

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 200–214, 2012.
© Springer-Verlag Berlin Heidelberg 2012

From Requirements to Web Applications
in an Agile Model-Driven Approach

Julián Grigera1, José Matías Rivero1,2, Esteban Robles Luna1,
Franco Giacosa1, and Gustavo Rossi1,2

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{julian.grigera,mrivero,franco.giacosa,

esteban.robles,gustavo}@lifia.info.unlp.edu.ar
2 Also at Conicet

Abstract. Web applications are hard to build not only because of technical
reasons but also because they involve many different kinds of stakeholders. In-
volving customers in the development process is a must, not only while elicit-
ing requirements but also considering that requirements change fast and they
must be validated continuously. However, while model-driven approaches
represent a step forward to reduce development time and work at a higher level
of abstraction, most of them practically ignore stakeholders’ involvement. Agile
approaches tend to solve this problem, though they generally focus on pro-
gramming rather than modeling. In this paper we present an extension to an ap-
proach that combines the best of both worlds, allowing a formal and high-level
design style with constant involvement of customers, mainly in the definition of
navigation, interaction and interface features. We extended it by adding trans-
formation features that allow mapping requirement models into content and na-
vigation ones. We provide a proof of concept in the context of the WebML de-
sign method and an empiric validation of the approach’s advantages.

1 Introduction

Developing Web applications is a complex task, involving different specialists
through different stages. At the end of the process, it is usual to find out that the final
result does not reflect the customers’ wishes with accuracy, since while going through
the different stages the team may slowly steer away from the original requirements.
The difference between requirements and the final result grows broader as new
changes are introduced. These problems are in part caused by communication issues,
but they also arise as a consequence of the development approach.

In a previous work [17] we argued that most model-driven Web engineering ap-
proaches (MDWE) [1, 8, 12, 19] tend to focus on the design artifacts and their auto-
matic transformation onto running applications, therefore leaving the customer aside
(at least in part) throughout the process. Interaction and interface issues are usually
left as final concerns, while being, in many applications, the most important aspects
for customers. At the same time agile approaches1 focus on customers’ involvement,

1 Principles behind the Agile Manifesto –
http://agilemanifesto.org/principles.html

 From Requirements to Web Applications in an Agile Model-Driven Approach 201

while being less formal from the technical point of view. We then proposed to bridge
both approaches by using Test-Driven Development (TDD) in a model-driven setting.
With short development cycles, the mismatch between requirements and implementa-
tion is usually kept under control. We already proposed a requirement engineering
language, named WebSpec [18] to capture navigation and interaction requirement.
Associated with customer-generated mockups, WebSpec diagrams provide simula-
tions to share an early view of the application with stakeholders and automatically
derive acceptance tests (using test frameworks like Selenium2).

In this paper we go one step further from these two previous contributions by show-
ing how to semi-automatically derive navigation and domain models from requirements
captured with mockups and WebSpec diagrams. Interface mockups are not thrown away
as usual (even in agile approaches) but evolve into the final applications’ interface. The
approach, which incorporates requirements into the model-driven cycle, is still agile in
that it is based in short cycles with heavy customers intervention, since the used re-
quirements artifacts (Webspec diagrams and mockups) can be manipulated by them;
however it can also be used in a conventional “unified” model-driven style.

Though the approach is agnostic to the underlying design method, we illustrate it
with the WebML [1] notation and its associated tool WebRatio3 with which we have
made extensive experiments. We also show that the approach does not necessarily
depend on interaction tests as driving artifacts for the development (like most TDD
approaches do); therefore it can be used either with organized agile styles like Scrum,
or even with more “extreme” approaches [6].

The main contributions of the paper are: first, from a process point of view, a way
of bridging agile and MDWE from requirements to implementation, easing customer
participation from early stages of development using interface mockups and fast pro-
totype generation as a common language to discus requirements; second, we provide a
shorter path from requirements to models through a set of heuristics to transform re-
quirement models (expressed as WebSpec diagrams plus interface mockups) onto
navigation, presentation and content models. We illustrate these contributions with a
set of running examples and describe an experiment that validates our claims.

The rest of the paper is structured as follows: in Section 2 we present a brief back-
ground of our work emphasizing on WebSpec diagrams and interface mockup annota-
tions. Next, in Section 3 we explain our approach in detail. In section 4 we show a
simple but meaningful example. Section 5 shows an experiment that validates the
approach and Section 6 presents some related work on this subject. Section 7 con-
cludes the paper and discusses some further work we are pursuing.

2 Background

The first stage of our process involves two main artifacts that help to state clearly
what customers need, and how they want it to look and behave. Graphical user inter-
face (GUI) mockups combined with WebSpec diagrams will not only help through
this stage, but also in the following, as we will explain later on section 4. Besides
these artifacts, we will organize the requirements gathering with User Stories [6] as
functional units, though Use Cases [5] can also be used for the same purpose.

2 Selenium web application testing system - http://seleniumhq.org/
3 WebRatio – http://www.webratio.com

202 J. Grigera et al.

2.1 GUI Mockups

GUI mockups serve well as first requirement artifacts, since they are really close to
customers in terms of interfaces and interaction, resulting much clearer than textual
specifications. Mockups act as tools to communicate software requirements in a
common language shared between customers and the development team [10]. It has
been shown that screen mockups effectively increase general software comprehension
without involving a high cost in the development process [15]. Besides, we have
shown that they also work as specifications for building user interface models [16].
When built using digital tools, mockups represent an incomplete, yet non-ambiguous,
description of the UI. However, in most cases mockups are used only during the re-
quirements specification and thrown away shortly after. We have also shown that,
because of the common fidelity (i.e., the shared abstraction level and metamodel ele-
ments) between MDWE presentation models and modern mockup building tools, we
can easily translate mockups to UI models using a transformation process [16].

In this work we employ user interface mockups as the initial artifacts to interact
with customers. Once agreed upon them, mockups are derived into the presentation
model of the application (that we can generate automatically) and a foundation to
specify further features, like navigation and content aspects.

Fig. 1. Sample GUI mockups

Figure 1 shows two simple low-fi mockups of a login and home screen to a Twit-
ter-like application. Later in the paper we show how they can be combined with a
WebSpec diagram to describe the navigation features these artifacts lack.

2.2 WebSpec

WebSpec [18] is a DSL designed to capture navigation and interaction aspects at the
requirements stage of a Web applications development process. A WebSpec diagram
contains Interactions and Navigations. An Interaction represents a point where the
user consumes information (expressed as a set of interface widgets) and interacts with
the application by using its widgets. Some actions like clicking a button, or typing
some text in a text field might produce navigation from one Interaction to another,
and as a consequence, the user moves through the application’s navigation space.
These actions are written in an intuitive domain specific language. Figure 2 shows a
diagram that will let the user tweet, see how many tweets she has, and allow her to
logout from the application. From the Login interaction, the user types username and

 From Requirements to Web Applications in an Agile Model-Driven Approach 203

password and clicks on the login button (navigation from Login to Home interaction).
Then, she can add messages by typing in the message text field (messageTF attribute)
and clicking on the post button (navigation from Home to Home interaction).

Fig. 2. WebSpec of Tweet’s interaction

From a WebSpec diagram we automatically generate a set of interaction tests that
cover all the interaction paths specified in it [18], avoiding the translation problem of
TDD between tests and requirements. Unlike traditional Unit Tests, interaction tests
simulate user input into HTML pages, and allow asserting conditions on the results of
such interactions. Since each WebSpec Interaction is related to a mockup, each test
runs against it and the predicates are transformed into tests assertions. These failing
series of tests set a good starting point for a TDD-like approach and (even when using
another agile approach) they can be used later as the application’s acceptance tests.

3 The Approach in a Nutshell

To bridge the gap between requirements specifications and implementation, we have
devised model transformation rules for turning requirements artifacts into content and
navigation models. We depict the approach in Figure 3 assuming a TDD cycle.

The process begins with a small group of initial requirements, related to a single
User Story. We gather presentation and interaction requirements by building interface
mockups, which help to agree upon the look and feel of the new application, and will
also provide the basis for WebSpec diagrams.

Fig. 3. Summary of the approach

204 J. Grigera et al.

After building the mockups, we specify navigation features through WebSpec dia-
grams. Since WebSpec can express interaction requirements (including navigation),
general hypertext specifications can be derived directly from it, but backend features
are missed, being the most important the underlying content model. To fulfill this gap,
we annotate WebSpec widgets to represent content model features, in terms of classes
(or entities) and attributes. These annotations are extremely simple and easy to apply
and will help to build the content model incrementally and in an on-demand fashion.

Once we have both mockups and the annotated WebSpec diagrams, we derive a
first set of content and navigation models. We generate the navigation model from the
WebSpec diagrams directly, and we make use of the annotations made on them to
derive the content model. Both models are linked together automatically since they
stem from the same diagrams. Additionally, WebSpec diagrams are used to generate
the interaction tests [18] that will guide the rest of the development in an agile style.

Having created the models with their corresponding interaction tests, the develop-
ers apply the presentation according the mockups devised in the first stage and derive
a running application, which must be validated with such interaction tests. When us-
ing a TDD style, if tests fail, the models must be tweaked until they pass, and then
move forward to another User Story for the following iteration towards the final ap-
plication. The reason why interaction tests might fail is because the transformation
rules can sometimes be inaccurate, and while these misinterpretations are mostly due
to insufficient information in the WebSpec diagrams or their annotations, some can
also be due to ambiguous customer’s specifications. In such cases, the type of correc-
tions required to adjust the models to their correct semantics have proven to be recur-
rent, so we devised a list of frequent model adjustments in a pattern-like style.

In the following subsections we detail how we specify WebSpec diagrams, then
turn them into navigation and content models through a set of transformation rules,
and the main required refactorings we detected for correcting the derived models.

3.1 Gathering Navigation Requirements with WebSpec Diagrams

We use the existing tooling support for WebSpec to import and group existing mock-
ups as defined in the initial User Stories. For every mockup in each User Story, a
WebSpec Interaction is created to specify the behavior mockups cannot express. With
assistance of the tool, mockup widgets can be projected to WebSpec diagrams in
order to be included in interaction specifications.

It is important to note that a single mockup can be referenced by two or more
WebSpec Interactions in different diagrams, since many User Stories can be partially

Fig. 4. Overlapping mockups and WebSpec diagrams

 From Requirements to Web Applications in an Agile Model-Driven Approach 205

related to the same user interface in the Web application. Conversely, two or more
mockups can be referenced in a single WebSpec diagram, given it specifies naviga-
tion from one to another. This is shown schematically in Figure 4.

3.2 Obtaining Data Model through Annotations

After creating the WebSpec diagrams, we apply lightweight content annotations on
their widgets (for a complete reference on widgets see our previous work on WebSpec
[18]); this will allow us to generate content models on the fly together with interaction
specs. Generating content models from structured UIs have been already proposed
and implemented [14], here we define an extremely simple annotation schema that
can be applicable directly with the annotation facilities provided with mockup tools:

• Composite widgets (Panels and ListPanels) are annotated with a single string that
denotes the class (or entity) it handles (e.g., @Employee in Figure 5.a).

• Simple input widgets (like TextFields or Checkboxes) are annotated with the syn-
tax <class>.<attributeName> (@Employee.Role in Figure 5.b), also applied
to simple widgets referring other classes’ instances (like ComboBoxes or Lists).

 a b

Fig. 5. Annotated WebSpec diagrams

3.3 Deriving Models

In this section we show how we obtain navigation and data models from WebSpec
diagrams. We begin with some basic transformations that intuitively map simple
WebSpec constructions into WebML elements, shown in table 1.

Table 1. Basic WebSpec to WebML transformations

206 J. Grigera et al.

The first transformation rule maps a Webspec Interaction to a WebML Page. Every
WebSpec diagram is initialized with a Starting Interaction component that will be
represented using a WebML Home Page. A link between Interactions will be turned
into a Normal Link in WebML.

The annotation schema (explained in section 3.2) combined with the WebSpec
model allows us to derive a WebML Data Model as well. In table 2 we depict some
transformation rules including content model annotations.

Table 2. From annotated WebSpec to Data Models

The @Class annotation (e.g. @Employee) allows specifying that the underlying
composite widget will manage instances of the Class entity. As a consequence, a
corresponding WebML Entity will be created in the WebML Data Model and every
simple widget in it will be transformed as an attribute (the OID attribute will be added
by default to each new entity). If an entity is spread in several diagrams, a union oper-
ation will be applied to create the entity. Each simple widget found either by been
inside a Composite Widget annotated with @Class or by being annotated with the
@Class.attribute label, will be gathered an put inside a single Entity as long as
they share the same Class. If a Simple Widget inside a Composite Widget has a dif-
ferent class annotation than its parent, a relationship between the class of the Compo-
site Widget and the one of the Simple Widget will be created. After deriving a Data
Model, now we can start mapping the above WebML Web Model, as we show in the
transformations portrayed in Table 3.

 From Requirements to

Ta

The transformations intr
show data (e.g a panel of l
Unit pointing at the specifie
with a @Class annotation
class, (3) A Panel used to i
@Class annotation is transf
will be mapped to a WebM
posed by input widgets) wi
Unit and each input widget
if inside an Input Panel the
@Brand.name), a selection
with a Selector Unit pointin

Before the derived mode
might need to be made. We

o Web Applications in an Agile Model-Driven Approach

able 3. Obtaining full WebML models

roduced in Table 3 are the following: (1) A Panel used
labels) with a @Class annotation is transformed to a D
ed class, (2) A List used to show data (e.g. a list of lab
is transformed to an Index Unit pointing at the specif

input data (e.g. a panel composed by input widgets) wit
formed to an Entry Unit and each input widget in the pa

ML input field, (4) A List used to input data (e.g. a list co
ith a @Class annotation is transformed to an Multi En
in the List will be mapped to a WebML input field and

ere is a Combo Box annotated with a different class (e
n field will be created in the Entry Unit, and it will be fil
ng at the specified entity annotated in the Combo Box.
els are ready to generate a running application, some fi
e will discuss these in the next section.

207

d to
Data
els)
fied
th a
anel
om-
ntry

d (5)
e.g.:
lled

ixes

208 J. Grigera et al.

3.4 Adjusting the Models

Applying the described transformations to the initial requirement artifacts, both navi-
gation and data models are generated in conjunction with a set of interaction tests, as
depicted in Figure 3. Using the code generation capabilities of the chosen MDWE
approach, a running application is generated in order to run the interaction tests over it
to check the functionality. In some cases, tests may fail on their first run, due to miss-
ing or unexpected presentation details or layout specifications in the final user inter-
face. However, in some cases they can also fail because of ambiguous or insufficient
behavior inferred from the models derived with the described rules. Regarding data
and business logic, we found a list of fail patterns and devised some heuristics to
detect them and suggest potential corrections. Depending of its importance and ob-
viousness, fail patterns are presented to the designer as a refactoring [4] suggestion in
the tool or they are applied automatically as a final part of the generation process. We
detail two notorious examples below:

• Non-normalized Attribute
o Explanation: a simple widget is bound to an individual attribute of a mapped

class, but in fact it must be bound to an attribute of a different class related to
the former through an association.

o Example: a product panel tagged as @Product has a label called brandName.
This label must not be data-bound as an attribute of Product, but to an
attribute of Brand, a class associated to Product. Then, a proper
@Brand.name annotation must be placed in it (see Figure 6).

o Fail reason: data is not normalized and fails occur when updating information
within the execution of a WebSpec test (e.g., the brand name of a product is
changed, and when the test checks the name in a second product of the same
brand, it has the old one and an equality assertion fails).

o Detection Heuristic: analyze widget name and search for the name of a pre-
viously mapped class within it. Suggest an association to this class.

• Missing Filter in Index
o Explanation: an input panel and a list exist in an interaction. The panel con-

tains widgets that specify filtering conditions to the elements that are shown on
the list. Both widgets are annotated with the same class and a transition from
the interaction to itself exist. According to the translation rules, a WebML In-
dex Unit will be generated in the model for the list and an Entry Unit must be
created for the input panel. However, no filtering is generated by default.

o Example: an interaction contains a panel with a textbox that allows searching
products by its name. Below, a list of products found with the matching name
is shown (see Figure 7).

o Fail reason: items in the index are the same after changing the filter widgets
values in the panel and updating the page. Thus, an equality assertion fails.

o Detection Heuristic: analyze the interaction to find a panel and a list annotated
with the same class and a recursive transition.

 From Requirements to Web Applications in an Agile Model-Driven Approach 209

Fig. 6. Non-Normalized fail pattern and refactored diagram

Fig. 7. Missing Filter in Index fail pattern and refactored diagram

4 Proof of Concept

For a better understanding of the approach, we will show a full cycle of our process in
the ongoing development of a sample application: a Customer Satisfaction system,
where different users manage customers’ complaints through different departments.

We will take the development from an advanced status, and show how a new User
Story is implemented. We will start from a point where the system allows creating
new complaints, viewing their details and delegating them between departments. The
next functionality to implement is the ability to make comment on the complaints.

As a first step, the previous mockup for the detailed view of a complaint is ex-
tended to show comments and a new form is added for the user to leave comments.

Fig. 8. Mockups for new functionality

210 J. Grigera et al.

Figure 8 shows the previous mockup for the details page of a complaint, and the
new mockup that contemplates the comments.

Once we have agreed on the new functionality’s look and feel, we move on to the
WebSpec diagrams. Since the interaction for viewing a complaint was already present, we
just extend it with the list of comments and the form for adding comments, with the cor-
responding navigation functionality. Figure 9 shows both previous and modified diagrams.

Fig. 9. Extended WebSpec model for comments feature

We next tag the new components of the diagram with annotations for deriving the
missing content model. Then, the only step left is derivation. The extended WebSpec
diagram generates new features for the existing navigation model, while the annota-
tions generate a simple model for the comments, and their relationships with the com-
plaints on the current data model. New interaction tests are also generated to check for
the creation of new comments.

As a last step we regenerate the application from the derived models, and run the
automatically generated interaction tests to validate the new functionality. If the tests
pass, we move on to another User Story; if they don’t, we must check for possible
inaccurate derivations. For example, in this case we could have specified the author’s
name for the comments as a plain attribute for the Comment entity, instead of being a
foreign attribute from the User entity, which should be related to the first (Non-
normalized Attribute fail pattern). Fixing the data model will require also fixing the
navigation model, and re-running the tests to check for the functionality.

5 Assessing the Approach

To make a first assessment of our approach we ran an experiment with 10 developers,
each going through a complete development cycle for a simple application: the Com-
plaint Management System presented as example in section 3.

We split the subjects in 2 groups of 5 developers, each group using different ap-
proaches in the requirements elicitation and WebRatio as development tool. A first
group (group A) used only User Stories and UI Mockups, while the second one
(group B) added also WebSpec and tagging, completing the full approach proposed in
this paper, relying on the models derivation features.

We had a first meeting with each subject playing the role of customers. Depending
on the group they belonged, they gathered requirements using different artifacts. They

 From Requirements to

were also provided with rea
opers from group B autom
WebSpec diagrams they h
complete application measu
dually. Additionally, devel
derived models to make up
acceptance tests to check al

In this experiment we m
measures the functionality’
1 to 5. We found an improv
time in minutes it took for e

Fig

As the graphic shows, th
group B’s, mostly owed to
had to create them from scr
Also, group A took more ti
requirements documents. H
since they had more artifact

As for the satisfaction
previous ones, although the

Fig. 1

o Web Applications in an Agile Model-Driven Approach

ady-made User Stories. Before the second stage, the dev
matically derived content and navigation models from
had created and tagged. Then, all subjects developed
uring the time taken to implement each User Story ind
lopers from group B measured the time taken to alter
 for eventual derivation mistakes. The third stage invol

ll functionality in both groups’ resulting applications.
measured two key aspects: time and satisfaction. The la

s accuracy to what users expected, in a scale ranging fr
vement in both aspects. In figure 10 we depict the aver
each group for completing each User Story.

g. 10. Time measured for development

he time taken by the group A was considerably higher t
the fact that group B only adjusted models, while group

ratch, including the data model (marked as ER in the cha
ime to develop extra features that were not asked for in
However, Group B took longer to capture requireme
ts to put together.
aspect, the results were not as much conclusive as
ey did show an improvement in most User Stories. A

1. Satisfaction measured for development

211

vel-
the
the

divi-
the
ved

atter
rom
rage

than
p A
art).
the

ents,

the
After

212 J. Grigera et al.

revising the applications we concluded that using WebSpec did improve the fidelity
of the final application with respect to the requirements elicitation. Figure 11 shows
the average satisfaction ratings for all functionalities developed by both groups.

It should be mentioned that the validity of these first results was somewhat threat-
ened by a number of biases, mainly due to time and resources limitations. Some of
them were: the application’s scale (which is by no means a real scale development),
the small number of subjects and the difference in their skills. The novelty in the use
of WebSpec was also a factor, manifested in the higher analysis times on Group B.
We plan to make further experiments with more experienced subjects on the use of
WebSpec and it’s tools, to confirm the presumption that analysis times will drop, at
least to the levels of a traditional approach.

6 Related Work

Derivation of requirement models has been already considered with the aim of auto-
matically generating UWE models [7]. In this work, the authors present a modeling
language for requirements called WebRE, using the NDT approach [2] for the re-
quirements capture and definition, and specify a set of transformation rules, specified
at the meta-model level in the QVT language. The transformation process covers the
derivation of content, navigation and presentation models.

Following the same lead, the Ariadne CASE tool [9] generates design models
from requirement models, in the context of the ADM model-driven approach, used in
turn to generate light prototypes of the final application. The tool leans on domain-
specific patterns for generating conceptual models.

Also in this field, Valderas et al [21] propose an improvement on their automatic
code generation from OOWS, in which they include graphic designers into the devel-
opment. To do this, they automatically extract information and functionality from the
requirements models. This allows the designers to make changes on a living applica-
tion for a better experience in the requirements gathering stage, but the presentations
are not part of the requirements models from which the information and functionality
is extracted.

Our process differs from the aforementioned approaches in that it is focused on
short agile development cycles. Being based on GUI Mockups and WebSpec, which
is in turn based on User Stories, we not only favor an agile style, but also are able to
generate interaction tests to check the resulting applications, in a way that lets us take
advantage of the features of TDD approaches as well.

With respect to the artifacts used in our approach, GUI Mockups as requirements
gathering tools have been evaluated in several studies. In the context of agile devel-
opment processes, interface mockups have been observed as an irreplaceable artifact
to effectively introduce early usability testing [3]. Also, they have proven to help
refining concepts expressed in User Stories [20].

On the other hand, user interface mockups have been included in well known
Model-Driven methodologies to improve requirements gathering. In the work of Pa-
nach et al. [11], the drawing of user interface sketches is proposed as a way of
capturing underlying task patterns using the ConcurTaskTree [13] formalism. Other
authors propose directly to include mockups as a metamodel itself to describe interac-
tion from them [10].

 From Requirements to Web Applications in an Agile Model-Driven Approach 213

7 Concluding Remarks and Further Work

Through this paper we have shown how we improved an agile model-driven Web
development process by including digital requirement artifacts to keep the whole
process model-driven; in this way we bridge the gap between requirements and im-
plementation by introducing model transformations that automatically map require-
ment models into content and navigation models; this models are ready to be used to
generate a running application, which can be in turn validated using the automatically
generated interaction tests.

By driving an experiment with developers, we have shown the strengths of the
approach, concerning not only requirements gathering stage but also the rest of the
development process. The experiment has also exposed some weaknesses in the deri-
vation process as well as in the process itself, on which we are already working to
improve, before running a new, more comprehensive, experiment. In the same way
we discovered the current transformation rules, we noticed that the combination of
data annotations and navigation features of WebSpec models has still potential for
new transformation rules that require further experimentation in order to be correctly
stated. We are also finishing derivation rules for object-oriented approaches like
UWE [8], which are resulting straightforward since we are working at the meta-model
levels of WebSpec and UWE. At the same time we are also extending the WebSpec
meta-model to introduce new requirement features.

Regarding the model adjustments, we are working on a suggestion mechanism that
will be integrated into our tool, in order to detect possible miscarried derivations and
correct them automatically, prompting a set of applicable corrections to the user for
him to pick the most suitable one.

Another concern we are working on is the relationship between requirements and
implementation models after the transformations. In order to keep track of such rela-
tionship and being able to generate changes incrementally, at this point we do not
allow for mayor modifications on the application’s models. The only modifications
allowed should be those that do not introduce changes in the requirements – i.e. what
WebSpec diagrams express. Nevertheless, we intend to handle these cases in such a
way that allows us to suggest changes on the WebSpec diagrams, so the link between
them and the generated models is never broken.

References

1. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling Lan-
guage for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–157
(2000)

2. Escalona, M.J., Aragón, G.: NDT. A Model-Driven Approach for Web Requirements.
IEEE Trans. Softw. Eng. 34(3), 377–390 (2008)

3. Ferreira, J., Noble, J., Biddle, R.: Agile Development Iterations and UI Design. In: AGILE
2007 Conference (2007)

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the De-
sign of Existing Code. Addison-Wesley Professional (1999)

5. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. ACM
Press/Addison-Wesley (1992)

214 J. Grigera et al.

6. Jeffries, R.E., Anderson, A., Hendrickson, C.: Extreme Programming Installed. Addison-
Wesley Longman Publishing Co., Inc. (2000)

7. Koch, N., Zhang, G., Escalona, M.J.: Model transformations from requirements to web
system design. In: Proceedings of the 6th International Conference on Web Engineering
(ICWE 2006), pp. 281–288. ACM, New York (2006)

8. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering, An Ap-
proach Based On Standards. In: Web Engineering, Modelling and Implementing Web Ap-
plications, pp. 157–191. Springer, Heidelberg (2008)

9. Montero, S., Díaz, P., Aedo, I.: From requirements to implementations: a model-driven
approach for web development. European Journal of Information Systems 16(4), 407–419
(2007)

10. Mukasa, K.S., Kaindl, H.: An Integration of Requirements and User Interface Specifica-
tions. In: 6th IEEE International Requirements Engineering Conference (2008)

11. Panach, J.I., España, S., Pederiva, I., Pastor, O.: Capturing Interaction Requirements in a
Model Transformation Technology Based on MDA. Journal of Universal Computer
Science 14(9), 1480–1495

12. Pastor, Ó., Abrahão, S., Fons, J.J.: An Object-Oriented Approach to Automate Web Appli-
cations Development. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-Web 2001.
LNCS, vol. 2115, pp. 16–28. Springer, Heidelberg (2001)

13. Paternò, F.: ConcurTaskTrees: An Engineered Notation for Task Models. In: Diaper, D.,
Stanton, N. (eds.) The Handbook of Task Analysis for Human-Computer Interaction, pp.
483–503. Lawrence Erlbaum Associates (2003)

14. Ramdoyal, R., Cleve, A., Hainaut, J.-L.: Reverse Engineering User Interfaces for Interac-
tive Database Conceptual Analysis. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051,
pp. 332–347. Springer, Heidelberg (2010)

15. Ricca, F., Scanniello, G., Torchiano, M., Reggio, G., Astesiano, E.: On the effectiveness of
screen mockups in requirements engineering. In: 2010 ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (2010)

16. Rivero, J.M., Grigera, J., Rossi, G., Robles Luna, E., Koch, N.: Towards agile model-
driven web engineering. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol. 107, pp.
142–155. Springer, Heidelberg (2012)

17. Robles Luna, E., Grigera, J., Rossi, G.: Bridging Test and Model-Driven Approaches in
Web Engineering. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009. LNCS,
vol. 5648, pp. 136–150. Springer, Heidelberg (2009)

18. Robles Luna, E., Rossi, G., Garrigós, I.: WebSpec: a visual language for specifying inte-
raction and navigation requirements in web applications. Requir. Eng. 16(4), 297–321
(2011)

19. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using OOHDM.
In: Web Engineering, Modelling and Implementing Web Applications, pp. 109–155.
Springer, Heidelberg (2008)

20. Ton, H.: A Strategy for Balancing Business Value and Story Size. In: AGILE 2007 Confe-
rence (2007)

21. Valderas, P., Pelechano, V., Pastor, Ó.: Introducing Graphic Designers in a Web Devel-
opment Process. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007. LNCS,
vol. 4495, pp. 395–408. Springer, Heidelberg (2007)

