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ABSTRACT

In this paper we define two wavelets bases over
tetrahedra which are generated by a regular sub-
division method. One of them is a basis based on
vertices while the other one is a Haar-like basis that
form an unconditional basis for Lp(T, Σ, µ), 1 <
p < ∞, being µ the Lebesgue measure and Σ the
σ−algebra of all tetrahedra generated from a tetra-
hedron T by the chosen subdivision method. In
order to obtain more vanishing moments, the lift-
ing scheme has been applied to both of them.
Keywords: Wavelets, multiresolution, lifting, vol-
ume modeling.

1. INTRODUCTION

Three dimensional scenes contain highly detailed
geometric models that are rapidly emerging as
the next frontier requirement for many applica-
tions such as those involving Internet 3D mod-
els for complex virtual environments, collabora-
tive CAD, interactive visualization and multi-player
video games. Therefore construction of better 3D
surfaces and volume models is necessary in order to
allow high quality approximations of big data sets
with good storage space and better transmission
time performance.
Wavelets have been making appearing in many pure
and applied areas of science and engineering as a
versatile tool for representing general functions or
big data sets. Computer graphics, with its many
and varied computational problems, is no exception
to this rule since wavelets are a good approach for
solving the situations described above.
An example of approximation of volumetric data
in 3D using wavelets parameterized on a rectangu-
lar grid in R3 was presented in [7] for the case of
applications in computer graphics. Although this

is a simple way of constructing wavelets for sur-
face or volume representation, this method has an
important drawback: it cannot be used without
introducing degeneracies for representing surfaces
or volumes defined on general domains of arbitrary
topological type, like spherical domains.
Lounsbery [6] and Stollnitz et al. [10] were the first
who introduced wavelets from a different point of
view, defining them on different bounded domains
with arbitrary topology through scaling refinable
functions. For this purpose, the multiresolution
analysis (hereafter MRA) is extended to functions
defined on surfaces by creating scaling refinable
function. This approach was generalized a posteri-
ori by Sweldens ([11], [12]) using the lifting scheme.
Schröder and Sweldens [9] proved later that subdi-
vision and lifting provide an efficient methodology
for costum-design construction of wavelets and fo-
cused their work on wavelet representation of func-
tions defined on a sphere. Nielson [8] also defined
Haar wavelets over the sphere. Both constructions
begin with a triangular net and, using subdivision
as a construction tool, generate wavelets on arbi-
trary topological bidimensional domains.
Following similar ideas as those ones used for sur-
faces, we have examined the cases of represent-
ing volumes and functions defined on a tetrahe-
dral grid. In this paper we present two different
wavelets bases: a vertex basis for a tetrahedron and
a Haar like wavelet basis defined over a tetrahedron.
Vertex wavelets can be found, for example, in [5].
The main difference between ours and Lorentz and
Oswald’s [5] is that we give an explicit expression
for the wavelet filters. The vertex and Haar bases
are the first step for defining each such wavelet ba-
sis over an object which is represented by tetrahe-
dra. In both cases we applied the lifting scheme to
increase the number of vanishing moments of the
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wavelets. Other techniques for representing volume
data are given in [2] and [4].
This paper is organized as follows: in Section 1 we
describe the vertex based wavelets, we show an ex-
ample and present the lifted vertex wavelets. In
Section 2 we define the Haar-like wavelets, we show
an example representing a density function defined
on a tetrahedron using these waveletes and also ap-
ply the lifting scheme for obtaining more vanishing
moments. Finally, in Section 3 we draw the conclu-
sions and outline the future work.

2. VERTEX WAVELETS

For the two dimensional case, Schröeder and
Sweldens in [9] present four vertex bases: lazy, lin-
ear, butterfly and quadratic. Each of them depend
on the neighbors used for a given vertex. In this sec-
tion we build a vertex basis for a tetrahedrical net.
It does not have an analytic expression but we give
the analysis and synthesis steps for computing the
scaling and wavelets coefficients. The chosen tetra-
hedron subdivision causes the new vertex to be on
the midpoint of the tetrahedron edges. Then, when
passing from a resolution level j to a resolution level
j + 1, six new vertices will be added on one tetra-
hedron. In the resolution level j we have an index
set Kj to index the vertices of the tetrahedron. In
level j + 1, the set of vertices is Kj+1 = Kj ∪ Mj ,
Mj being the set of indices corresponding to the
inserted ones (see Figure 1). If m ∈ Mj is the in-

Figure 1: Tetrahedron vertices indexation

dex of a given vertex we may think of it as being on
the midpoint of some parent edge. The neighboring
vertices considered for defining the vertex basis are
the endpoints of that parent edge and we denote
them with indices u and v.
In what follows, we note the scaling and wavelet
or detail coefficients corresponding to a given func-
tion at the resolution j, by cj,k and dj,k respec-
tively. As always, the coefficients c0,k correspond
to the coarsest approximation and the process be-
gins with a given set of coefficients cN,k where N is
the finest resolution level. As we shall consider an
interpolating scheme for deriving a vertex basis, the
unlifted scaling coefficients are just subsampled in
the analysis and upsampled in the synthesis. Mean-
while for computing the wavelet coefficients it will
be necessary to make some calculations.

Analysis

∀k ∈ Kj , cj,k
.= cj+1,k,

∀m ∈Mj , dj,m
.= cj+1,m−

∑

k∈Km

sj,k,mcj,k. (1)

Synthesis

∀m ∈ Kj , cj+1,k
.= cj,k

∀m ∈Mj , cj+1,m
.= dj,m+

∑

k∈Km

sj,k,mcj,k. (2)

Following the above scheme, we begin with a basic
interpolatory form for analysis and synthesis

dj,m
.= cj+1,m − 1

2
(cj+1,u + cj+1,v)

cj+1,m
.= dj,m +

1
2

(cj,u + cj,v) ,

that is sj,u,m = sj,v,m = 1
2 in equations (1) and (2).

Multiresolution analysis
In order to define the sequence of nested spaces Vj

needed for the MRA, we use a sequence of tetrahe-
dra, beginning with a basic net T0 that is a single
tetrahedron T . Then, the spaces Vj are defined as:

Vj
.= {f : Tj → R : f is linear on each tetra−

hedron of Tj} .

These are nested spaces since any linear function on
the tetrahedra of Tj is also linear on the tetrahedra
of Tj+1. As the space Vj contains only piecewise
linear functions, any member of Vj is uniquely de-
termined by its values on the vertices of Tj . As
usual, the Vj are spanned by the the scaling func-
tions ϕi,j and the wavelets ψi,j are the basis func-
tions of the complement spaces Wj . As always, any
a function g defined on a tetrahedral net with ver-
tices cJ,i = (xJ,i, yJ,i, zJ,i) is defined as

g(x) =
∑

i∈v(V TJ )

cJ,iϕJ,i(x) (3)

where x ∈ T0 and v(TJ ) is the set of indices that
indexes the TJ vertices. Finally, we have the fol-
lowing wavelet decomposition of g:

g(x) =
∑

i∈v(TJ )

cJ,iϕJ,i(x) (4)

+
J−1∑

j=0

∑

i∈(v(Tj+1)−v(Tj))

dj,iψj,i(x),

where the scaling functions ϕj,i and the wavelets
ψj,i are the vertex ones while the inner product of
two functions f, g ∈ Vj(V T0), j < ∞, the inner
product of f and g is defined by

〈f, g〉 .=
∑

τ∈∆(Tj)

1
V olume(τ)

∫

τ

fgdV (5)
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being ∆(Tj) the set of all tetrahedra of Tj and τ
a tetrahedron of ∆(Tj). So defined, these inner
products do not depend on the geometric position
of the vertices of T , so it is possible to pre-compute
them.

Example
We choose to represent a density function on a
tetrahedron using the scaling functions approxima-
tion. This density is mapped on color on each ver-
tex of a tetrahedra. The idea is to treat each color
component (red, green and blue) as a scalar func-
tion defined on the base mesh V T0. Each color
function can be converted to multiresolution form
using the filter bank analysis and the wavelet co-
efficients. In Figure 2 and Figure 3 we show one
step in the analysis and one step in the synthesis,
respectively.

Figure 2: One step in analysis

Figure 3: One step in synthesis

Lifting the vertex wavelets
An important property of a family of wavelets ψγ ,
γ ∈ G, G a set of indices, is to have vanishing mo-
ments. We say that the wavelet ψγ has N vanish-
ing moments if there exist N linearly independent
polynomials Pi, 0 ≤ i < N such that:

〈ψγ , Pi〉 = 0 (6)

We now proceed to use the lifting scheme in order
to obtain wavelets with one vanishing moment. We

start with the wavelets proposed by Schröder and
Sweldens [9] given by

ψj,m = ϕj+1,m − sj,u,mϕj,u − sj,v,mϕj,v. (7)

That is, the wavelet on a midpoint of an edge is
defined as a linear combination of the scaling func-
tion on the midpoint (j + 1,m) and two scaling
functions defined on a coarser resolution computed
on the vertices (u, v). The weights sj,∗,m are cho-
sen in such a way that the resulting wavelet has null
integral
∫

V

ψj,mdV =
∫

V

ϕj+1,mdV − sj,u,m

∫

V

ϕj,udV

−sj,v,m

∫

V

ϕj,vdV. (8)

Then,

sj,∗,m =

∫
V

ϕj+1,mdv

2
∫

V
ϕj,∗

=
Ij+1,m

2Ij+1,∗
. (9)

The integral
∫

V
ϕdV can be approximated at the

finest resolution level using a quadrature method
and then recursively computed on the coarser lev-
els using the refinement relationships. Then it is
possible to express ψj,m as follows

ψj,m = ϕj+1,m − Ij+1,m

2Ij+1,∗
ϕj,k, (10)

so the analysis and synthesis algorithms for com-
puting the fast wavelet transform that give the
lifted set of coefficients are the following:
Analysis
A1. Compute the detail coefficients

∀m ∈Mj , dj,m
.= cj+1,m − 1

2
(cj+1,u + cj+1,v) .

(11)
A2. Calculate the coefficients cj,k

∀k ∈ Kj , cj,k = cj+1,k

∀m ∈Mj ,
∀u, v ∈ Kj ,

{
cj,u = cj,u + sj,u,mdj,m

cj,v = cj,v + sj,v,mdj,m.
(12)

Synthesis
S1. Compute the cj+1,k

∀k ∈ Kj , cj+1,k = cj,k

∀m ∈Mj ,
∀u, v ∈ Kj ,

{
cj,u = cj,u − sj,u,mdj,m

cj,v = cj,v − sj,v,mdj,m.
(13)

S2. Use the cj+1,k already computed in order to
compute the cj+1,m

∀m ∈Mj , cj+1,m
.=

dj,m +
1
2

(cj+1,u + cj+1,v) . (14)
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3. HAAR-LIKE WAVELETS

In this section we build a wavelets basis on the
tetrahedron following the process given by Sweldens
and Girardi [3]. Throughout this section, (T, Σ, µ)
is the measure space in which T is a tetrahedron
with volume V , Σ is the σ−algebra of all tetrahe-
dra generated by Beys subdivision method [1] and
µ is the Lebesgue measure. With this procedure
we shall obtain Haar-like wavelets on the measure
space (T, Σ, µ) that form an unconditional basis for
Lp(T,Σ, µ), 1 < p < ∞. The concepts of tree,
forest, generation and root used in this section are
defined in [3].
Let τ be the tree such that {Tα : α ∈ τ} is the
set of all subtetrahedra obtained by the subdivi-
sion method we have considered. The collection
{Tα : α ∈ τ} is a nested partition of the tetrahe-
dron T and the tree τ has only one root element ρ
for which Tρ = T . As the initial tetrahedron has
volume V , a subtetrahedron Tα of the n-th genera-
tion has volume V/8n. The wavelet basic building
blocks are the scaling functions {ϕα : α ∈ τ}, de-
fined by:

ϕα =
(

V

8n

)−1/p

χ(Tα),

being χ(Tα) the characteristic function of Tα.
The wavelets are indexed by a set G which consists
of a set G∗ along with the index ρ ∈ τ for which
Tρ = T , being G∗ the set G∗ = ∪α∈τG(α), where
G(α) contains seven elements βi, i = 1, . . . , 8, βi <
βi+1 and is constructed by building a logarithmic
tree τ̃ amongst the children of α.
Then G(α) = {(α, ς) ∈ {α} × τ̃ : #C(ς) = 2},
where C(ς) are the children of ς. The elements
ς ∈ τ̃ are :

ς1 = α, ς2 = {β1, β2, β3, β4} ,
ς3 = {β5, β6, β7, β8} , ς4 = {β1, β2} ,
ς5 = {β3, β4} ς6 = {β5, β6}
ς7 = {β7, β8} .

As we consider a logarithmic tree, C(ς) = 2, ∀ς ∈ τ̃ .
The wavelets ψγi generated by the elements γi =
(α, ςi) ∈ G(α), i = 1, . . . , 7, where ςi

1 and ςi
2 are the

children of ςi, are defined as follows:

ψγ1 = 2−1/p
(
χ(Pγ1)− χ(Nγ1)

) (4V )−1/p

(8n+1)−1/p
,

{
Pγ1 = ∪j∈ζ1

1
Tβj

Nγ1 = ∪j∈ζ1
2
Tβj

ψγ2 = 2−1/p
(
χ(Pγ2)− χ(Nγ2)

) (2V )−1/p

(8n+1)−1/p

{
Pγ2 = ∪j∈ζ2

1
Tβj

Nγ2 = ∪j∈ζ2
2
Tβj

ψγ3 = 2−1/p
(
χ(Pγ3)− χ(Nγ3)

) (2V )−1/p

(8n+1)−1/p
,

{
Pγ3 = ∪j∈ζ3

1
Tβj

Nγ3 = ∪j∈ζ3
2
Tβj

ψγ4 = 2−1/p
(
χ(Pγ4)− χ(Nγ4

) V −1/p

(8n+1)−1/p
,

{
Pγ4 = ∪j∈ζ4

1
Tβj

Nγ4 = ∪j∈ζ4
2
Tβj

ψγ5 = 2−1/p
(
χ(Pγ5)− χ(Nγ5)

) V −1/p

(8n+1)−1/p
,

{
Pγ5 = ∪j∈ζ5

1
Tβj

Nγ5 = ∪j∈ζ5
2
Tβj

ψγ6 = 2−1/p
(
χ(Pγ6)− χ(Nγ6)

) V −1/p

(8n+1)−1/p
,

{
Pγ6 = ∪j∈ζ6

1
Tβj

Nγ6 = ∪j∈ζ6
2
Tβj

ψγ7 = 2−1/p
(
χ(Pγ7)− χ(Nγ7)

) V −1/p

(8n+1)−1/p
,

{
Pγ7 = ∪j∈ζ7

1
Tβj

Nγ7 = ∪j∈ζ7
2
Tβj

Graphically, the signs of the wavelets thus defined
can be easily visualized in the following scheme.
Each rectangle has eight squares and each square
represents one of the sons of Tα:

+ +
+ +
- -
- -

+ +
- -
0 0
0 0

0 0
0 0
+ +
- -

+ -
0 0
0 0
0 0

ψγ1 ψγ2 ψγ3 ψγ4

0 0
+ -
0 0
0 0

0 0
0 0
+ -
0 0

0 0
0 0
0 0
+ -

+ +
+ +
+ +
+ +

ψγ5 ψγ6 ψγ7 ψρ

As the tree has a root element ρ = T , the wavelet
ψρ corresponding to that element is defined by:

ψρ = (V )−1/pχ(T ).

The generation function defined on G∗ is
g((α, ζ)) = g(α).
Finally we take:

Ψ = {ψγ : γ ∈ G}

and Ψ has the following properties:
1. Ψ is normalized, i.e. : ||Ψ||p = 1, ∀γ ∈ G.

2.
∫

T
ψγdµ = 0,∀γ ∈ G∗.

3. If γ, γ ′ ∈ G,
∫

T
ψγψγ′dµ = 0.

4. Ψ is an unconditional normalized basis for
Lp(T,Σ, µ).
If α ∈ τ, then:

span {ϕβ : β ∈ Cl(α)} = span {ϕα, ψγ : γ ∈ G(α)} ,
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and this extends over several generations since ∀i ∈
N is

span
{
ϕβ : β ∈ Ci

l (α)
}

= span {ϕα, ψγ :

γ ∈ ∪i−1
j=0G(Cj(α))

}
.

Multiresolution analysis
In this section we show how our wavelets, which are
a special case of second generation wavelets, fit into
the MRA concept. From now on we consider the
case p = 2 for which the basis {ϕβ : β ∈ Cl(α)} and
{ψγ : γ ∈ G} are self duals. So if f ∈ L2,

f =
∑

γ∈G

〈f, ψγ〉ψγ , (15)

being the convergence unconditional. The coeffi-
cients in the expansion (15) are given by the fast
wavelet transform. We must write expressions that
relate the basis functions, similar to the two scale
relation for wavelets, in order to compute this trans-
form. These are given by R1 and R2 defined below:
(R1) If α ∈ τ and γ ∈ G∗, then:

ϕα =
∑

β∈Cl(α)

1√
8
ϕβ , ψγ =

∑

β∈S(γ)

gγ,βϕβ ,

where S(γ) = Cl(α), if γ ∈ G(α) and the gγ,β are
the following:{

gγ1,β1 = gγ1,β2 = gγ1,β3 = gγ1,β4 = 1√
8
,

gγ1,β5 = gγ1,β6 = gγ1,β7 = gγ1,β8 = − 1√
8
.





gγ2,β1 = gγ2,β2 = 1
2 ,

gγ2,β3 = gγ2,β4 = − 1
2 ,

gγ2,β5 = gγ2,β6 = gγ2,β7 = gγ2,β8 = 0.




gγ3,β1 = gγ3,β2 = gγ3,β3 = gγ3,β4 = 0,
gγ3,β5 = gγ3,β6 = 1

2 ,
gγ3,β7 = gγ3,β8 = − 1

2 .




gγ4,β1 = 1√
2
,

gγ4,β2 = − 1√
2
,

gγ4,β3 = gγ4,β4 = gγ4,β5 = gγ4,β6 = gγ4,β7 =
= gγ4,β8 = 0.





gγ5,β1 = gγ5,β2 = gγ5,β5 = gγ5,β6 = gγ5,β7 =
= gγ5,β8 = 0,
gγ5,β3 = 1√

2
,

gγ5,β4 = − 1√
2
.





gγ6,β1 = gγ6,β2 = gγ6,β3 = gγ6,β4 = gγ6,β7 =
= gγ6,β8 = 0,
gγ6,β5 = 1√

2
,

gγ6,β6 = − 1√
2
.





gγ7,β1 = gγ7,β2 = gγ7,β3 = gγ7,β4 = gγ7,β5 =
= gγ7,β6 = 0,
gγ7,β7 = 1√

2
,

gγ7,β8 = − 1√
2
.

(R2) For

β 6= ρ, ϕβ =
1√
8
ϕp(β) +

∑

γ∈S∗(β)

gγ,βψγ ,

where: S∗(β) = G(α) if β ∈ Cl(α).
For k ∈ g(τ), let Gk = {γ ∈ G∗ : g(γ) = k} and
consider the subspaces Vk and Wk of L2, where:

Vk = clos span {ϕβ : β ∈ F∗k}
Wk = clos span {ψγ : γ ∈ Gk}

By viewing F∗k−1 ∪ F∗k as a two generation tree, it
follows that:

Vk = Vk−1 + Wk−1

and then Vk has another basis:
{
ϕα : α ∈ F∗k−1

} ∪ {ψγ : γ ∈ Gk−1}
So a function f ∈ Vk has two representations as:

f =
∑

β∈F∗k
aβϕβ

as well as:

f =
∑

α∈F∗k−1

aαϕα +
∑

γ∈Gk−1

cγψγ ,

where:

aα =
∑

β∈Cl(α)

1√
8
aβ cγ =

∑
β∈S(γ) gγ,βaβ ,

aβ =
1√
8
ap(β) +

∑

γ∈S∗(β)

gγ,βcγ ,

being g(β) = k and g(α) = g(γ) = k − 1.

Example
To construct the wavelets it is necessary to consider
the set of children of Tα, named Tβi

, i = 1, . . . , 8
and order them (see Figure 4) as follows: the bot-
tom ones are numbered in counterclockwise sense
followed at last by the top one, and the interior
ones are also numbered in counterclockwise sense
beginning with the tetrahedron next to Tβ1 .

Figure 4: Numbered subtetrahedra

In order to show how the defined wavelets are used,
we have first chosen the scaling functions approxi-
mation to represent a density function on a tetra-
hedon. We suppose that the data of this density
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function correspond to the space V3 and then we
mapped this density on a grey colourmap whose
range is between zero and one: the lowest density
corresponds to the white and the highest to the
black.
In Figure 5, we show the density function over
a tetrahedron using the scaling functions and the
wavelets at different resolutions. As in the previous
example, the grey subtetrahedra represent an ap-
proximation of the density using the scaling func-
tions while the coloured ones represent the value
of the different coefficients in the wavelet decom-
position. We can distinguish seven colours, each
of them representing one of the details coefficients.
When a coefficient is zero, the corresponding subte-
trahedron is white. If two subtetrahedra have the
same colour, the darker one indicates highest ab-
solute value for its coefficient. Figure 5 shows, from
top to bottom and from left to right, can see:
a) the given density function defined on V3,
b) the density function on V2 and the details on W2,
c) the density function on V1 and the details on W2

y W1,
d) the density function on V0 and the details on W0,
W1 and W2.

Figure 5: Three consecutive steps in the multireso-
lution decomposition of the density function

Lifting the Haar like wavelets
The basis functions constructed so far have only
one vanishing moment but the MRA they gener-
ate is adequate for applying the lifting scheme [12].
In this section we build a new MRA in which the
wavelets will have more vanishing moments. Ac-
cording to the lifting scheme, the new wavelets are:

ψlif
γi = ψγi −

∑

α∈F∗n−1

sαϕα, (16)

where γi belongs to the (n−1)− th generation and
α belongs to the (n − 1)th-generation. The coeffi-
cients sα can be chosen so that the ψlif

γi have more

than one vanishing moment. Considering the tetra-
hedron with vertices in (1, 0, 0), (0, 1, 0), (0, 0, 1)
named T0, we construct wavelets that kill the fol-
lowing polynomials:

x, x+y+5, x+z+5, y, z, y+z, xy, xyz,
(17)

leading to the equations:

〈ψγi , P 〉 =
∑

α∈F∗n−1

sα〈ϕα, P 〉, (18)

being P each one of the eight polynomials we have
chosen. As three of them: x, x+y +5, x+ z +5
are linearly independent on the tetrahedron T0, the
new wavelets will have three vanishing moments.
We then obtain an 8×8 singular (but solvable) ma-
trix problem for each i = 1, . . . , 8 in the unknowns
sα. The entries of the linear system are integrals
of the chosen polynomials over a tetrahedron spec-
ified by its vertices. These integrals were evaluated
using barycentric coordinates. Beginning with the
wavelet ψγ3 and doing one step in the subdivision,
we found the following values of sα:

-0.3103 0.0052 0.0883 0.0849
-0.1476 0.0079 0.0469 -0.0411
-0.0742 -0.0120 0.0153 -0.0019
-0.2369 -0.0147 0.0567 0.0357
0.4080 -0.0436 -0.1211 -0.0674
0.1233 0.1356 0.0167 0.0185
0.3018 0.0558 -0.0654 -0.0466
-0.0640 -0.1343 -0.0375 0.0180

Table 1: Coefficients sα of the lifted wavelets

-0.1658 -0.0198 -0.0187
-0.0678 -0.0280 -0.0277
0.0203 -0.0149 -0.0140
-0.1661 -0.0066 -0.0050
0.2524 0.0325 0.0191
0.0252 0.0284 0.0411
0.1333 0.0299 0.0397
-0.0314 -0.0215 -0.0345

Table 2: Coefficients sα of the lifted wavelets

Each column of Tables 1 and 2 corresponds to the
coefficients sα of one of the wavelets, being the first
column the coefficients that corresponds to ψγ1 and
so on.

4. CONCLUSIONS AND FUTURE
WORK

Representing objects through their closure is a pow-
erful mathematical modeling tool but this scheme
has little similarity with real objects. On the other
hand, modeling of solids has been made possible by
constructive solid geometry (CSG). Though nowa-
days, both representations play an important role
for modeling objects, these methods aren’t good
enough for modeling many real ones. Typically,
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the volumetric object is represented by a regular
3D grid of volumetric elements (voxels), but the
data that represent a given object are sometimes
sparse or irregularly designed. These cases call for
alternative representations; for example, we could
represent the object on a tetrahedrical domain on
which its attributes (color or density) are defined.
For representing such attributes it is necessary to
define bases over tetrahedrical grids. As wavelets
have been proved to be a powerful tool for repre-
senting general functions and large data sets accu-
rately, we look for such bases in the field of wavelets.
In this work we have taken the first step in defin-
ing wavelets over geometrical objects which can be
partitioned by a net of tetrahedra. This was done
by defining a wavelet vertex basis and a Haar-like
wavelet basis over a tetrahedron. In both construc-
tions, a generalization of MRA is used and the lift-
ing scheme is applied to obtain more vanishing mo-
ments. In principle, it is the explicit nature of the
construction which may have practical value, as we
have shown in the examples. We believe that many
other applications would benefit from them. Now,
based on this contribution, we are working on new
alternatives for compression of volume models as
well as in the extension to more general 3D objects.
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