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ABSTRACT

In this paper a slightly modification is proposed
to the original Wong and Goto’s ATA method for
the computation of elementary functions in IEEE
754 single precision.
The identification of a trade-off leads to the
proposition of a different chunk of the mantissa
that in turn brings a reduction in the length of
the tables.
Results are reported for usual elementary func-
tions based on exhaustive simulations. A mixed
framework including VHDL and Matlab R© is used
for those simulations.

Keywords: Computer Arithmetic, Single Pre-
cision Elementary Functions, Table-Based Meth-
ods, ATA Method.

1. INTRODUCTION

In the electronic mass-market, many novel ap-
plication areas are arithmetic-intensive: encryp-
tion, error checking, multimedia. Therefore, is
expected that computer arithmetic will expand
for years to come [6].
In the computer arithmetic field, the goal is to
stamp numerical theory results into real designs.
That requires an in-between step of algorithmic
implementations and performance evaluations. A
desirable intermediate development is a design li-
brary for the implementation of embedded pro-
cessors.
VHDL is a convenient language for the descrip-
tion of such a library [3]. VHDL is a hardware
description language intended for modelling and
documenting digital systems. VHDL is a high
level parallel language that allows mixed level of
detail descriptions and clocked simulations [1].
The so called elementary functions (inverse,
square root, exponentials, logarithms, sine, arc
tangent) are the most commonly used mathe-
matical functions. Computing then accurately,
quickly and inexpensively is a major goal in com-
puter arithmetic [5].

Algorithmic implementations for elementary
functions can be characterized by

the numerical representation,
the computing latency,
and the amount of affected resources.

Normally there is a trade-off between the latency
and the amount of resources, and certainly there
is a trade-off between those factors and the sup-
ported representation for both data and results.
In most of the practical cases, simulation is re-
quired for solving that complicated optimization
problem that may also include specific technolog-
ical constraints.
The original goal of the studies reported here was
the development of a design library in VHDL
for the elementary functions using a hardware-
oriented algorithm, the well known Wong and
Goto’s ATA [9].
This paper proposes a slightly modification to the
original ATA algorithm suggested after the results
of preliminary exhaustive simulations. Results
from complementary exhaustive simulation are
presented that confirm the utility of the change.
A mixed simulation framework is used that in-
cludes VHDL and Matlab R©.
The following section describes the minutia re-
lated to elementary functions that are useful for
the stated purpose.
Section 3 presents a short introduction to Wong
and Goto’s ATA methods for computing elemen-
tary functions in single precision; while Section 4
describes the observed trade-off and the proposed
modification.
Section 5 describes the simulation results that
support that modification. Finally Section 6
stresses some conclusions.

2. ELEMENTARY FUNCTIONS

This section begins with a coarse description of
the IEEE 754 single precision standard and con-
tinues reviewing basic concepts related to elemen-
tary function accuracy, their computation, and
common tricks used for reducing the range.



IEEE 754 Single Precision

IEEE Standard 754 [4] is the most used floating-
point binary number representation. This stan-
dard was developed to facilitate the portability
and the development of numerically oriented pro-
grams.
The standard defines both a 32-bit and a 64-bit
format 1. The former 4 bytes format is properly
called single precision (floating-point binary num-
ber) representation.
In the single precision representation 1 bit is used
for coding the sign, 8 bits are reserved for the bi-
ased representation of the exponent, and 23 bits
are assigned to the fractional part of the signif-
icant. A normalized number requires a 1 bit to
the left of the binary point; this fixed extra bit is
implied, giving an effective 24-bit significant.

Errors in the Computation of Functions

The following accuracy criterion is used for the
computation of the functions in single precision:

MARE < 0.5 ULP < 2−24 (1)

where MARE stands for Maximum Absolute
value of Relative Error which is self explana-
tory. The term ULP (for Unit in the Last
Place) denotes the distance between two floating-
point numbers. If a function is computed in
floating-point arithmetic with an error less than
0.5 ULP, it means that the exactly rounded result
in the round-to-nearest mode is always provided.
Rounding a number X to the nearest is the ma-
chine number that is the closest to X 2.
It should be pointed out that this does not nec-
essarily guarantee that the result is correctly
rounded in the sense that the result of the compu-
tation is the nearest representable number to the
infinitely accurate true result. The number of ac-
curacy bits necessary to ensure correctly rounding
for the various elementary function is in general
not known [5]. Above MARE is computed using
a reference ‘exact’ result that in any case pre-
sented here is a IEEE double precision floating-
point number returned by the Matlab R© intrinsic
functions.
The exhaustive simulation checks are for the ab-
solute errors in the approximations. To get the
relative errors to within half ULP, the actual cri-
terion for accuracy, we need to consider the ex-
ponent of the input. This will be discussed next.

Computing Elementary Functions

Given an accurate approximation of the functions
in the ranges given in Table 1, it is fairly straight-

1The standard also defines two implementation-de-
pendent extended formats.

2With a special convention if X is exactly between two
machine numbers: the chosen number is the even one.

forward in most cases to handle the sign and ex-
ponent.

Function Range Function Range
Reciprocal [1, 2) Square Root [1, 4)
Exponential [0, 1) Logarithm [0.5, 2)
Sine [0, π/2) Arc Tangent [0, 1)

Table 1: Mantissa Ranges

For most of the functions, f , we are considering,
there exist functions, g and h such that

f(X) = h(g(s, e), f̃(m)) (2)

where s, e, and m are respectively the sign, expo-
nent and mantissa bits of X. Since the sign and
exponent bits are altogether 9 bits G(s, e) can of-
ten be read from a table.

Argument Reduction Tricks
Reduction of the arguments to principal values
has to be performed before computing the func-
tion (using ATA or any other method) and even-
tually the result have to be also manipulated. Let
us explore some of those tricks.

Reciprocal:

1/X = (−1)s × 2−e × (1/m)ATA (3)

Normalization is necessary to bring the result into
IEEE format. That normalization is in this case
a multiplication by a factor of two, i.e., a 1 bit
shift to the left for the binary fraction, then more
than 25 bits are necessary in the representation
of the results to maintain MARE < 0.5 ULP.

Square Root:
√

X = 2e′
×m′

where

e′ =


e

2
if e is even

e− 1
2

if e is odd

(4)

m′ =


(√

m
)
ATA

if e is even(√
2×m

)
ATA

if e is odd
(5)

Exponential:

exp(X) = exp (p)× (exp (q))ATA (6)

where X = p + q, p > 0, i.e., de-normalize X.
Note if p > 27 the result is not representable in
IEEE Single Precision (overflow for those num-
bers) and therefore exp(p) can be read from a
table of length 128.



The reduction tricks for the previously presented
function are straightforward. However other ele-
mentary functions are more problematic in many
senses, e.g., the sine function. The reader should
refer to [9] for details about how to do radian
reduction over the entire range of floating point
number accurately.
There is also a serious problem with straight-
forward application of ATA to some elementary
functions. Because ATA uses a truncated Taylor
polynomial (see next section), there is a problem
with the relative error when X is small as in the
first argument values in the sine function. To
overcome this problem the input is divided into
cases and particular tables are used for each sub-
range. See also reference [9] for details.

3. THE ATA METHOD

In the following a short description of Wong and
Goto’s ATA method is given (see [8] and [9] for
details). Sign and exponent precessing is ignored
in any respect. Recall the following definitions: 3

• Fraction is the aggregate of the 23-bit of the
significant with explicit bit representation in
the standard. The number of different frac-
tions is 223.

• Mantissa is the normalized number represen-
tation of the significant, i.e., it includes the
implicit 1 bit and the binary point. Conse-
quently, the range of the normalized man-
tissa is [1, 2) with a resolution of 2−23.

Let X be a fixed point input representing the
mantissa of an IEEE Single Precision Floating
Point number which is 24 bits in length. How-
ever, due to special requirements in handing the
exponent, it is sometimes possible to take values
outside the [1, 2) interval in which the IEEE single
precision floating number’s mantissa is obliged to
remain. We therefore assume X to be on different
ranges depending on the function as was shown
in Table 1.
Divide X into the following chunks,

X = x0 + λx1 + λ2x2 + λ3x3 (7)

3These denominations may sound inverted but they are
compatible with the IEEE standard use for the word frac-
tion.

where λ = 2−6, xi < 1, i = 1, 2, or 3, are 6 bits
in length. On the other hand, depending of the
function, we have x0 anywhere in [0, 4). Let f
be a function we wish to compute and f (n) be
the nth derivative of f . We can write the Taylor
polynomial for f as follows

f(X) =
∞∑

n=0

f (n)(x0 + λx1)
n!

(λ2x2 + λ3x3)n (8)

The aim is to approximate f(X) by neglecting
terms smaller than λ5. Expanding (8) and tak-
ing the first terms the resulting equation (9) is
the ATA formula. ATA method was proposed
by Wong and Goto for the approximation of ele-
mentary function for a bounded range [8]. ATA
is the acronym for Add-Table lookup-Add, which
are the three basic sequential operations required
for computing f̃(X):

1. Add (or subtract) to get the four 13 bit cen-
tral differences. x0 + λx1 + λx2, x0 + λx1 −
λx2, x0+λx1+λx3,x0+λx1−λx3 (the num-
ber x0 + λx1 is obtained by concatenation).

2.1 Read five f values from only one table, or
from parallel tables to improve latency.

2.2 Read the last term value, which is a function
of x0 and x2, from a different table 4.

3. Add all together the six tables values.

The values stored in the tables are double preci-
sion fractional representations in the worst case,
i.e., for some tables the length can be shorter than
52-bit.
Wong was able to analytically prove in [7] that,
for all the functions and their ranges as given in
Table 1, the maximum absolute error is no more
than 0.5 ULP.
The author (as in turn Wong and Goto did) wrote
a program that makes an exhaustive check of the
ATA formula. This is possible because the inputs
are 24 bits in length, therefore making it realistic
to do so using a computer. The results are shown
in Table 2 are identical to those reported in [9]
except for the Sine function. The difference may

f̃(X) = f(x0 + λx1) +
λ

2
{f(x0 + λx1 + λx2)− f(x0 + λx1 − λx2)}+ (9)

λ2

2
{f(x0 + λx1 + λx3)− f(x0 + λx1 − λx3)}+ λ4

{
x2

2

2
f (2)(x0)−

x3
2

6
f (3)(x0)

}

4The value comes, not from the original function f but
from a combination of the second and third derivative of
that function.



be due to the use of Matlab R© instead of Fortran.

Function Range Error
Reciprocal 1 ≤ X < 2 27.3 bit
Square Root 1 ≤ X < 2 31.6 bit
Square Root 2 ≤ X < 4 33.3 bit
Exponential 0 ≤ X < 1 28.3 bit
Sine 0 ≤ X < π/2 29.8 bit
Natural Logarithm 0.5 ≤ X < 1 29.1 bit
Natural Logarithm 1 ≤ X < 2 29.1 bit
Arc Tangent 0 ≤ X < 1 29.3 bit

Table 2: Original Maximum Absolute Error

Implementation Details
VHDL language descriptions are not presented
due to lack of space. For details see [2]. Ta-
bles 3 and 4 present a summary of the relevant
characteristics of the design’s components for any
elementary function.

Component Characteristic Qt.

Adder 13-bit adder 2
Subtr 13-bit subtracter 2
Tree 6-operand adder 1

Table 3: Components

Table Range

T0 and T5 212

T1 and T2 212 + 26 −1
T3 and T4 212 + 25 −1

Table 4: Table Details

From Table 3 it can be observed that basically
only adders are needed. From Table 4 the total
tables’ length is just 24, 764 5.

4. VARYING CHUNK SIZES

Analysis of MAE
Recall that in Table 2 the Error is expressed as a
bit position,

Error = − log2 MAE (10)

The analysis of MAE from Table 2 and the consid-
eration of the reduction tricks demonstrate that
the worst case, in the sense of closeness of MARE
to 1/2 ULP, corresponds to the Reciprocal. For
any other function the accuracy of MAE is fairly
larger than is needed. The redundancy is due to
the number of bits assigned to the chunks of the
mantissa to perform the required accuracy for any
function.

5The ratio 24, 764/ 223 is improper as a performance
index.

An Integer Optimization Problem
Looking at equation (9) it can be observed a
trade-off between the size of the chunks and the
length of the tables demanded. As some others
trade-off problems, that can be expressed in terms
of an optimization problem. Then, the following
integer optimization problem is stated:

Find a mantissa partition 6 that leads to
the shortest tables for all functions while
keeping the MARE s within 0.5 ULP.

In mathematical form, the problem is stated as

Find
min
p

TF (p) (11)

subject to

Efi
(p) <

ULP
2

∀i (12)

where p is the unknown mantissa partition, the
objective function TF (·) is the tables cumulative
length function, the constraints Efi

(·) are the
maximum absolute relative error functions, and
F = {fi} is the set of all elementary function
under consideration.
Furthermore partition p is constrained to four
blocks or chunks as in the original ATA algorithm.
In turn, Efi

(·) also depends upon particular nor-
malization aspects and upon the maximum abso-
lute errors of the ATA formula.
A good approximation to function TF (·) can
be computed straightforward (an example was
shown in Table 4).
A definition of partition is needed. For that pur-
pose redefine the division of X into chunks,

X = x0 + 2−p1x1 + (13)
2−(p1+p2)x2 + 2−(p1+p2+p3)x3

where xi < 1, i = 1, 2, or 3 and x0 anywhere in
[0, 4). Consequently, equation (9) is easily rein-
terpreted.
Any partitions is now characterized by a 3-
element vector, pi = [ p1 p2 p3 ]. The original
ATA partition is p0 = [ 6 6 6 ].

Proposed Partitions
The analytical solution of the problem is diffi-
cult. However. after common sense observations,
three candidate partitions (involving shorter ta-
bles than the original) are found,

p1 = [ 5 6 6 ] , p2 = [ 6 5 6 ] , p3 = [ 7 4 6 ]

The proposed partitions are almost identical
given that x0 and x1 are concatenated in five out

6The word partition is used in a loose sense. Actually,
the target is an ordered partition of the mantissa into four
chunks.



of six table addresses (see equation (9)). Actually
that fact is a key factor used for the selection of
the partitions.

The key criteria for the selection of the partitions
are the following:

1. The principal way to reduce table lengths is
to reduce the number of bits in the concate-
nation between x0 and x1. The proposed
partitions take 11 bit for that concatenation
instead of the original 12 bit.

2. The way to control the accuracy of f̂ is vary-
ing how many bits are assigned to x0, out of
11 bits.

From the above, it can be observed that just two
elements of the partition vector remains as free
variables, i.e, the third element is fix in 6.
The length of the tables for the proposed parti-
tions are shown in Tables 5, 6 and 7. Observe
that partition p1 is the most convenient in term
of savings, on the contrary p3 is the less conve-
nient in that respect.

Table Range

T0 and T5 211

T1, T2, T3, and T4 211 + 26 −1

Table 5: Table Details for p1

Table Range

T0 211

T1, T2, T3, and T4 211 + 26 −1
T5 212

Table 6: Table Details for p2

Table Range

T0 211

T1, T2, T3, and T4 211 + 26 −1
T5 213

Table 7: Table Details for p3

The proposed partitions are checked in the next
section.

5. SIMULATION AND DISCUSSION

Exhaustive simulation is used again to compute
MAE for the new partitions. From the numerous
simulations, the extracted results shown in Table
8 are summarize by the following statements:

• Reciprocal: Partition p3 is the only one that
keeps MARE < 0.5 ULP.

• Other Functions: Partition p1 is enough for
the rest of the elementary function consid-
ered here.

Function Range p Error
Reciprocal 1 ≤ X < 2 p1 23.7 bit
Reciprocal 1 ≤ X < 2 p2 24.7 bit
Reciprocal 1 ≤ X < 2 p3 25.7 bit
Square Root 1 ≤ X < 2 p1 28.2 bit
Square Root 2 ≤ X < 4 p1 31.1 bit
Exponential 0 ≤ X < 1 p1 26.6 bit
Sine 0 ≤ X < π/2 p1 27.2 bit
Natural Log 1/2 ≤ X < 1 p1 25.6 bit
Natural Log 1 ≤ X < 2 p1 25.6 bit
Arc Tangent 0 ≤ X < 1 p1 25.9 bit

Table 8: Maximum Absolute Error

Formally the optimization goal is reached only
when partition p3 is used for all the elementary
functions. Nevertheless, for particular designs,
not all the functions addressed here are imple-
mented.
As an alternative, different partitions can be used
within the same design. In such a case the table
length of the correction factor is different for dif-
ferent functions. The practical consequence is a
complication of the multiplexing. Also different
tables can be used for different portions of the
range [2].
The reduction in the length of the tables does not
necessary have a practical application. Due to
technological restrictions, the length of the tables
may be an integer power of two. E.g., a table of
length 211 + 26 − 1 must be implemented as one
of length 212.
The worse situation for the utility of the alter-
native presented here is the combination of the
following four factors:

1. The table lengths are restricted to be an in-
teger power of two.

2. A recursive design in which just a single table
per function is used.

3. A rigid scheme not allowing the multiplexing
of tables of different length.

4. The inclusion of the Reciprocal function.

Under those conditions there is not saving at all
when comparing this method with the original
ATA.
Fortunately, a bunch of other combinations arise
when relaxing one or more of the above restric-
tions. Normally six tables per function will be
used to speed up the computation, and in that
situation a reduction of the length of the tables
becomes more valuable.



Suppose the implementation of the Reciprocal
function with six parallel tables with lengths re-
stricted to an integer power of two. Total table
length is 40, 960 for partition p0, and 26, 624 for
partition p3, i.e., a 35% saving is obtained. For
any other function, under similar conditions, the
saving is 50%.

6. CONCLUSIONS

Wong and Goto’s ATA is an arithmetic algorithm
for the computation of elementary functions in
single precision. ATA is an alternative method to
those based not only in pure polynomial approx-
imations but also to those based on pure table-
lookup. Precisely, the distinction of ATA is the
mixing of the two techniques.
This paper presents a modification to the origi-
nal ATA method. That change is based on the
statement of an optimization problem related to
the partition of the mantissa which is central to
ATA. The optimization problem is not settled
after mathematical concerns but instead after a
pragmatic consideration, i.e., the saving of space.
That optimization problem is also not solved ana-
lytically; instead exhaustive simulations are per-
formed. The candidate partitions for the sim-
ulations are selected after simple common sense
criteria.
For many of the possible implementations, the
modification allows a significant saving in space
without affecting precision and latency. The sim-
ulations show a reduction of table length ranging
from approx. 0 to 50% and with minor hardware
additions expected.
The VHDL functional descriptions are a by-
product of the mixed simulation environment
used here. From them is possible to begin
the hardware implementation of the components,
passing through the register transfer description,
all the way to the technological mapping.
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