
t
C
u
r
r
e
n
t
(
f
o
r
m
)
;

St
ar

t o
f t

he
 m

es
sa

ge
 se

nd
in

g
pr

oc
es

s t
o

th
e o

th
er

en
d

of
 th

e s
es

sio
n

Cr
ea

tio
n

an
d

di
sp

lay
of

 th
e i

nc
om

in
g

m
es

sa
ge

s f
or

m

t
h
r
e
a
d
.
s
t
a
r
t
(
)
;

T
h
r
e
a
d

t
h
r
e
a
d

=

n
e
w

T
h
r
e
a
d
(
e
n
d
S
e
s
s
i
o
n
T
h
r
e
a
d
)
;

E
n
d
S
e
s
s
i
o
n
T
h
r
e
a
d

e
n
d
S
e
s
s
i
o
n
T
h
r
e
a
d

=

n
e
w

E
n
d
S
e
s
s
i
o
n
T
h
r
e
a
d
(
)
;

}

e
l
s
e

i
f
(
c
o
m
m
a
n
d
.
g
e
t
C
o
m
m
a
n
d
T
y
p
e
(
)

=
=

C
o
m
m
a
n
d
.
E
X
I
T
)

{

t
h
r
e
a
d
.
s
t
a
r
t
(
)
;

S
e
n
d
T
h
r
e
a
d

s
e
n
d
T
h
r
e
a
d

=

n
e
w

S
e
n
d
T
h
r
e
a
d
(
m
e
s
s
a
g
e
.
g
e
t
S
t
r
i
n
g
(
)
)
;

f
o
r
m
.
s
e
t
C
o
m
m
a
n
d
L
i
s
t
e
n
e
r
(
n
e
w

C
o
m
m
a
n
d
L
i
s
t
e
n
e
r
(
)

{

f
o
r
m
.
a
d
d
C
o
m
m
a
n
d
(
s
e
n
d
C
o
m
m
a
n
d
)
;

C
o
m
m
a
n
d

s
e
n
d
C
o
m
m
a
n
d

=

n
e
w

C
o
m
m
a
n
d
(
"
S
e
n
d
"
,

C
o
m
m
a
n
d
.
O
K
,

1
)
;

C
o
m
m
a
n
d

b
y
e
C
o
m
m
a
n
d

=

n
e
w

C
o
m
m
a
n
d
(
"
E
n
d
"
,

C
o
m
m
a
n
d
.
E
X
I
T
,

1
)
;

f
o
r
m
.
a
p
p
e
n
d
(
c
h
a
t
A
r
e
a
)
;

f
o
r
m
.
a
p
p
e
n
d
(
m
e
s
s
a
g
e
)
;

c
h
a
t
A
r
e
a
.
s
e
t
T
e
x
t
(
"
"
)
;

c
h
a
t
A
r
e
a

=

n
e
w

S
t
r
i
n
g
I
t
e
m
(
"
\
r
\
n
M
e
s
s
a
g
e
s

a
n
d

s
t
a
t
u
s
:
\
r
\
n
"
,
"
)
;

f
i
n
a
l

T
e
x
t
F
i
e
l
d

m
e
s
s
a
g
e

=

n
e
w

T
e
x
t
F
i
e
l
d
(
"
E
n
t
e
r

a

m
e
s
s
a
g
e

t
o

s
e
n
t
:
"
,

"
"
,

4
0
,

T
e
x
t
F
i
e
l
d
.
A
N
Y
)
;

F
o
r
m

f
o
r
m

=

n
e
w

F
o
r
m
(
"
C
h
a
t
t
i
n
g
"
)
;

p
r
i
v
a
t
e

v
o
i
d

s
t
a
r
t
S
e
s
s
i
o
n
(
)

{

Fi
gu

re
 1

7.
27

D

is
pl

ay
 o

f t
he

 m
es

sa
ge

 s
en

di
ng

 fo
rm

.

K10067_C017.indd 487 8/3/2010 10:35:37 PM

488  ◾  Mobile Web 2.0

s
e
n
d
(
m
e
s
s
a
g
e
)
;

p
u
b
l
i
c

v
o
i
d

r
u
n
(
)

{

p
r
i
v
a
t
e

v
o
i
d

s
e
n
d
(
S
t
r
i
n
g

m
e
s
s
a
g
e
)

{

}

t
r
y

{

f
r
a
m
e
d
M
e
d
i
a
.
s
e
n
d
B
y
t
e
s
(
m
e
s
s
a
g
e
.
g
e
t
B
y
t
e
s
(
)
,

"
t
e
x
t
/
p
l
a
i
n
"
,

n
u
l
l
)
;

}

}

d
i
s
p
l
a
y
A
l
e
r
t
(
"
P
r
o
b
l
e
m

s
e
n
d
i
n
g

m
e
s
s
a
g
e
!
"
,

t
r
u
e
)
;

M
es

sa
ge

 se
nd

in
g

th
ro

ug
h

Fr
am

eM
ed

ia
 o

bj
ec

t

c
a
t
c
h

(
E
x
c
e
p
t
i
o
n

e
)

{

}

}
}

t
h
i
s
.
m
e
s
s
a
g
e

=

m
e
s
s
a
g
e
;

p
u
b
l
i
c

S
e
n
d
T
h
r
e
a
d
(
S
t
r
i
n
g

m
e
s
s
a
g
e
)

{

p
r
i
v
a
t
e

S
t
r
i
n
g

m
e
s
s
a
g
e
;

p
r
i
v
a
t
e

c
l
a
s
s

S
e
n
d
T
h
r
e
a
d

i
m
p
l
e
m
e
n
t
s

R
u
n
n
a
b
l
e

{

Fi
gu

re
 1

7.
28

M

es
sa

ge
 s

en
di

ng
.

K10067_C017.indd 488 8/3/2010 10:35:38 PM

JAVA IMS Mobile Application Development ◾  489

17.9 Conclusions
IMS	(IP	Multimedia	Subsystem)	is	an	intelligent	network	architecture	standard-
ized	by	3GPP,	with	multiple	converging	services	such	as	mobile	and	fixed	telephony,	
cable	and	satellite	TV,	and	access	to	the	Internet	(usually	provided	by	different	net-
works),	through	an	IP	common	data	transmission	infrastructure.	Since	it	is	based	
on	standard	interfaces	and	protocols	(i.e.,	SIP	for	session	management),	IMS	favors	
an	“open”	chain	of	values	that	includes	network,	computer	and	device	manufactur-
ers,	as	well	as	third-party	service	providers	promoting	its	adoption	by	telecommu-
nication	companies.

The	 IMS	 layer	 design	 facilitates,	 on	 one	 hand,	 the	 availability	 of	 those	 ser-
vices	offered	 independently	 in	 the	 access	network	and,	on	 the	other	hand,	 their	
integration,	making	the	creation	of	new	services	and	application	more	agile.	Also,	
the	 growth	 of	 mobile	 devices	 for	 their	 processing	 capabilities,	 connectivity,	 and	
functionality	and	its	broad	adoption	by	users	will	promote	an	interesting	market	
for	 the	adoption	of	a	network	with	the	characteristics	of	IMS.	IMS	fills	 the	gap	
between	the	two	most	successful	communication	paradigms,	cellular	and	Internet	
technology.

The	vision	of	IMS	of	“any	service,	any	screen,	anywhere,”	enables	users	to	share	
contents	“live”	with	multifunctional	devices	through	multiple	virtual	systems,	pro-
moting	the	creation	of	enriched	Web	2.0	applications.

References
[R1]	 R.J.M.	 Tejedor,	 Convergencia	 total	 en	 IMS:	 IP	 multimedia	 subsystem.	 Revista

Comunicaciones World,	214,	50–53,	2006,	ISSN	1139-0867,	Versión	digital:	http://
www.idg.es/comunicaciones/articulo.asp?id=178173	(última	visita	20/02/09).

[R2]	M.	Poikselkä,	G.	Mayer,	H.	Khartabil,	and	A.	Niemi,	The IMS:	IP Multimedia Concepts
and Services,	2nd	edn.,	John	Wiley	&	Sons,	Chichester,	U.K.,	ISBN	0-470-01906-9,	
2006.

[R3]	R.	Copeland,	Converging NGN Wireline and Mobile 3G Networks with IMS,	CRC	Press,	
Boca	Raton,	FL,	ISBN	978-08493-9250-4,	2009.

[R4]	O.	Rashid,	P.	Coulton,	and	R.	Edwarts,	Implications	of	IMS	and	SIP	on	the	evolu-
tion	of	mobile	applications,	2006 IEEE Tenth International Symposium on Consumer
Electronics,	2006	(ISCE’06),	Petersburg,	Russia,	ISBN	1-4244-0216-6,	2006.

[R5]	P.	Kessler,	IMS	client	platform,	Ericsson Review,	No.	2.	Año	2007.

Web Sites
[L1]	NAPSTER:	http://free.napster.com/
[L2]	KaZaA:	http://www.kazaa.com/
[L3]	eMule:	http://www.emule-project.net/
[L4]	ICQ:	http://www.icq.com/

AQ4

AQ5

K10067_C017.indd 489 8/3/2010 10:35:38 PM

490  ◾  Mobile Web 2.0

[L5]	Skype:	http://www.skype.com
[L6]	MSN:	http://www.msn.com
[L7]	Twitter:	http://twitter.com/
[L8]	GPRS:	General	Packet	Radio	Service.	http://www.3gpp.org/article/gprs-edge
[L9]	 Code	 Division	 Multiple	 Access.	 http://www.tiaonline.org/standards/technology/

cdma2000
[L10]	3GPP2:	3rd	Generation	Partnership	Project	2.	http://www.3gpp2.org/public_html/

specs/index.cfm
[L11]	TISPAN:	Telecoms	&	Internet	converged	Services	&	Protocols	for	Advanced	Networks.	

http://www.etsi.net/tispan/
[L12]	 J.	Rosenberg,	H.	Schulzrinne,	G.	Camarillo,	A.	 Johnston,	 J.	Peterson,	R.	Sparks,	

M.	Handley,	and	E.	Schooler.	RFC	3261:	SIP:	Session	initiation	protocol.	June	2002.	
http://www.ietf.org/rfc/rfc3261.txt

[L13]	A.	Niemi.	RFC	3903:	Session	initiation	protocol	(SIP)	extension	for	event	state	pub-
lication.	October	2004.	http://www.ietf.org/rfc/rfc3903.txt

[L14]	J.	Rosenberg.	RFC	3857:	A	watcher	information	event	template-package	for	the	ses-
sion	initiation	protocol	(SIP).	August	2004.	http://www.ietf.org/rfc/rfc3857.txt

[L15]	A.	B.	Roach.	RFC	3265:	Session	initiation	protocol	(SIP)-specific	event	notification.	
June	2002.	http://www.ietf.org/rfc/rfc3265.txt

[L16]	 J.	Rosenberg.	RFC	3311:	The	 session	 initiation	protocol	 (SIP)	UPDATE	method.	
September	2002.	http://www.ietf.org/rfc/rfc3311.txt

[L17]	B.	Campbell,	J.	Rosenberg,	H.	Schulzrinne,	C.	Huitema,	and	D.	Gurle.	RFC	3428:	
Session	 initiation	 protocol	 (SIP)	 extension	 for	 instant	 messaging.	 December	 2002.	
http://rfc.dotsrc.org/rfc/rfc3428.html

[L18]	S.	Donovan.	RFC	2976:	The	SIP	INFO	method.	October	2000.	http://www.ietf.org/
rfc/rfc2976.txt

[L19]	J.	Rosenberg	and	H.	Schulzrinne.	RFC	3262:	Reliability	of	provisional	responses	in	
the	session	initiation	protocol	(SIP).	June	2002.	http://www.ietf.org/rfc/rfc3262.txt

[L20]	J.	Rosenberg.	RFC	3856:	A	presence	event	package	for	the	session	initiation	protocol	
(SIP).	August	2004.	http://www.ietf.org/rfc/rfc3856.txt

[L21]	 Java	 Community	 Process.	 JSRs	 de	 la	 iniciativa	 JAIN.	 http://jcp.org/en/jsr/
summary?id=jain

[L22]	JAIN	and	Java	in	Communications.	Sun	White	Paper.	March	2004.	http://java.sun.
com/products/jain/reference/docs/Jain_and_Java_in_Communications-1_0.pdf

[L23]	JSR	32:	JAIN	SIP	API.	http://jcp.org/en/jsr/detail?id=32
[L24]	JSR	125:	JAIN	SIP	Lite.	http://jcp.org/en/jsr/detail?id=125
[L25]	JSR	289:	SIP	Servlet	v1.1.	http://jcp.org/en/jsr/detail?id=289
[L26]	JSR	180:	SIP	API	for	J2ME.	http://jcp.org/en/jsr/detail?id=180
[L27]	JSR	164:	SIMPLE	Presence.	http://jcp.org/en/jsr/detail?id=164
[L28]	JSR	165:	SIMPLE	Instant	Messaging.	http://jcp.org/en/jsr/detail?id=165
[L29]	JSR	281:	IMS	Services	API.	http://jcp.org/en/jsr/detail?id=281
[L30]	JSR	325:	IMS	Communication	Enablers	(ICE).	http://jcp.org/en/jsr/detail?id=325
[L31]	JSR	116:	SIP	Servlet	API	v1.0.	http://jcp.org/en/jsr/detail?id=116
[L32]	SDS	(Service	Development	Studio)	de	Ericsson.	http://www.ericsson.com/developer/

sub/open/technologies/ims_poc/tools/sds_40
[L33]	Proyecto	SailFin.	http://sailfin.dev.java.net
[L34]	GlassFish.	https://glassfish.dev.java.net
[L35]	Eclipse.	http://www.eclipse.org

AQ6

K10067_C017.indd 490 8/3/2010 10:35:38 PM

JAVA IMS Mobile Application Development ◾  491

[L36]	JSR	118:	Mobile	Information	Device	Profile	2.	http://jcp.org/en/jsr/detail?id=118
[L37]	JSR	30:	Connected,	Limited	Device	Configuration.	http://jcp.org/en/jsr/detail?id=30
[L38]	 JSR	 139:	 Connected	 Limited	 Device	 Configuration	 1.1.	 http://jcp.org/en/jsr/

detail?id=139
[L39]	 JSR	 185:	 JavaTM	 Technology	 for	 the	 Wireless	 Industry.	 http://jcp.org/en/jsr/

detail?id=185
[L40]	JSR	248:	Mobile	Service	Architecture.	http://jcp.org/en/jsr/detail?id=248
[L41]	JSR	249:	Mobile	Service	Architecture	2.	http://jcp.org/en/jsr/detail?id=249

Author Queries
[AQ1]		The	sentence	starting:	“Examples	of	applications	on	IMS”	seems	incomplete.	

Please	check.
[AQ2]		Figures	17.19	and	17.20	have	been	renumbered	to	maintain	sequential	order	

of	appearance.	Please	check.
[AQ3]		Figure	17.15	has	been	changed	 to	Figure	17.20	as	per	 the	 caption.	Please	

check	if	this	is	ok.
[AQ4]	Please	provide	in-text	citation	for	[R3].
[AQ5]	Please	provide	page	range	in	Ref.	[R5],	if	appropriate.
[AQ6]	Please	provide	in-text	citation	for	[L14].

K10067_C017.indd 491 8/3/2010 10:35:38 PM

K10067_C017.indd 492 8/3/2010 10:35:38 PM

