


Abstract— This article describes a system meant to provide
monitoring services using Simple Network Management
Protocol (SNMP) and the Java 2 Platform, Standard Edition
(J2SE). The architecture of the system is based on JMX (Java
Management eXtensions), and is composed of agents and
managers. Each Java agent is a mediator between a set of
SNMP agents of a network and the management applications.
When the number of administered SNMP agents is large,
assigning a Java agent to handle each one of them would be not
only complex, but unfeasible if the device subject to monitoring
does not support Java or if the device is unreachable for security
matters. To avoid this problem without interfering with the
security policies of a network, we propose an architecture in
which a Java agent or master concentrates and sends the
management application all the monitoring information of the
SNMP sub-agents. This proposal simplifies the process of
administration of the devices, increases the internal security of
the monitored network, allows monitoring of not java-enabled
devices and diminish the network traffic considerably.
Additionally, the system provides a manager with a simple but
high quality user interface to facilitate the remote
administration of the Java agents.

Index Terms— Software/Resource Management, Agents, Java
Management Extensions, Simple Network Management Protocol

I. INTRODUCTION

n the field of network and device management, SNMP[1]

has been the dominant protocol for many years. A large
amount of vendors have distributed many devices with SNMP
management capabilities. In addition, Sun has extended the
Java platform to provide JMX management and monitoring of
applications and services, encouraging the development of
non-proprietary solutions.
Considering, then, that most of the devices have SNMP and
exploiting the new resource management characteristics of
the Java platform, we designed an architecture which
simplifies the process of secure network monitoring applying
these technologies.
This article is structured in the following manner. Section II
presents typical scenarios signaling the main management
needs. Section III briefly describes SNMP, the protocol for
standard management and summarizes the most significant

characteristics of JMX[2], the standard Java specification to
implement applications and agents. Section IV presents the
JMX-based architecture and a prototype called Cafetín which
implements it. This paper is ended with conclusions.

II. SCENARIO

The proliferation of networks in organizations, together with
the geographical distribution of their dependencies, generates
a scenario in which the network devices, servers and services
are not concentrated in a single location. If we add to this the
importance of having availability in 7X24 services, this
typically leads to administrators using many monitoring tools
and techniques to provide immediate answers to potential
anomalies, both in the services and in the infrastructure in
which they are mounted.
It is true that many manufacturers provide the user with
monitoring tools, but most of them use proprietary protocols,
which impedes their integration and correlation with the
information generated by equipment manufactured by another
company.
There are also tools based on standard protocols such as
SNMP for the management of remote devices, which
facilitates resource monitoring, although many of them
generate a great amount of SNMP traffic and require access
to the internal network structure. Some of these have
management applications with very textual and unfriendly
user interfaces.
In light of these reasons and having SNMP available in most
of the devices, we propose a system to improve these
deficiencies and facilitate the network management with a
great number of SNMP agents.

III. APPLIED TECHNOLOGIES

A. Simple Network Management Protocol (SNMP)
SNMP is the dominant technology in the management field.
It defines an architecture made up of a set of management
stations or managers and network elements or agents. The
management stations execute applications which enable
monitoring and control of the network elements, whereas the
network elements are devices with agents responsible for the
execution of the management tasks required by the said
stations. Lastly, the management protocol called SNMP is

A standards-based network monitoring system
Javier F. Díaz – Laura A. Fava – Alejandro J. Sabolansky
Computer Science School, National University of La Plata
50 and 120, 2nd floor, La Plata, Buenos Aires, Argentina.

{jdiaz, lfava, asabolansky}@info.unlp.edu.ar

I

used to communicate management information between the
stations and the network elements[3,4].
Basically, the management application can obtain data from
the device and send data to the device, and the agent can send
unsolicited data (called trap) to the said application.
Furthermore, each device contains in its memory very well
defined information with a tree-like structure, called MIB1.
An MIB is a complete database which defines the information
available from a device for the network or the management
application, which is accessed using the SNMP protocol.
SNMP has evolved and there are three versions of it: SNMP
version 1 (SNMPv1), which defines the structure of the
management information [5] and the SNMP protocol, SNMP
version 2 (SNMPv2), which offers improvements in the types
of packages and structures of the MIBs [6,7] and its last
version (SNMPv3), which has undergone significant changes
in relation to its predecessors, above all in security matters
[8,9]. SNMPv3 was launched to cover the deficiencies of its
antecessors while improving privacy, authentication and
authorisation aspects.

B. Java Management Extensions (JMX)
The JMX technology was developer through the Java
Community Process2 as two related specifications: Java
Management Extensions Instrumentation and Agent
Specification (JSR3 3) and Java Management Extensions
Remote API (JSR 160), plus JSR 255 of 2007, which updates
the previous ones. The first implementations of these
specifications were included as of version 5.0 of the standard
Java platform. The latest version of the standard J2SE
platform is 6.0, which includes JMX 1.4.
The JMX specification defines a management architecture
and a set of APIs which describe the components of this
architecture. The JMX 1.4 specification specifies an
architecture composed of three levels, which are described
below [15].

Instrumentation Level
The instrumentation level provides a specification to
implement manageable JMX resources. A manageable JMX
resource may be an application, a service implementation, a
device, a user, etc. This is developed in Java and may be
managed by JMX applications.
The instrumentation of a given resource is provided by one or
more managed beans, known as MBeans. The
instrumentation of a resource allows it to be managed by
means of the Agent Level described below. MBeans do not
require information regarding the JMX agent they will

1 Management Information Base (MIB): is a collection of information

organized hierarchically. These are accessed using a protocol such as SNMP.
2 Java Community Process (JCP): is an organization which guides the

development and controls the technical specifications of Java technologies.
3 Java Specification Requests (JSRs) are final specifications and proposals for

the Java platform.

operate with. Additionally, this level specifies a notification
mechanism. Agents compatible with JMX can manage JMX
resources automatically.

Agent level
The agent level provides a specification to implement agents.
The agents control the managed resources directly and make
them available for the remote management applications.
According to SUN’s documentation, the agent is commonly
located in the same machine as the SNMP agent.
A JMX agent is an entity which runs in a JVM and acts as a
mediator between MBeans and the management application.
It is composed of an MBean server, a set of MBeans
representing the managed resources, one or more
implemented services such as MBeans and at least one
Connector or Protocol Adapter for communication.

Distributed Services Level
This level provides connectors which allow communication
between JMX agents and management applications to occur.
Each connector provides the same remote management
interface through a different protocol. When a remote
application uses this interface it can connect to a JMX agent
in a transparent manner through the network, no matter
which protocol it is using.

IV. CAFETIN: A MONITORING JMX-BASED SYSTEM

The architecture proposed is based on JMX and is composed
of, as was said before, an agent and a management
application, both compatible with JMX. The Java agent is the
one responsible for exposing the management information of
a set of SNMP agents to the remote management applications.

A. The Cafetín Agent

Because the agent is implemented in Java, it must be executed
in a device that has a JVM. It can be installed in the same
device on which the SNMP agent is running if it also has a
JVM, or in any other machine Java enabled. The most
common procedure is to install the Java agent in the device to
be monitored (this is the case of agents monitoring firewalls,
web servers, J2EE servers and even the JVM itself.) However,
there are situations in which the Java agent must be in a
different device than the one that is executing the SNMP
agent, either because the device to be monitored does not have
the capacity to execute a JVM –as is the case of most routers
and switches- or because the device cannot be accessed on
account of filtering or routing policies. Both situations are
present in the typical scenarios presented in section II where
commonly, in addition, a great number of SNMP agents must
be handled. It would be difficult to install a Java agent in each
device (which has the SNMP agent) to be monitored. For the
reasons mentioned, we considered it appropriate to define a
hierarchical structure of main agent or master and SNMP

sub-agents, in which the master agent concentrates and sends
information about its sub-agents to the management
application. The management application only communicates
with the master agent and accesses the SNMP sub-agents
transparently, as if the information resided in the master
agent. As can be observed in Figure 2, a Cafetín agent can
monitor one or many SNMP agents, thus, only one Java agent
needs to be installed in a machine to monitor N SNMP
agents. Moreover, the Cafetín agent reads the IPs of the
devices to be monitored when it starts, which makes it adapt
well to be executed in the same machine of the SNMP agent
and monitor only one SNMP agent.

Figure 1: Cafetín Architecture

As can be observed in Figure 1, the agent has an
MBeanServer which functions as an object container, which
model a resource or service. These resource or management
services, in the shape of MBeans, can be registered and
removed dynamically from the management application. The
proposed architecture has defined, among others, the
following MBeans:

SNMP Access Service (WrapperSNMP): this MBean works
as a wrapper of the SNMP agent. It provides the services of
an SNMP agent.
What is the advantage of having a wrapper instead of
connecting directly through a SNMP protocol adapter?
Minimizing the network traffic. Without this functionality,
we should establish a connection directly from the manager
application to each of the SNMP agents. In this way, the
Cafetín agent is the one doing the pollings to an SNMP agent
or groups of SNMP agents belonging to a network and reports
to the management application only in special situations.
To achieve this, many different monitors are used and given
the task of monitoring a given attribute. This MBean is
dynamic, i.e. the attributes to be monitored can be defined in
run-time, through a screen from the manager which allows
for the specifications of the monitor parameters.

Monitoring Service: MIBs attributes can be monitored using
the monitoring services offered by JMX. The monitoring
services facilitate the observation of the time variation of the

attribute values in the MBeans representing the MIBs and
issue notifications when faced with certain situations -
changes in the attribute values, attribute values which reach a
threshold, etc.-. The monitors send notifications when the
observed values gather certain conditions, mainly when they
match or exceed a threshold. These conditions are specified
when the monitor is started or dynamically from a
management application using the corresponding graphics
window for defining monitors as shown in Figure 3.
The value observed by the monitor is called a “derived
gauge”, and it can be the exact value obtained from an
attribute at a precise time or the value difference between two
consecutive observations. The time interval during which an
attribute is monitored is called “granularity period” and is
measured in milliseconds. There is also a data, called “offset”
which can be configured, and indicates when the threshold
increases once the top value has been reached.

Figure 2: Windows for definition of a CounterMonitor from the

Management application

The management application provides graphics windows
(Figure 2) to define different types of monitors according to
the type of data of the MIB attribute. These windows also
allow to specify whether all the network devices monitored by
the JMX agent or only some network IP addresses will be
monitored.
The IP addresses are automatically loaded when the
administrator to selects a widget that represents a remote java
agent (Figure 3). Each IP address in the list corresponds to an
SNMP agent that such Java agent handles.
This functionality shows an aspect of the extensibility of the
system. The manager application instructs the agent to run a
new MBean (monitor). As of then, the person in charge of the
network will receive e-mail or telephone notifications from

JVM1

JVM2

Cafetin Manager

Datos MBean
Server

Monitor
1

SNMP
Wrapper

SNMP Adapter

L1
HTML Adapter

SNMP
Session

Web Browser

OpenView,
SUNNetManger, etc.

Cafetin Agent

JP
A

SNMP
Agent

L2
Application

Manager
RMI

Connector

SNMP
Session

SNMP
Agent

SNMP
Session

SNMP
Agent

this new monitor, and in addition will be able to visualize
graphically the anomaly on the corresponding User Interface
widget.

Broadband Controlling Service (BandWithMBean): this
MBean measures the use of a WAN connection, with the goal
of limiting its use. WANs use full-duplex connections, i.e.
point-to-point connections where both devices can transmit
and receive at the same time, because both know there is only
one other device sharing the said connection. As MIB-II
variables are stored in counters, we can take two polling
cycles and calculate the difference between them.
We can use the difference between two polling cycles of the
ifInOctets attributes (represents the amount of incoming
traffic cycles), the difference between two polling cycles of
the ifOutOctets attribute (represents the amount of incoming
traffic octets) and the value reported by the snmpifSpeed
attribute (which represents the interface speed.)

The agent implemented is extensible; it can add new MIBs or
services in run-time if the remote applications instruct it to do
so. It can also monitor attribute values and issue notifications
of undesirable situations by different means, or longer, to
perform an automatic action to improve such situations.

B. The Cafetín manager

Other main goal of Cafetín was providing a collaborative,
web-based and high-quality user interface. For this reason we
decided to use Java Foundation Classes[9] for the
construction of the UI. The manager application Cafetín can
be used in two manners, as an Applet Swing or a Swing
desktop application. Both have the same GUI, the difference
is in how they work. In the case of the applet, the
administrator needs to work in the browser, whereas with the
application the administrator has to access the main page of
Cafetín one time and click on a link. This will cause the Java
Web Start[10] to download the application to work in an
independent browser window. Figure 3 shows an image of the
management application GUI with the JMX agents and a
small window with the information of the SNMP agents it is
monitoring.

The JFC, is a set of technologies which facilitates the
development of GUIs for desktop applications and for applets.
It is part of the Java platform as of version 1.2 and contains a
set of GUI components with pluggable look & feel, known as
Swing components, which, among other things, manipulate
2D advanced graphics and images, interact with accessibility
technologies and create applications with automatic
internationalization. Although the design of the GUI was an
important step in the development of the management
application, the main goal was the construction of a portable,
extensible and dynamic tool to assist administrators in the
processes of configuration, performance administration and
network troubleshooting. As regards configuration, the
manager application allows the construction of a visual

network map and the indication of device IP address and
other data necessary for communication with the JMX agent.
Regarding network faults, the GUI provides a permanent
network visualization, allowing any user to see the topology
and its status. A set of colors and visual effects show the
status of each device, allowing a simple observation to
provide information on the general status of the network. The
monitors are responsible for communicating critical states by
means of significative icons, as well as by e-mail or
telephone. Additionally, it has a history fed by monitoring,
which allows the administrator who solved the problem to
input the mechanism he used to do so. This information can
be consulted by date, type of error, device, etc., and can be
useful to solve similar future problems.

Figure 3: User Interface of the management application

C. Communication between agents and managers

Cafetín makes use of JMX’s distributed services level, i.e. of
the protocol adapters and connectors for the different
communications. The manager application and the JMX
agents use RMI to communicate, however, the JMX agents
can be accessed through HTTP or SNMP as well, because of
the protocol adapters described below.

The agent has an RMI Connector which makes the
information of the said agent available to the remote
management applications or clients. The agent has an RMI
server connector registered and the management application
makes use of the client part of the RMI connector to establish
the communication. The client connector exposes a remote
version of the MBeanServer interface. Each client connector
represents an agent to which the manager wishes to connect.
In order to do this, the manager must know the host and RMI
port. The RMI server connector listens for application
connection requests, creates a connection for each request and
replies everyone simultaneously. It also has an HTML
Protocol Adapter which acts as an HTML server. It allows
any browser to access the agent through the HTTP protocol,
to manage all the MBeans in the agent. In the case of Cafetín,
it was especially incorporated into the agent with a tool to
accelerate the development of the agent and the testing. This

adapter is implemented as a dynamic MBean. When the
HTMP protocol adapter is started, it generates a TCP/IP
socket, listens for managers connecting to the agents, and
waits for requests. It also includes an SNMP Protocol
Adapter, in charge of translating data from an MBean to an
SNMP MIB and using the SNMP protocol to transport the
monitoring information to the interested listeners. This
adapter does not interact with MBeans in the same manner
the other adapters and connectors do. This is because the
SNMP data are in the MIBs, and only MBeans representing
MIBs can be managed through SNMP.

D. Communication with the Data Base

For the persistence of the Cafetín information in the data
base, we used Java Persistence API or JPA[11,12], the
persistence management and object/relational mapping
standard interface of the Java Enterprise Edition 5.0 (JEE 5)
platform. JPA is supported by most of the J2EE container
providers. However, the new standard establishes that the JPA
engine must be capable of running outside an EJB 3.0
execution environment. For this reason, any J2SE application,
as is Cafetín, can make use of JPA without the need for an
EJB 3.0 container or Java EE server.
To access the database we implemented a data access layer,
commonly referred to as DAO, essential in any application
architecture. This layer provides a separation between what
regards object persistence and the data access logic of any
particular persistence mechanism or API, allowing flexibility
to change the persistence mechanism without necessarily
effecting changes in the logic of the application interacting
with the DAO. Currently, the persistence is being
implemented with JPA, but could be modified to use JDBC or
any other API without major changes.

V. CONCLUSION

We have proposed an architecture and implemented it with

the J2SE standard, both for the master agent and the
management application. We have obtained an extensible,
dynamic and portable agent/manager application. These
characteristics are the result of using Java and its JMX, JPA
and JFC standards. The use of JMX made possible the
development of the agent and facilitated the run-time remote
resource and services addition, JFC facilitated the
construction of a high-quality GUI and JPA permitted the
implementation of object relational mapping.
The agent/manager application in its whole facilitates the
administration of devices of any brand and type and reduces
the network load, providing an intermediary JMX agent
between the management application and the SNMP agents.
It also makes its management easier, especially when we
consider a great number of SNMP agents.
Finally, the management application to allow programmers to

focus on the management functions rather than the
underlying SNMP operations.

REFERENCES

[1] Managing Internetworks with SNMP, Mark A. Miller, ISBN 1-
55851-561-5, second edition, 1995.
[2] Welcome to the JMX Technology Home Page,
http://java.sun.com/javase/technologies/core/mntr-
mgmt/javamanagement/
[3] J. Case, K. McCloghrie, M. Rose, Protocol Operations for
Version 2 of the Simple Network Management Protocol (SNMPv2),
RFC 1905, enero 1996.
[4] J. Case, A Simple Network Management Protocol, RFC 1157,
mayo 1990.
[5] M. Rose, Structure and Identification of Management
Information for TCP/IP-based Internets, RFC 1155, mayo 1990.
[6] J. Case, K. McCloghrie, M. Rose, Introduction to Community-
based SNMPv2, RFC 1901, enero 1996.
[7] J. Case, K. McCloghrie, M. Rose, Transport Mappings for
Version 2 of the Simple Network Management Protocol (SNMPv2),
RFC 1906, enero 1996.
[8] B. Wijnen,R. Presuhn, K. McCloghrie, View-based Access
Control Model (VACM) for the Simple Network Management
Protocol (SNMP), RFC 2275, enero 1998.
[9] Project Swing (Java Foundation Classes),
http://java.sun.com/products/jfc/
[10] Java Web Start Technology,
 http://java.sun.com/javase/technologies/desktop/javawebstart/
[11] Java Persistence API,
http://java.sun.com/javaee/technologies/persistence.jsp
[12] Java Persistence with Hibernate, Christian Bauer, Gavin King.
Manning, 2007.
[14] SNMPv3: “A Security Enhancement for SNMP“, William
Stallings.
http://www.comsoc.org/livepubs/surveys/public/4q98issue/stallings.
html
[15] Java Management Extensions (JMX) spacification 1.4,
http://java.sun.com/javase/6/docs/technotes/guides/jmx/JMX_1_4_s
pecification.pdf

